#include "cones.h" #include "linalg.h" #include "scs.h" #include "scs_blas.h" /* contains BLAS(X) macros and type info */ #include "util.h" #define CONE_RATE (2) #define CONE_TOL (1e-8) #define CONE_THRESH (1e-6) #define EXP_CONE_MAX_ITERS (100) #define POW_CONE_MAX_ITERS (20) #ifdef USE_LAPACK void BLAS(syevr)(const char *jobz, const char *range, const char *uplo, blas_int *n, scs_float *a, blas_int *lda, scs_float *vl, scs_float *vu, blas_int *il, blas_int *iu, scs_float *abstol, blas_int *m, scs_float *w, scs_float *z, blas_int *ldz, blas_int *isuppz, scs_float *work, blas_int *lwork, blas_int *iwork, blas_int *liwork, blas_int *info); void BLAS(syr)(const char *uplo, const blas_int *n, const scs_float *alpha, const scs_float *x, const blas_int *incx, scs_float *a, const blas_int *lda); void BLAS(scal)(const blas_int *n, const scs_float *sa, scs_float *sx, const blas_int *incx); scs_float BLAS(nrm2)(const blas_int *n, scs_float *x, const blas_int *incx); #endif static scs_int get_sd_cone_size(scs_int s) { return (s * (s + 1)) / 2; } /* * boundaries will contain array of indices of rows of A corresponding to * cone boundaries, boundaries[0] is starting index for cones of size strictly * larger than 1 * returns length of boundaries array, boundaries malloc-ed here so should be * freed */ scs_int SCS(get_cone_boundaries)(const ScsCone *k, scs_int **boundaries) { scs_int i, count = 0; scs_int len = 1 + k->qsize + k->ssize + k->ed + k->ep + k->psize; scs_int *b = (scs_int *)scs_calloc(len, sizeof(scs_int)); b[count] = k->f + k->l; count += 1; if (k->qsize > 0) { memcpy(&b[count], k->q, k->qsize * sizeof(scs_int)); } count += k->qsize; for (i = 0; i < k->ssize; ++i) { b[count + i] = get_sd_cone_size(k->s[i]); } count += k->ssize; for (i = 0; i < k->ep + k->ed; ++i) { b[count + i] = 3; } count += k->ep + k->ed; for (i = 0; i < k->psize; ++i) { b[count + i] = 3; } count += k->psize; *boundaries = b; return len; } static scs_int get_full_cone_dims(const ScsCone *k) { scs_int i, c = 0; if (k->f) { c += k->f; } if (k->l) { c += k->l; } if (k->qsize && k->q) { for (i = 0; i < k->qsize; ++i) { c += k->q[i]; } } if (k->ssize && k->s) { for (i = 0; i < k->ssize; ++i) { c += get_sd_cone_size(k->s[i]); } } if (k->ed) { c += 3 * k->ed; } if (k->ep) { c += 3 * k->ep; } if (k->p) { c += 3 * k->psize; } return c; } scs_int SCS(validate_cones)(const ScsData *d, const ScsCone *k) { scs_int i; if (get_full_cone_dims(k) != d->m) { scs_printf("cone dimensions %li not equal to num rows in A = m = %li\n", (long)get_full_cone_dims(k), (long)d->m); return -1; } if (k->f && k->f < 0) { scs_printf("free cone error\n"); return -1; } if (k->l && k->l < 0) { scs_printf("lp cone error\n"); return -1; } if (k->qsize && k->q) { if (k->qsize < 0) { scs_printf("soc cone error\n"); return -1; } for (i = 0; i < k->qsize; ++i) { if (k->q[i] < 0) { scs_printf("soc cone error\n"); return -1; } } } if (k->ssize && k->s) { if (k->ssize < 0) { scs_printf("sd cone error\n"); return -1; } for (i = 0; i < k->ssize; ++i) { if (k->s[i] < 0) { scs_printf("sd cone error\n"); return -1; } } } if (k->ed && k->ed < 0) { scs_printf("ep cone error\n"); return -1; } if (k->ep && k->ep < 0) { scs_printf("ed cone error\n"); return -1; } if (k->psize && k->p) { if (k->psize < 0) { scs_printf("power cone error\n"); return -1; } for (i = 0; i < k->psize; ++i) { if (k->p[i] < -1 || k->p[i] > 1) { scs_printf("power cone error, values must be in [-1,1]\n"); return -1; } } } return 0; } char *SCS(get_cone_summary)(const ScsInfo *info, ScsConeWork *c) { char *str = (char *)scs_malloc(sizeof(char) * 64); sprintf(str, "\tCones: avg projection time: %1.2es\n", c->total_cone_time / (info->iter + 1) / 1e3); c->total_cone_time = 0.0; return str; } void SCS(finish_cone)(ScsConeWork *c) { #ifdef USE_LAPACK if (c->Xs) { scs_free(c->Xs); } if (c->Z) { scs_free(c->Z); } if (c->e) { scs_free(c->e); } if (c->work) { scs_free(c->work); } if (c->iwork) { scs_free(c->iwork); } #endif if (c) { scs_free(c); } } char *SCS(get_cone_header)(const ScsCone *k) { char *tmp = (char *)scs_malloc(sizeof(char) * 512); scs_int i, soc_vars, soc_blks, sd_vars, sd_blks; sprintf(tmp, "Cones:"); if (k->f) { sprintf(tmp + strlen(tmp), "\tprimal zero / dual free vars: %li\n", (long)k->f); } if (k->l) { sprintf(tmp + strlen(tmp), "\tlinear vars: %li\n", (long)k->l); } soc_vars = 0; soc_blks = 0; if (k->qsize && k->q) { soc_blks = k->qsize; for (i = 0; i < k->qsize; i++) { soc_vars += k->q[i]; } sprintf(tmp + strlen(tmp), "\tsoc vars: %li, soc blks: %li\n", (long)soc_vars, (long)soc_blks); } sd_vars = 0; sd_blks = 0; if (k->ssize && k->s) { sd_blks = k->ssize; for (i = 0; i < k->ssize; i++) { sd_vars += get_sd_cone_size(k->s[i]); } sprintf(tmp + strlen(tmp), "\tsd vars: %li, sd blks: %li\n", (long)sd_vars, (long)sd_blks); } if (k->ep || k->ed) { sprintf(tmp + strlen(tmp), "\texp vars: %li, dual exp vars: %li\n", (long)(3 * k->ep), (long)(3 * k->ed)); } if (k->psize && k->p) { sprintf(tmp + strlen(tmp), "\tprimal + dual power vars: %li\n", (long)(3 * k->psize)); } return tmp; } static scs_int is_simple_semi_definite_cone(scs_int *s, scs_int ssize) { scs_int i; for (i = 0; i < ssize; i++) { if (s[i] > 2) { return 0; /* false */ } } return 1; /* true */ } static scs_float exp_newton_one_d(scs_float rho, scs_float y_hat, scs_float z_hat) { scs_float t = MAX(-z_hat, 1e-6); scs_float f, fp; scs_int i; for (i = 0; i < EXP_CONE_MAX_ITERS; ++i) { f = t * (t + z_hat) / rho / rho - y_hat / rho + log(t / rho) + 1; fp = (2 * t + z_hat) / rho / rho + 1 / t; t = t - f / fp; if (t <= -z_hat) { return 0; } else if (t <= 0) { return z_hat; } else if (ABS(f) < CONE_TOL) { break; } } return t + z_hat; } static void exp_solve_for_x_with_rho(scs_float *v, scs_float *x, scs_float rho) { x[2] = exp_newton_one_d(rho, v[1], v[2]); x[1] = (x[2] - v[2]) * x[2] / rho; x[0] = v[0] - rho; } static scs_float exp_calc_grad(scs_float *v, scs_float *x, scs_float rho) { exp_solve_for_x_with_rho(v, x, rho); if (x[1] <= 1e-12) { return x[0]; } return x[0] + x[1] * log(x[1] / x[2]); } static void exp_get_rho_ub(scs_float *v, scs_float *x, scs_float *ub, scs_float *lb) { *lb = 0; *ub = 0.125; while (exp_calc_grad(v, x, *ub) > 0) { *lb = *ub; (*ub) *= 2; } } /* project onto the exponential cone, v has dimension *exactly* 3 */ static scs_int proj_exp_cone(scs_float *v) { scs_int i; scs_float ub, lb, rho, g, x[3]; scs_float r = v[0], s = v[1], t = v[2]; scs_float tol = CONE_TOL; /* iter < 0 ? CONE_TOL : MAX(CONE_TOL, 1 / POWF((iter + 1), CONE_RATE)); */ /* v in cl(Kexp) */ if ((s * exp(r / s) - t <= CONE_THRESH && s > 0) || (r <= 0 && s == 0 && t >= 0)) { return 0; } /* -v in Kexp^* */ if ((-r < 0 && r * exp(s / r) + exp(1) * t <= CONE_THRESH) || (-r == 0 && -s >= 0 && -t >= 0)) { memset(v, 0, 3 * sizeof(scs_float)); return 0; } /* special case with analytical solution */ if (r < 0 && s < 0) { v[1] = 0.0; v[2] = MAX(v[2], 0); return 0; } /* iterative procedure to find projection, bisects on dual variable: */ exp_get_rho_ub(v, x, &ub, &lb); /* get starting upper and lower bounds */ for (i = 0; i < EXP_CONE_MAX_ITERS; ++i) { rho = (ub + lb) / 2; /* halfway between upper and lower bounds */ g = exp_calc_grad(v, x, rho); /* calculates gradient wrt dual var */ if (g > 0) { lb = rho; } else { ub = rho; } if (ub - lb < tol) { break; } } /* #if EXTRA_VERBOSE > 0 scs_printf("exponential cone proj iters %i\n", i); #endif */ v[0] = x[0]; v[1] = x[1]; v[2] = x[2]; return 0; } static scs_int set_up_sd_cone_work_space(ScsConeWork *c, const ScsCone *k) { #ifdef USE_LAPACK scs_int i; blas_int n_max = 0; scs_float eig_tol = 1e-8; blas_int neg_one = -1; blas_int m = 0; blas_int info = 0; scs_float wkopt = 0.0; #if EXTRA_VERBOSE > 0 #define _STR_EXPAND(tok) #tok #define _STR(tok) _STR_EXPAND(tok) scs_printf("BLAS(func) = '%s'\n", _STR(BLAS(func))); #endif /* eigenvector decomp workspace */ for (i = 0; i < k->ssize; ++i) { if (k->s[i] > n_max) { n_max = (blas_int)k->s[i]; } } c->Xs = (scs_float *)scs_calloc(n_max * n_max, sizeof(scs_float)); c->Z = (scs_float *)scs_calloc(n_max * n_max, sizeof(scs_float)); c->e = (scs_float *)scs_calloc(n_max, sizeof(scs_float)); c->liwork = 0; BLAS(syevr) ("Vectors", "All", "Lower", &n_max, c->Xs, &n_max, SCS_NULL, SCS_NULL, SCS_NULL, SCS_NULL, &eig_tol, &m, c->e, c->Z, &n_max, SCS_NULL, &wkopt, &neg_one, &(c->liwork), &neg_one, &info); if (info != 0) { scs_printf("FATAL: syevr failure, info = %li\n", (long)info); return -1; } c->lwork = (blas_int)(wkopt + 0.01); /* 0.01 for int casting safety */ c->work = (scs_float *)scs_calloc(c->lwork, sizeof(scs_float)); c->iwork = (blas_int *)scs_calloc(c->liwork, sizeof(blas_int)); if (!c->Xs || !c->Z || !c->e || !c->work || !c->iwork) { return -1; } return 0; #else scs_printf( "FATAL: Cannot solve SDPs with > 2x2 matrices without linked " "blas+lapack libraries\n"); scs_printf( "Install blas+lapack and re-compile SCS with blas+lapack library " "locations\n"); return -1; #endif } ScsConeWork *SCS(init_cone)(const ScsCone *k) { ScsConeWork *c = (ScsConeWork *)scs_calloc(1, sizeof(ScsConeWork)); #if EXTRA_VERBOSE > 0 scs_printf("init_cone\n"); #endif c->total_cone_time = 0.0; if (k->ssize && k->s) { if (!is_simple_semi_definite_cone(k->s, k->ssize) && set_up_sd_cone_work_space(c, k) < 0) { SCS(finish_cone)(c); return SCS_NULL; } } #if EXTRA_VERBOSE > 0 scs_printf("init_cone complete\n"); #ifdef MATLAB_MEX_FILE mexEvalString("drawnow;"); #endif #endif return c; } static scs_int project_2x2_sdc(scs_float *X) { scs_float a, b, d, l1, l2, x1, x2, rad; scs_float sqrt2 = SQRTF(2.0); a = X[0]; b = X[1] / sqrt2; d = X[2]; if (ABS(b) < 1e-6) { /* diagonal matrix */ X[0] = MAX(a, 0); X[1] = 0; X[2] = MAX(d, 0); return 0; } rad = SQRTF((a - d) * (a - d) + 4 * b * b); /* l1 >= l2 always, since rad >= 0 */ l1 = 0.5 * (a + d + rad); l2 = 0.5 * (a + d - rad); #if EXTRA_VERBOSE > 0 scs_printf( "2x2 SD: a = %4f, b = %4f, (X[1] = %4f, X[2] = %4f), d = %4f, " "rad = %4f, l1 = %4f, l2 = %4f\n", a, b, X[1], X[2], d, rad, l1, l2); #endif if (l2 >= 0) { /* both eigs positive already */ return 0; } if (l1 <= 0) { /* both eigs negative, set to 0 */ X[0] = 0; X[1] = 0; X[2] = 0; return 0; } /* l1 pos, l2 neg */ x1 = 1 / SQRTF(1 + (l1 - a) * (l1 - a) / b / b); x2 = x1 * (l1 - a) / b; X[0] = l1 * x1 * x1; X[1] = (l1 * x1 * x2) * sqrt2; X[2] = l1 * x2 * x2; return 0; } /* size of X is get_sd_cone_size(n) */ static scs_int proj_semi_definite_cone(scs_float *X, const scs_int n, ScsConeWork *c) { /* project onto the positive semi-definite cone */ #ifdef USE_LAPACK scs_int i; blas_int one = 1; blas_int m = 0; blas_int nb = (blas_int)n; blas_int nb_plus_one = (blas_int)(n + 1); blas_int cone_sz = (blas_int)(get_sd_cone_size(n)); scs_float sqrt2 = SQRTF(2.0); scs_float sqrt2Inv = 1.0 / sqrt2; scs_float *Xs = c->Xs; scs_float *Z = c->Z; scs_float *e = c->e; scs_float *work = c->work; blas_int *iwork = c->iwork; blas_int lwork = c->lwork; blas_int liwork = c->liwork; scs_float eig_tol = CONE_TOL; /* iter < 0 ? CONE_TOL : MAX(CONE_TOL, 1 / POWF(iter + 1, CONE_RATE)); */ scs_float zero = 0.0; blas_int info = 0; scs_float vupper = 0.0; #endif if (n == 0) { return 0; } if (n == 1) { if (X[0] < 0.0) { X[0] = 0.0; } return 0; } if (n == 2) { return project_2x2_sdc(X); } #ifdef USE_LAPACK memset(Xs, 0, n * n * sizeof(scs_float)); /* expand lower triangular matrix to full matrix */ for (i = 0; i < n; ++i) { memcpy(&(Xs[i * (n + 1)]), &(X[i * n - ((i - 1) * i) / 2]), (n - i) * sizeof(scs_float)); } /* rescale so projection works, and matrix norm preserved see http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf pg 3 */ /* scale diags by sqrt(2) */ BLAS(scal)(&nb, &sqrt2, Xs, &nb_plus_one); /* not n_squared */ /* max-eig upper bounded by frobenius norm */ vupper = 1.1 * sqrt2 * BLAS(nrm2)(&cone_sz, X, &one); /* mult by factor to make sure is upper bound */ vupper = MAX(vupper, 0.01); #if EXTRA_VERBOSE > 0 SCS(print_array)(Xs, n * n, "Xs"); SCS(print_array)(X, get_sd_cone_size(n), "X"); #endif /* Solve eigenproblem, reuse workspaces */ BLAS(syevr) ("Vectors", "VInterval", "Lower", &nb, Xs, &nb, &zero, &vupper, SCS_NULL, SCS_NULL, &eig_tol, &m, e, Z, &nb, SCS_NULL, work, &lwork, iwork, &liwork, &info); #if EXTRA_VERBOSE > 0 if (info != 0) { scs_printf("WARN: LAPACK syevr error, info = %i\n", info); } scs_printf("syevr input parameter dump:\n"); scs_printf("nb = %li\n", (long)nb); scs_printf("lwork = %li\n", (long)lwork); scs_printf("liwork = %li\n", (long)liwork); scs_printf("vupper = %f\n", vupper); scs_printf("eig_tol = %e\n", eig_tol); SCS(print_array)(e, m, "e"); SCS(print_array)(Z, m * n, "Z"); #endif if (info < 0) { return -1; } memset(Xs, 0, n * n * sizeof(scs_float)); for (i = 0; i < m; ++i) { scs_float a = e[i]; BLAS(syr)("Lower", &nb, &a, &(Z[i * n]), &one, Xs, &nb); } /* scale diags by 1/sqrt(2) */ BLAS(scal)(&nb, &sqrt2Inv, Xs, &nb_plus_one); /* not n_squared */ /* extract just lower triangular matrix */ for (i = 0; i < n; ++i) { memcpy(&(X[i * n - ((i - 1) * i) / 2]), &(Xs[i * (n + 1)]), (n - i) * sizeof(scs_float)); } #if EXTRA_VERBOSE > 0 SCS(print_array)(Xs, n * n, "Xs"); SCS(print_array)(X, get_sd_cone_size(n), "X"); #endif #else scs_printf( "FAILURE: solving SDP with > 2x2 matrices, but no blas/lapack " "libraries were linked!\n"); scs_printf("SCS will return nonsense!\n"); SCS(scale_array)(X, NAN, n); return -1; #endif return 0; } static scs_float pow_calc_x(scs_float r, scs_float xh, scs_float rh, scs_float a) { scs_float x = 0.5 * (xh + SQRTF(xh * xh + 4 * a * (rh - r) * r)); return MAX(x, 1e-12); } static scs_float pow_calcdxdr(scs_float x, scs_float xh, scs_float rh, scs_float r, scs_float a) { return a * (rh - 2 * r) / (2 * x - xh); } static scs_float pow_calc_f(scs_float x, scs_float y, scs_float r, scs_float a) { return POWF(x, a) * POWF(y, (1 - a)) - r; } static scs_float pow_calc_fp(scs_float x, scs_float y, scs_float dxdr, scs_float dydr, scs_float a) { return POWF(x, a) * POWF(y, (1 - a)) * (a * dxdr / x + (1 - a) * dydr / y) - 1; } static void proj_power_cone(scs_float *v, scs_float a) { scs_float xh = v[0], yh = v[1], rh = ABS(v[2]); scs_float x = 0.0, y = 0.0, r; scs_int i; /* v in K_a */ if (xh >= 0 && yh >= 0 && CONE_THRESH + POWF(xh, a) * POWF(yh, (1 - a)) >= rh) { return; } /* -v in K_a^* */ if (xh <= 0 && yh <= 0 && CONE_THRESH + POWF(-xh, a) * POWF(-yh, 1 - a) >= rh * POWF(a, a) * POWF(1 - a, 1 - a)) { v[0] = v[1] = v[2] = 0; return; } r = rh / 2; for (i = 0; i < POW_CONE_MAX_ITERS; ++i) { scs_float f, fp, dxdr, dydr; x = pow_calc_x(r, xh, rh, a); y = pow_calc_x(r, yh, rh, 1 - a); f = pow_calc_f(x, y, r, a); if (ABS(f) < CONE_TOL) { break; } dxdr = pow_calcdxdr(x, xh, rh, r, a); dydr = pow_calcdxdr(y, yh, rh, r, (1 - a)); fp = pow_calc_fp(x, y, dxdr, dydr, a); r = MAX(r - f / fp, 0); r = MIN(r, rh); } v[0] = x; v[1] = y; v[2] = (v[2] < 0) ? -(r) : (r); } /* outward facing cone projection routine, iter is outer algorithm iteration, if iter < 0 then iter is ignored warm_start contains guess of projection (can be set to SCS_NULL) */ scs_int SCS(proj_dual_cone)(scs_float *x, const ScsCone *k, ScsConeWork *c, const scs_float *warm_start, scs_int iter) { scs_int i; scs_int count = (k->f ? k->f : 0); SCS(timer) cone_timer; #if EXTRA_VERBOSE > 0 SCS(timer) proj_timer; SCS(tic)(&proj_timer); #endif SCS(tic)(&cone_timer); if (k->l) { /* project onto positive orthant */ for (i = count; i < count + k->l; ++i) { if (x[i] < 0.0) { x[i] = 0.0; } /* x[i] = (x[i] < 0.0) ? 0.0 : x[i]; */ } count += k->l; #if EXTRA_VERBOSE > 0 scs_printf("pos orthant proj time: %1.2es\n", SCS(tocq)(&proj_timer) / 1e3); SCS(tic)(&proj_timer); #endif } if (k->qsize && k->q) { /* project onto SOC */ for (i = 0; i < k->qsize; ++i) { if (k->q[i] == 0) { continue; } if (k->q[i] == 1) { if (x[count] < 0.0) { x[count] = 0.0; } } else { scs_float v1 = x[count]; scs_float s = SCS(norm)(&(x[count + 1]), k->q[i] - 1); scs_float alpha = (s + v1) / 2.0; if (s <= v1) { /* do nothing */ } else if (s <= -v1) { memset(&(x[count]), 0, k->q[i] * sizeof(scs_float)); } else { x[count] = alpha; SCS(scale_array)(&(x[count + 1]), alpha / s, k->q[i] - 1); } } count += k->q[i]; } #if EXTRA_VERBOSE > 0 scs_printf("SOC proj time: %1.2es\n", SCS(tocq)(&proj_timer) / 1e3); SCS(tic)(&proj_timer); #endif } if (k->ssize && k->s) { /* project onto PSD cone */ for (i = 0; i < k->ssize; ++i) { #if EXTRA_VERBOSE > 0 scs_printf("SD proj size %li\n", (long)k->s[i]); #endif if (k->s[i] == 0) { continue; } if (proj_semi_definite_cone(&(x[count]), k->s[i], c) < 0) { return -1; } count += get_sd_cone_size(k->s[i]); } #if EXTRA_VERBOSE > 0 scs_printf("SD proj time: %1.2es\n", SCS(tocq)(&proj_timer) / 1e3); SCS(tic)(&proj_timer); #endif } if (k->ep) { scs_float r, s, t; scs_int idx; /* * exponential cone is not self dual, if s \in K * then y \in K^* and so if K is the primal cone * here we project onto K^*, via Moreau * \Pi_C^*(y) = y + \Pi_C(-y) */ SCS(scale_array)(&(x[count]), -1, 3 * k->ep); /* x = -x; */ #ifdef _OPENMP #pragma omp parallel for private(r, s, t, idx) #endif for (i = 0; i < k->ep; ++i) { idx = count + 3 * i; r = x[idx]; s = x[idx + 1]; t = x[idx + 2]; proj_exp_cone(&(x[idx])); x[idx] -= r; x[idx + 1] -= s; x[idx + 2] -= t; } count += 3 * k->ep; #if EXTRA_VERBOSE > 0 scs_printf("EP proj time: %1.2es\n", SCS(tocq)(&proj_timer) / 1e3); SCS(tic)(&proj_timer); #endif } if (k->ed) { /* exponential cone: */ #ifdef _OPENMP #pragma omp parallel for #endif for (i = 0; i < k->ed; ++i) { proj_exp_cone(&(x[count + 3 * i])); } count += 3 * k->ed; #if EXTRA_VERBOSE > 0 scs_printf("ED proj time: %1.2es\n", SCS(tocq)(&proj_timer) / 1e3); SCS(tic)(&proj_timer); #endif } if (k->psize && k->p) { scs_float v[3]; scs_int idx; /* don't use openmp for power cone ifdef _OPENMP pragma omp parallel for private(v, idx) endif */ for (i = 0; i < k->psize; ++i) { idx = count + 3 * i; if (k->p[i] <= 0) { /* dual power cone */ proj_power_cone(&(x[idx]), -k->p[i]); } else { /* primal power cone, using Moreau */ v[0] = -x[idx]; v[1] = -x[idx + 1]; v[2] = -x[idx + 2]; proj_power_cone(v, k->p[i]); x[idx] += v[0]; x[idx + 1] += v[1]; x[idx + 2] += v[2]; } } count += 3 * k->psize; #if EXTRA_VERBOSE > 0 scs_printf("Power cone proj time: %1.2es\n", SCS(tocq)(&proj_timer) / 1e3); SCS(tic)(&proj_timer); #endif } /* project onto OTHER cones */ if (c) { c->total_cone_time += SCS(tocq)(&cone_timer); } return 0; }