// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd // Author: kenton@google.com (Kenton Varda) // // protoc (aka the Protocol Compiler) can be extended via plugins. A plugin is // just a program that reads a CodeGeneratorRequest from stdin and writes a // CodeGeneratorResponse to stdout. // // Plugins written using C++ can use google/protobuf/compiler/plugin.h instead // of dealing with the raw protocol defined here. // // A plugin executable needs only to be placed somewhere in the path. The // plugin should be named "protoc-gen-$NAME", and will then be used when the // flag "--${NAME}_out" is passed to protoc. syntax = "proto2"; package google.protobuf.compiler; option java_package = "com.google.protobuf.compiler"; option java_outer_classname = "PluginProtos"; option csharp_namespace = "Google.Protobuf.Compiler"; option go_package = "google.golang.org/protobuf/types/pluginpb"; import "google/protobuf/descriptor.proto"; // The version number of protocol compiler. message Version { optional int32 major = 1; optional int32 minor = 2; optional int32 patch = 3; // A suffix for alpha, beta or rc release, e.g., "alpha-1", "rc2". It should // be empty for mainline stable releases. optional string suffix = 4; } // An encoded CodeGeneratorRequest is written to the plugin's stdin. message CodeGeneratorRequest { // The .proto files that were explicitly listed on the command-line. The // code generator should generate code only for these files. Each file's // descriptor will be included in proto_file, below. repeated string file_to_generate = 1; // The generator parameter passed on the command-line. optional string parameter = 2; // FileDescriptorProtos for all files in files_to_generate and everything // they import. The files will appear in topological order, so each file // appears before any file that imports it. // // Note: the files listed in files_to_generate will include runtime-retention // options only, but all other files will include source-retention options. // The source_file_descriptors field below is available in case you need // source-retention options for files_to_generate. // // protoc guarantees that all proto_files will be written after // the fields above, even though this is not technically guaranteed by the // protobuf wire format. This theoretically could allow a plugin to stream // in the FileDescriptorProtos and handle them one by one rather than read // the entire set into memory at once. However, as of this writing, this // is not similarly optimized on protoc's end -- it will store all fields in // memory at once before sending them to the plugin. // // Type names of fields and extensions in the FileDescriptorProto are always // fully qualified. repeated FileDescriptorProto proto_file = 15; // File descriptors with all options, including source-retention options. // These descriptors are only provided for the files listed in // files_to_generate. repeated FileDescriptorProto source_file_descriptors = 17; // The version number of protocol compiler. optional Version compiler_version = 3; } // The plugin writes an encoded CodeGeneratorResponse to stdout. message CodeGeneratorResponse { // Error message. If non-empty, code generation failed. The plugin process // should exit with status code zero even if it reports an error in this way. // // This should be used to indicate errors in .proto files which prevent the // code generator from generating correct code. Errors which indicate a // problem in protoc itself -- such as the input CodeGeneratorRequest being // unparseable -- should be reported by writing a message to stderr and // exiting with a non-zero status code. optional string error = 1; // A bitmask of supported features that the code generator supports. // This is a bitwise "or" of values from the Feature enum. optional uint64 supported_features = 2; // Sync with code_generator.h. enum Feature { FEATURE_NONE = 0; FEATURE_PROTO3_OPTIONAL = 1; FEATURE_SUPPORTS_EDITIONS = 2; } // Represents a single generated file. message File { // The file name, relative to the output directory. The name must not // contain "." or ".." components and must be relative, not be absolute (so, // the file cannot lie outside the output directory). "/" must be used as // the path separator, not "\". // // If the name is omitted, the content will be appended to the previous // file. This allows the generator to break large files into small chunks, // and allows the generated text to be streamed back to protoc so that large // files need not reside completely in memory at one time. Note that as of // this writing protoc does not optimize for this -- it will read the entire // CodeGeneratorResponse before writing files to disk. optional string name = 1; // If non-empty, indicates that the named file should already exist, and the // content here is to be inserted into that file at a defined insertion // point. This feature allows a code generator to extend the output // produced by another code generator. The original generator may provide // insertion points by placing special annotations in the file that look // like: // @@protoc_insertion_point(NAME) // The annotation can have arbitrary text before and after it on the line, // which allows it to be placed in a comment. NAME should be replaced with // an identifier naming the point -- this is what other generators will use // as the insertion_point. Code inserted at this point will be placed // immediately above the line containing the insertion point (thus multiple // insertions to the same point will come out in the order they were added). // The double-@ is intended to make it unlikely that the generated code // could contain things that look like insertion points by accident. // // For example, the C++ code generator places the following line in the // .pb.h files that it generates: // // @@protoc_insertion_point(namespace_scope) // This line appears within the scope of the file's package namespace, but // outside of any particular class. Another plugin can then specify the // insertion_point "namespace_scope" to generate additional classes or // other declarations that should be placed in this scope. // // Note that if the line containing the insertion point begins with // whitespace, the same whitespace will be added to every line of the // inserted text. This is useful for languages like Python, where // indentation matters. In these languages, the insertion point comment // should be indented the same amount as any inserted code will need to be // in order to work correctly in that context. // // The code generator that generates the initial file and the one which // inserts into it must both run as part of a single invocation of protoc. // Code generators are executed in the order in which they appear on the // command line. // // If |insertion_point| is present, |name| must also be present. optional string insertion_point = 2; // The file contents. optional string content = 15; // Information describing the file content being inserted. If an insertion // point is used, this information will be appropriately offset and inserted // into the code generation metadata for the generated files. optional GeneratedCodeInfo generated_code_info = 16; } repeated File file = 15; }