Sha256: bda184f3aa602325deb768e9dc79319e10f357b8bf0cc019b75e29ef2839f542
Contents?: true
Size: 1.71 KB
Versions: 2
Compression:
Stored size: 1.71 KB
Contents
# Dlib Ruby binding of [dlib C++ library](http://dlib.net/). ## Installation `dlib` depends libjpeg and libpng. So, you should install libraries at first. **Mac** ``` $ brew install jpeg libpng ``` **Ubuntu 16.04** ``` $ apt-get install libjpeg8-dev libpng12-dev ``` **If you want to use DNN based face detector, you would have to install CUDA SDKs.** **Please read this page.** http://docs.nvidia.com/cuda/#axzz4anGdXQuB Add this line to your application's Gemfile: ```ruby gem 'dlib' ``` And then execute: $ bundle Or install it yourself as: $ gem install dlib ## Usage See examples directory. [https://github.com/ruby-dlib/ruby-dlib/tree/master/examples](https://github.com/ruby-dlib/ruby-dlib/tree/master/examples) ## Face Detector Comparison | | CPU | GPU | recall rate | precision rate | |-------------------|-----|-----|-------------|----------------| | opencv haar based | 😄 | - | 😄 | 🤔 | | dlib hog based *1 | 😄 | - | 😄 | 😻 | | dlib dnn based *2 | 🤔 | 😄 | 😂 | 😻 | 1. http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html 2. http://blog.dlib.net/2016/10/easily-create-high-quality-object.html demonstrated movie by original author of dlib on youtube [](http://www.youtube.com/watch?v=LsK0hzcEyHI "Click to play on Youtube.com") ## Contributing 1. Fork it ( https://github.com/ruby-dlib/ruby-dlib/fork ) 2. Create your feature branch (`git checkout -b my-new-feature`) 3. Commit your changes (`git commit -am 'Add some feature'`) 4. Push to the branch (`git push origin my-new-feature`) 5. Create a new Pull Request
Version data entries
2 entries across 2 versions & 1 rubygems
Version | Path |
---|---|
dlib-1.1.3 | README.md |
dlib-1.1.2 | README.md |