module DNN # This module provides utility functions. module Utils # Categorize labels into "num_classes" classes. # @param [Numo::SFloat] y Label data. # @param [Numo::SFloat] num_classes Number of classes to classify. # @param [Class] narray_type Type of Numo::Narray data after classification. def self.to_categorical(y, num_classes, narray_type = nil) narray_type ||= y.class y2 = narray_type.zeros(y.shape[0], num_classes) y.shape[0].times do |i| y2[i, y[i]] = 1 end y2 end # Convert hash to an object. def self.hash_to_obj(hash) return nil if hash == nil dnn_class = DNN.const_get(hash[:class]) dnn_class.from_hash(hash) end # Return the result of the sigmoid function. def self.sigmoid(x) Losses::SigmoidCrossEntropy.sigmoid(x) end # Return the result of the softmax function. def self.softmax(x) Losses::SoftmaxCrossEntropy.softmax(x) end # Perform numerical differentiation. def self.numerical_grad(x, func) (func.(x + 1e-7) - func.(x)) / 1e-7 end end end