package libsvm; import java.io.*; import java.util.*; // // Kernel Cache // // l is the number of total data items // size is the cache size limit in bytes // class Cache { private final int l; private long size; private final class head_t { head_t prev, next; // a cicular list float[] data; int len; // data[0,len) is cached in this entry } private final head_t[] head; private head_t lru_head; Cache(int l_, long size_) { l = l_; size = size_; head = new head_t[l]; for(int i=0;i= len if nothing needs to be filled) // java: simulate pointer using single-element array int get_data(int index, float[][] data, int len) { head_t h = head[index]; if(h.len > 0) lru_delete(h); int more = len - h.len; if(more > 0) { // free old space while(size < more) { head_t old = lru_head.next; lru_delete(old); size += old.len; old.data = null; old.len = 0; } // allocate new space float[] new_data = new float[len]; if(h.data != null) System.arraycopy(h.data,0,new_data,0,h.len); h.data = new_data; size -= more; do {int _=h.len; h.len=len; len=_;} while(false); } lru_insert(h); data[0] = h.data; return len; } void swap_index(int i, int j) { if(i==j) return; if(head[i].len > 0) lru_delete(head[i]); if(head[j].len > 0) lru_delete(head[j]); do {float[] _=head[i].data; head[i].data=head[j].data; head[j].data=_;} while(false); do {int _=head[i].len; head[i].len=head[j].len; head[j].len=_;} while(false); if(head[i].len > 0) lru_insert(head[i]); if(head[j].len > 0) lru_insert(head[j]); if(i>j) do {int _=i; i=j; j=_;} while(false); for(head_t h = lru_head.next; h!=lru_head; h=h.next) { if(h.len > i) { if(h.len > j) do {float _=h.data[i]; h.data[i]=h.data[j]; h.data[j]=_;} while(false); else { // give up lru_delete(h); size += h.len; h.data = null; h.len = 0; } } } } } // // Kernel evaluation // // the static method k_function is for doing single kernel evaluation // the constructor of Kernel prepares to calculate the l*l kernel matrix // the member function get_Q is for getting one column from the Q Matrix // abstract class QMatrix { abstract float[] get_Q(int column, int len); abstract double[] get_QD(); abstract void swap_index(int i, int j); }; abstract class Kernel extends QMatrix { private Node[][] x; private final double[] x_square; // Parameter private final int kernel_type; private final int degree; private final double gamma; private final double coef0; abstract float[] get_Q(int column, int len); abstract double[] get_QD(); void swap_index(int i, int j) { do {Node[] _=x[i]; x[i]=x[j]; x[j]=_;} while(false); if(x_square != null) do {double _=x_square[i]; x_square[i]=x_square[j]; x_square[j]=_;} while(false); } private static double powi(double base, int times) { double tmp = base, ret = 1.0; for(int t=times; t>0; t/=2) { if(t%2==1) ret*=tmp; tmp = tmp * tmp; } return ret; } double kernel_function(int i, int j) { switch(kernel_type) { case Parameter.LINEAR: return dot(x[i],x[j]); case Parameter.POLY: return powi(gamma*dot(x[i],x[j])+coef0,degree); case Parameter.RBF: return Math.exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j]))); case Parameter.SIGMOID: return Math.tanh(gamma*dot(x[i],x[j])+coef0); case Parameter.PRECOMPUTED: return x[i][(int)(x[j][0].value)].value; default: return 0; // java } } Kernel(int l, Node[][] x_, Parameter param) { this.kernel_type = param.kernel_type; this.degree = param.degree; this.gamma = param.gamma; this.coef0 = param.coef0; x = (Node[][])x_.clone(); if(kernel_type == Parameter.RBF) { x_square = new double[l]; for(int i=0;i y[j].index) ++j; else ++i; } } return sum; } static double k_function(Node[] x, Node[] y, Parameter param) { switch(param.kernel_type) { case Parameter.LINEAR: return dot(x,y); case Parameter.POLY: return powi(param.gamma*dot(x,y)+param.coef0,param.degree); case Parameter.RBF: { double sum = 0; int xlen = x.length; int ylen = y.length; int i = 0; int j = 0; while(i < xlen && j < ylen) { if(x[i].index == y[j].index) { double d = x[i++].value - y[j++].value; sum += d*d; } else if(x[i].index > y[j].index) { sum += y[j].value * y[j].value; ++j; } else { sum += x[i].value * x[i].value; ++i; } } while(i < xlen) { sum += x[i].value * x[i].value; ++i; } while(j < ylen) { sum += y[j].value * y[j].value; ++j; } return Math.exp(-param.gamma*sum); } case Parameter.SIGMOID: return Math.tanh(param.gamma*dot(x,y)+param.coef0); case Parameter.PRECOMPUTED: return x[(int)(y[0].value)].value; default: return 0; // java } } } // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918 // Solves: // // min 0.5(\alpha^T Q \alpha) + p^T \alpha // // y^T \alpha = \delta // y_i = +1 or -1 // 0 <= alpha_i <= Cp for y_i = 1 // 0 <= alpha_i <= Cn for y_i = -1 // // Given: // // Q, p, y, Cp, Cn, and an initial feasible point \alpha // l is the size of vectors and matrices // eps is the stopping tolerance // // solution will be put in \alpha, objective value will be put in obj // class Solver { int active_size; byte[] y; double[] G; // gradient of objective function static final byte LOWER_BOUND = 0; static final byte UPPER_BOUND = 1; static final byte FREE = 2; byte[] alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE double[] alpha; QMatrix Q; double[] QD; double eps; double Cp,Cn; double[] p; int[] active_set; double[] G_bar; // gradient, if we treat free variables as 0 int l; boolean unshrink; // XXX static final double INF = java.lang.Double.POSITIVE_INFINITY; double get_C(int i) { return (y[i] > 0)? Cp : Cn; } void update_alpha_status(int i) { if(alpha[i] >= get_C(i)) alpha_status[i] = UPPER_BOUND; else if(alpha[i] <= 0) alpha_status[i] = LOWER_BOUND; else alpha_status[i] = FREE; } boolean is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; } boolean is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; } boolean is_free(int i) { return alpha_status[i] == FREE; } // java: information about solution except alpha, // because we cannot return multiple values otherwise... static class SolutionInfo { double obj; double rho; double w_2; // for hyperplane (PCL, taken from Gabor Melis) double upper_bound_p; double upper_bound_n; double r; // for Solver_NU } void swap_index(int i, int j) { Q.swap_index(i,j); do {byte _=y[i]; y[i]=y[j]; y[j]=_;} while(false); do {double _=G[i]; G[i]=G[j]; G[j]=_;} while(false); do {byte _=alpha_status[i]; alpha_status[i]=alpha_status[j]; alpha_status[j]=_;} while(false); do {double _=alpha[i]; alpha[i]=alpha[j]; alpha[j]=_;} while(false); do {double _=p[i]; p[i]=p[j]; p[j]=_;} while(false); do {int _=active_set[i]; active_set[i]=active_set[j]; active_set[j]=_;} while(false); do {double _=G_bar[i]; G_bar[i]=G_bar[j]; G_bar[j]=_;} while(false); } void reconstruct_gradient() { // reconstruct inactive elements of G from G_bar and free variables if(active_size == l) return; int i,j; int nr_free = 0; for(j=active_size;j 2*active_size*(l-active_size)) { for(i=active_size;iInteger.MAX_VALUE/100 ? Integer.MAX_VALUE : 100*l); int counter = Math.min(l,1000)+1; int[] working_set = new int[2]; while(iter < max_iter) { // show progress and do shrinking if(--counter == 0) { counter = Math.min(l,1000); if(shrinking!=0) do_shrinking(); Svm.info("."); } if(select_working_set(working_set)!=0) { // reconstruct the whole gradient reconstruct_gradient(); // reset active set size and check active_size = l; Svm.info("*"); if(select_working_set(working_set)!=0) break; else counter = 1; // do shrinking next iteration } int i = working_set[0]; int j = working_set[1]; ++iter; // update alpha[i] and alpha[j], handle bounds carefully float[] Q_i = Q.get_Q(i,active_size); float[] Q_j = Q.get_Q(j,active_size); double C_i = get_C(i); double C_j = get_C(j); double old_alpha_i = alpha[i]; double old_alpha_j = alpha[j]; if(y[i]!=y[j]) { double quad_coef = QD[i]+QD[j]+2*Q_i[j]; if (quad_coef <= 0) quad_coef = 1e-12; double delta = (-G[i]-G[j])/quad_coef; double diff = alpha[i] - alpha[j]; alpha[i] += delta; alpha[j] += delta; if(diff > 0) { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = diff; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = -diff; } } if(diff > C_i - C_j) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = C_i - diff; } } else { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = C_j + diff; } } } else { double quad_coef = QD[i]+QD[j]-2*Q_i[j]; if (quad_coef <= 0) quad_coef = 1e-12; double delta = (G[i]-G[j])/quad_coef; double sum = alpha[i] + alpha[j]; alpha[i] -= delta; alpha[j] += delta; if(sum > C_i) { if(alpha[i] > C_i) { alpha[i] = C_i; alpha[j] = sum - C_i; } } else { if(alpha[j] < 0) { alpha[j] = 0; alpha[i] = sum; } } if(sum > C_j) { if(alpha[j] > C_j) { alpha[j] = C_j; alpha[i] = sum - C_j; } } else { if(alpha[i] < 0) { alpha[i] = 0; alpha[j] = sum; } } } // update G double delta_alpha_i = alpha[i] - old_alpha_i; double delta_alpha_j = alpha[j] - old_alpha_j; for(int k=0;k= max_iter) { if(active_size < l) { // reconstruct the whole gradient to calculate objective value reconstruct_gradient(); active_size = l; Svm.info("*"); } Svm.info("\nWARNING: reaching max number of iterations"); } // calculate rho si.rho = calculate_rho(); // calculate objective value { double v = 0; int i; for(i=0;i= Gmax) { Gmax = -G[t]; Gmax_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmax) { Gmax = G[t]; Gmax_idx = t; } } int i = Gmax_idx; float[] Q_i = null; if(i != -1) // null Q_i not accessed: Gmax=-INF if i=-1 Q_i = Q.get_Q(i,active_size); for(int j=0;j= Gmax2) Gmax2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/1e-12; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff= Gmax-G[j]; if (-G[j] >= Gmax2) Gmax2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/1e-12; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(Gmax+Gmax2 < eps) return 1; working_set[0] = Gmax_idx; working_set[1] = Gmin_idx; return 0; } private boolean be_shrunk(int i, double Gmax1, double Gmax2) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax2); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax1); } else return(false); } void do_shrinking() { int i; double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) } // find maximal violating pair first for(i=0;i= Gmax1) Gmax1 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax2) Gmax2 = G[i]; } } else { if(!is_upper_bound(i)) { if(-G[i] >= Gmax2) Gmax2 = -G[i]; } if(!is_lower_bound(i)) { if(G[i] >= Gmax1) Gmax1 = G[i]; } } } if(unshrink == false && Gmax1 + Gmax2 <= eps*10) { unshrink = true; reconstruct_gradient(); active_size = l; } for(i=0;i i) { if (!be_shrunk(active_size, Gmax1, Gmax2)) { swap_index(i,active_size); break; } active_size--; } } } double calculate_rho() { double r; int nr_free = 0; double ub = INF, lb = -INF, sum_free = 0; for(int i=0;i 0) ub = Math.min(ub,yG); else lb = Math.max(lb,yG); } else if(is_upper_bound(i)) { if(y[i] < 0) ub = Math.min(ub,yG); else lb = Math.max(lb,yG); } else { ++nr_free; sum_free += yG; } } if(nr_free>0) r = sum_free/nr_free; else r = (ub+lb)/2; return r; } } // // Solver for nu-svm classification and regression // // additional constraint: e^T \alpha = constant // final class Solver_NU extends Solver { private SolutionInfo si; void Solve(int l, QMatrix Q, double[] p, byte[] y, double[] alpha, double Cp, double Cn, double eps, SolutionInfo si, int shrinking) { this.si = si; super.Solve(l,Q,p,y,alpha,Cp,Cn,eps,si,shrinking); } // return 1 if already optimal, return 0 otherwise int select_working_set(int[] working_set) { // return i,j such that y_i = y_j and // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha) // j: minimizes the decrease of obj value // (if quadratic coefficeint <= 0, replace it with tau) // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha) double Gmaxp = -INF; double Gmaxp2 = -INF; int Gmaxp_idx = -1; double Gmaxn = -INF; double Gmaxn2 = -INF; int Gmaxn_idx = -1; int Gmin_idx = -1; double obj_diff_min = INF; for(int t=0;t= Gmaxp) { Gmaxp = -G[t]; Gmaxp_idx = t; } } else { if(!is_lower_bound(t)) if(G[t] >= Gmaxn) { Gmaxn = G[t]; Gmaxn_idx = t; } } int ip = Gmaxp_idx; int in = Gmaxn_idx; float[] Q_ip = null; float[] Q_in = null; if(ip != -1) // null Q_ip not accessed: Gmaxp=-INF if ip=-1 Q_ip = Q.get_Q(ip,active_size); if(in != -1) Q_in = Q.get_Q(in,active_size); for(int j=0;j= Gmaxp2) Gmaxp2 = G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[ip]+QD[j]-2*Q_ip[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/1e-12; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } else { if (!is_upper_bound(j)) { double grad_diff=Gmaxn-G[j]; if (-G[j] >= Gmaxn2) Gmaxn2 = -G[j]; if (grad_diff > 0) { double obj_diff; double quad_coef = QD[in]+QD[j]-2*Q_in[j]; if (quad_coef > 0) obj_diff = -(grad_diff*grad_diff)/quad_coef; else obj_diff = -(grad_diff*grad_diff)/1e-12; if (obj_diff <= obj_diff_min) { Gmin_idx=j; obj_diff_min = obj_diff; } } } } } if(Math.max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps) return 1; if(y[Gmin_idx] == +1) working_set[0] = Gmaxp_idx; else working_set[0] = Gmaxn_idx; working_set[1] = Gmin_idx; return 0; } private boolean be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4) { if(is_upper_bound(i)) { if(y[i]==+1) return(-G[i] > Gmax1); else return(-G[i] > Gmax4); } else if(is_lower_bound(i)) { if(y[i]==+1) return(G[i] > Gmax2); else return(G[i] > Gmax3); } else return(false); } void do_shrinking() { double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) } double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) } double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) } double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) } // find maximal violating pair first int i; for(i=0;i Gmax1) Gmax1 = -G[i]; } else if(-G[i] > Gmax4) Gmax4 = -G[i]; } if(!is_lower_bound(i)) { if(y[i]==+1) { if(G[i] > Gmax2) Gmax2 = G[i]; } else if(G[i] > Gmax3) Gmax3 = G[i]; } } if(unshrink == false && Math.max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10) { unshrink = true; reconstruct_gradient(); active_size = l; } for(i=0;i i) { if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4)) { swap_index(i,active_size); break; } active_size--; } } } double calculate_rho() { int nr_free1 = 0,nr_free2 = 0; double ub1 = INF, ub2 = INF; double lb1 = -INF, lb2 = -INF; double sum_free1 = 0, sum_free2 = 0; for(int i=0;i 0) r1 = sum_free1/nr_free1; else r1 = (ub1+lb1)/2; if(nr_free2 > 0) r2 = sum_free2/nr_free2; else r2 = (ub2+lb2)/2; si.r = (r1+r2)/2; return (r1-r2)/2; } } // // Q matrices for various formulations // class SVC_Q extends Kernel { private final byte[] y; private final Cache cache; private final double[] QD; SVC_Q(Problem prob, Parameter param, byte[] y_) { super(prob.l, prob.x, param); y = (byte[])y_.clone(); cache = new Cache(prob.l,(long)(param.cache_size*(1<<20))); QD = new double[prob.l]; for(int i=0;i 0) y[i] = +1; else y[i] = -1; } Solver s = new Solver(); s.Solve(l, new SVC_Q(prob,param,y), minus_ones, y, alpha, Cp, Cn, param.eps, si, param.shrinking); double sum_alpha=0; for(i=0;i0) y[i] = +1; else y[i] = -1; double sum_pos = nu*l/2; double sum_neg = nu*l/2; for(i=0;i 0) { ++nSV; if(prob.y[i] > 0) { if(Math.abs(alpha[i]) >= si.upper_bound_p) ++nBSV; } else { if(Math.abs(alpha[i]) >= si.upper_bound_n) ++nBSV; } } } Svm.info("nSV = "+nSV+", nBSV = "+nBSV+"\n"); decision_function f = new decision_function(); f.alpha = alpha; f.rho = si.rho; f.w_2 = si.w_2; // PCL, taken from Gabor Melis return f; } // Platt's binary SVM Probablistic Output: an improvement from Lin et al. private static void sigmoid_train(int l, double[] dec_values, double[] labels, double[] probAB) { double A, B; double prior1=0, prior0 = 0; int i; for (i=0;i 0) prior1+=1; else prior0+=1; int max_iter=100; // Maximal number of iterations double min_step=1e-10; // Minimal step taken in line search double sigma=1e-12; // For numerically strict PD of Hessian double eps=1e-5; double hiTarget=(prior1+1.0)/(prior1+2.0); double loTarget=1/(prior0+2.0); double[] t= new double[l]; double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize; double newA,newB,newf,d1,d2; int iter; // Initial Point and Initial Fun Value A=0.0; B=Math.log((prior0+1.0)/(prior1+1.0)); double fval = 0.0; for (i=0;i0) t[i]=hiTarget; else t[i]=loTarget; fApB = dec_values[i]*A+B; if (fApB>=0) fval += t[i]*fApB + Math.log(1+Math.exp(-fApB)); else fval += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB)); } for (iter=0;iter= 0) { p=Math.exp(-fApB)/(1.0+Math.exp(-fApB)); q=1.0/(1.0+Math.exp(-fApB)); } else { p=1.0/(1.0+Math.exp(fApB)); q=Math.exp(fApB)/(1.0+Math.exp(fApB)); } d2=p*q; h11+=dec_values[i]*dec_values[i]*d2; h22+=d2; h21+=dec_values[i]*d2; d1=t[i]-p; g1+=dec_values[i]*d1; g2+=d1; } // Stopping Criteria if (Math.abs(g1)= min_step) { newA = A + stepsize * dA; newB = B + stepsize * dB; // New function value newf = 0.0; for (i=0;i= 0) newf += t[i]*fApB + Math.log(1+Math.exp(-fApB)); else newf += (t[i] - 1)*fApB +Math.log(1+Math.exp(fApB)); } // Check sufficient decrease if (newf=max_iter) Svm.info("Reaching maximal iterations in two-class probability estimates\n"); probAB[0]=A;probAB[1]=B; } private static double sigmoid_predict(double decision_value, double A, double B) { double fApB = decision_value*A+B; if (fApB >= 0) return Math.exp(-fApB)/(1.0+Math.exp(-fApB)); else return 1.0/(1+Math.exp(fApB)) ; } // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng private static void multiclass_probability(int k, double[][] r, double[] p) { int t,j; int iter = 0, max_iter=Math.max(100,k); double[][] Q=new double[k][k]; double[] Qp=new double[k]; double pQp, eps=0.005/k; for (t=0;tmax_error) max_error=error; } if (max_error=max_iter) Svm.info("Exceeds max_iter in multiclass_prob\n"); } // Cross-validation decision values for probability estimates private static void svm_binary_svc_probability(Problem prob, Parameter param, double Cp, double Cn, double[] probAB) { int i; int nr_fold = 5; int[] perm = new int[prob.l]; double[] dec_values = new double[prob.l]; // random shuffle for(i=0;i0) p_count++; else n_count++; if(p_count==0 && n_count==0) for(j=begin;j 0 && n_count == 0) for(j=begin;j 0) for(j=begin;j 5*std) count=count+1; else mae+=Math.abs(ymv[i]); mae /= (prob.l-count); Svm.info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma="+mae+"\n"); return mae; } // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data // perm, length l, must be allocated before calling this subroutine private static void svm_group_classes(Problem prob, int[] nr_class_ret, int[][] label_ret, int[][] start_ret, int[][] count_ret, int[] perm) { int l = prob.l; int max_nr_class = 16; int nr_class = 0; int[] label = new int[max_nr_class]; int[] count = new int[max_nr_class]; int[] data_label = new int[l]; int i; for(i=0;i 0) ++nSV; model.l = nSV; model.SV = new Node[nSV][]; model.sv_coef[0] = new double[nSV]; int j = 0; for(i=0;i 0) { model.SV[j] = prob.x[i]; model.sv_coef[0][j] = f.alpha[i]; ++j; } } else { // classification int l = prob.l; int[] tmp_nr_class = new int[1]; int[][] tmp_label = new int[1][]; int[][] tmp_start = new int[1][]; int[][] tmp_count = new int[1][]; int[] perm = new int[l]; // group training data of the same class svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm); int nr_class = tmp_nr_class[0]; int[] label = tmp_label[0]; int[] start = tmp_start[0]; int[] count = tmp_count[0]; if(nr_class == 1) Svm.info("WARNING: training data in only one class. See README for details.\n"); Node[][] x = new Node[l][]; int i; for(i=0;i 0) nonzero[si+k] = true; for(k=0;k 0) nonzero[sj+k] = true; ++p; } // build output model.nr_class = nr_class; model.label = new int[nr_class]; for(i=0;i some folds may have zero elements if((param.svm_type == Parameter.C_SVC || param.svm_type == Parameter.NU_SVC) && nr_fold < l) { int[] tmp_nr_class = new int[1]; int[][] tmp_label = new int[1][]; int[][] tmp_start = new int[1][]; int[][] tmp_count = new int[1][]; svm_group_classes(prob,tmp_nr_class,tmp_label,tmp_start,tmp_count,perm); int nr_class = tmp_nr_class[0]; int[] start = tmp_start[0]; int[] count = tmp_count[0]; // random shuffle and then data grouped by fold using the array perm int[] fold_count = new int[nr_fold]; int c; int[] index = new int[l]; for(i=0;i0)?1:-1; else return sum; } else { int nr_class = model.nr_class; int l = model.l; double[] kvalue = new double[l]; for(i=0;i 0) ++vote[i]; else ++vote[j]; p++; } int vote_max_idx = 0; for(i=1;i vote[vote_max_idx]) vote_max_idx = i; return model.label[vote_max_idx]; } } public static double svm_predict(Model model, Node[] x) { int nr_class = model.nr_class; double[] dec_values; if(model.param.svm_type == Parameter.ONE_CLASS || model.param.svm_type == Parameter.EPSILON_SVR || model.param.svm_type == Parameter.NU_SVR) dec_values = new double[1]; else dec_values = new double[nr_class*(nr_class-1)/2]; double pred_result = svm_predict_values(model, x, dec_values); return pred_result; } public static double svm_predict_probability(Model model, Node[] x, double[] prob_estimates) { if ((model.param.svm_type == Parameter.C_SVC || model.param.svm_type == Parameter.NU_SVC) && model.probA!=null && model.probB!=null) { int i; int nr_class = model.nr_class; double[] dec_values = new double[nr_class*(nr_class-1)/2]; svm_predict_values(model, x, dec_values); double min_prob=1e-7; double[][] pairwise_prob=new double[nr_class][nr_class]; int k=0; for(i=0;i prob_estimates[prob_max_idx]) prob_max_idx = i; return model.label[prob_max_idx]; } else return svm_predict(model, x); } static final String svm_type_table[] = { "c_svc","nu_svc","one_class","epsilon_svr","nu_svr", }; static final String kernel_type_table[]= { "linear","polynomial","rbf","sigmoid","precomputed" }; public static void svm_save_model(String model_file_name, Model model) throws IOException { DataOutputStream fp = new DataOutputStream(new BufferedOutputStream(new FileOutputStream(model_file_name))); svm_save_model(fp, model); } public static void svm_save_model(DataOutputStream fp, Model model) throws IOException { Parameter param = model.param; fp.writeBytes("svm_type "+svm_type_table[param.svm_type]+"\n"); fp.writeBytes("kernel_type "+kernel_type_table[param.kernel_type]+"\n"); if(param.kernel_type == Parameter.POLY) fp.writeBytes("degree "+param.degree+"\n"); if(param.kernel_type == Parameter.POLY || param.kernel_type == Parameter.RBF || param.kernel_type == Parameter.SIGMOID) fp.writeBytes("gamma "+param.gamma+"\n"); if(param.kernel_type == Parameter.POLY || param.kernel_type == Parameter.SIGMOID) fp.writeBytes("coef0 "+param.coef0+"\n"); int nr_class = model.nr_class; int l = model.l; fp.writeBytes("nr_class "+nr_class+"\n"); fp.writeBytes("total_sv "+l+"\n"); { fp.writeBytes("rho"); for(int i=0;i 1) return "nu <= 0 or nu > 1"; if(svm_type == Parameter.EPSILON_SVR) if(param.p < 0) return "p < 0"; if(param.shrinking != 0 && param.shrinking != 1) return "shrinking != 0 and shrinking != 1"; if(param.probability != 0 && param.probability != 1) return "probability != 0 and probability != 1"; if(param.probability == 1 && svm_type == Parameter.ONE_CLASS) return "one-class SVM probability output not supported yet"; // check whether nu-svc is feasible if(svm_type == Parameter.NU_SVC) { int l = prob.l; int max_nr_class = 16; int nr_class = 0; int[] label = new int[max_nr_class]; int[] count = new int[max_nr_class]; int i; for(i=0;i Math.min(n1,n2)) return "specified nu is infeasible"; } } } return null; } public static int svm_check_probability_model(Model model) { if (((model.param.svm_type == Parameter.C_SVC || model.param.svm_type == Parameter.NU_SVC) && model.probA!=null && model.probB!=null) || ((model.param.svm_type == Parameter.EPSILON_SVR || model.param.svm_type == Parameter.NU_SVR) && model.probA!=null)) return 1; else return 0; } public static void svm_set_print_string_function(PrintInterface print_func) { if (print_func == null) svm_print_string = svm_print_stdout; else svm_print_string = print_func; } }