module TensorStream module Utils def float32 Types.float32 end def graph TensorStream::Graph.new end def get_default_graph TensorStream::Graph.get_default_graph end def reset_default_graph TensorStream::Graph.get_default_graph.reset end def enable_eager_execution TensorStream::Graph.get_default_graph.enable_eager_execution end def disable_eager_execution TensorStream::Graph.get_default_graph.disable_eager_execution end def executing_eagerly? TensorStream::Graph.get_default_graph.executing_eagerly? end ## # List available evaluators + devices in the current local environment # Returns: # - An array containing the names of those devices def list_local_devices local_name = 'job:localhost' TensorStream::Evaluator.evaluators.collect do |k, v| v[:class].query_supported_devices.collect do |device_str| [local_name, "ts:#{k}:#{device_str.name}"].join('/') end end.flatten end ## # Creates a variable # A variable maintains state across sessions def variable(value, name: nil, initializer: nil, graph: nil, dtype: nil, trainable: true) op = Graph.get_default_graph.add_op(:assign, nil, value) common_options = { initializer: initializer || op, name: name, graph: graph, dtype: dtype, trainable: trainable } tensor = if value.is_a?(String) i_var(dtype || :string, 0, [], get_variable_scope, common_options) elsif value.is_a?(Integer) i_var(dtype || :int32, 0, [], get_variable_scope, common_options) elsif value.is_a?(Float) i_var(dtype || :float32, 0, [], get_variable_scope, common_options) else i_var(dtype || :float32, 0, nil, get_variable_scope, common_options) end op.set_input(0, tensor.op) Graph.get_default_graph.add_node(op) tensor end ## # Defines a variable context manager def variable_scope(scope = nil, default_name = nil, reuse: nil, initializer: nil) Thread.current[:tensor_stream_variable_scope] ||= [ VariableScope.new ] # uniquenifier if scope.nil? && default_name same_names = get_variable_scope.used_names.select { |s| s.start_with?(default_name) } new_name = default_name index = 1 while same_names.include?(new_name) new_name = "#{default_name}_#{index}" index += 1 end scope = new_name end variable_scope = VariableScope.new(name: scope, reuse: reuse, initializer: initializer) get_variable_scope.register_name(scope || "") Thread.current[:tensor_stream_variable_scope] << variable_scope scope_name = __v_scope_name if block_given? begin TensorStream.get_default_graph.name_scope(scope) do yield(scope_name) end ensure Thread.current[:tensor_stream_variable_scope].pop end else variable_scope end end def device(device_uri, &block) get_default_graph.device(device_uri, &block) end def name_scope(name, default_name = nil, default: nil, values: nil) if values graph_count = values.select { |v| v.is_a?(Tensor) }.map(&:graph).map(&:object_id).uniq.size raise "values are not on the same graph" if graph_count > 1 end get_default_graph.name_scope(name || default_name || default) do |scope| yield scope if block_given? end end def get_variable_scope if !Thread.current[:tensor_stream_variable_scope] variable_scope = VariableScope.new Thread.current[:tensor_stream_variable_scope] = [variable_scope] return variable_scope end Thread.current[:tensor_stream_variable_scope].last end def __v_scope_name Thread.current[:tensor_stream_variable_scope].map(&:name).compact.reject(&:empty?).join('/') end ## # Creates a session context where operations can be executed # # Args: # evaluator: Specific evaluator to use, otherwise the best evaluator will automatically be determined # # Options: # thread_pool_class: Class to use to manage thread pooling # log_device_placement: Show assigned device/evalutor for each tensor op # profile_enabled: Log performance metrics for each operation def session(evaluator = nil, thread_pool_class: Concurrent::ImmediateExecutor, log_device_placement: false, profile_enabled: false) session = TensorStream::Session.new(evaluator, thread_pool_class: thread_pool_class, log_device_placement: log_device_placement, profile_enabled: profile_enabled) yield session if block_given? session end def colocate_with(op, ignore_existing: false) # noop for now yield end def program yield self end def layers TensorStream::Layers end def constant(value, dtype: nil, shape: nil, internal: false, name: 'Const') shared_options = { const: true, value: value, name: name, internal: internal } if value.is_a?(Float) TensorStream::Constant.new(dtype || :float32, 0, shape || [], shared_options) elsif value.is_a?(Integer) TensorStream::Constant.new(dtype || :int32, 0, shape || [], shared_options) elsif value.is_a?(String) TensorStream::Constant.new(dtype || :string, 0, shape || [], shared_options) elsif !!value == value TensorStream::Constant.new(dtype || :boolean, 0, shape || [], shared_options) elsif value.is_a?(Array) dimension = shape || shape_eval(value) rank = dimension.size TensorStream.check_if_dense(value) cur_dtype = dtype || Tensor.detect_type(value.flatten.last) value = Tensor.cast_dtype(value, cur_dtype) unless dtype.nil? shared_options[:value] = value TensorStream::Constant.new(cur_dtype, rank, dimension, shared_options) end end def group(inputs, name: nil) TensorStream::ControlFlow.new(:group, inputs, nil, name: name) end def dynamic_stitch(indices, data, name: nil) TensorStream::DynamicStitch.new(:dynamic_stitch, [indices, data], name: name) end def get_variable(name, dtype: nil, shape: nil, initializer: nil, trainable: true, collections: nil, validate_shape: false) get_variable_scope.get_variable(name, dtype: dtype, shape: shape, initializer: initializer, trainable: trainable, collections: collections) end def get_collection(name, options = {}) Graph.get_default_graph.get_collection(name, options) end def assign(ref, value, name: nil) raise "#{ref.name} not a variable" unless ref.is_a?(Variable) ref.assign(value, name: name) end ## # Inserts a placeholder for a tensor that will be always fed. def placeholder(dtype, shape: nil, name: nil) TensorStream::Placeholder.new(dtype, nil, shape, name: name) end def global_variables_initializer TensorStream::Variable.global_variables_initializer end def train TensorStream::Trainer end def image TensorStream::Images end def trainable_variables TensorStream.get_default_graph.get_collection(TensorStream::GraphKeys::TRAINABLE_VARIABLES) end ## # Sets random seed to use for the default graph def set_random_seed(seed) TensorStream.get_default_graph.random_seed = seed end def control_dependencies(control_inputs, &block) TensorStream.get_default_graph.control_dependencies(control_inputs, &block) end def convert_to_tensor(value, dtype: nil, name: nil) return value if value.is_a?(Tensor) return convert_to_tensor(value.call) if value.is_a?(Proc) # raise "Invalid tensor value" if value.nil? if value.is_a?(Array) && value[0].is_a?(Tensor) return TensorStream.stack(value) if value.size > 1 return TensorStream.expand_dims(value[0], 0) end check_if_dense(value) i_cons(value, dtype: dtype || Tensor.detect_type(value), name: name) end ## # Check to make sure passed array is dense # def check_if_dense(value, expected_shape = nil) return unless value.is_a?(Array) return if value.empty? expected_shape ||= shape_eval(value) s = expected_shape.shift raise TensorStream::ValueError, "Argument must be a dense tensor: #{value}, expected size #{s} got #{value.size}" if value.size != s return if expected_shape.empty? value.each do |item| check_if_dense(item, expected_shape.dup) end end def check_allowed_types(input, types) return input unless input.is_a?(Tensor) return input if input.data_type.nil? raise "#{input.source}: Parameter data type #{input.data_type} passed not in #{types.join(',')}" unless types.include?(input.data_type.to_sym) end def check_data_types(input_a, input_b) if !input_a.is_a?(Tensor) && input_b.is_a?(Tensor) input_a = convert_to_tensor(input_a, dtype: input_b.data_type) elsif !input_b.is_a?(Tensor) && input_a.is_a?(Tensor) input_b = convert_to_tensor(input_b, dtype: input_a.data_type) else input_a = convert_to_tensor(input_a) input_b = convert_to_tensor(input_b) end if norm_dtype(input_a.data_type) != norm_dtype(input_b.data_type) raise TensorStream::ValueError, "Value Error: Tensor conversion requested dtype #{input_a.data_type} for tensor type #{input_b.data_type}" end [input_a, input_b] end def norm_dtype(dtype) dtype = dtype.to_sym case dtype when :int :int32 when :float :float32 else dtype end end end end