// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // This file contains classes which describe a type of protocol message. // You can use a message's descriptor to learn at runtime what fields // it contains and what the types of those fields are. The Message // interface also allows you to dynamically access and modify individual // fields by passing the FieldDescriptor of the field you are interested // in. // // Most users will not care about descriptors, because they will write // code specific to certain protocol types and will simply use the classes // generated by the protocol compiler directly. Advanced users who want // to operate on arbitrary types (not known at compile time) may want to // read descriptors in order to learn about the contents of a message. // A very small number of users will want to construct their own // Descriptors, either because they are implementing Message manually or // because they are writing something like the protocol compiler. // // For an example of how you might use descriptors, see the code example // at the top of message.h. #ifndef GOOGLE_PROTOBUF_DESCRIPTOR_H__ #define GOOGLE_PROTOBUF_DESCRIPTOR_H__ #include #include #include #include namespace google { namespace protobuf { // Defined in this file. class Descriptor; class FieldDescriptor; class OneofDescriptor; class EnumDescriptor; class EnumValueDescriptor; class ServiceDescriptor; class MethodDescriptor; class FileDescriptor; class DescriptorDatabase; class DescriptorPool; // Defined in descriptor.proto class DescriptorProto; class FieldDescriptorProto; class OneofDescriptorProto; class EnumDescriptorProto; class EnumValueDescriptorProto; class ServiceDescriptorProto; class MethodDescriptorProto; class FileDescriptorProto; class MessageOptions; class FieldOptions; class EnumOptions; class EnumValueOptions; class ServiceOptions; class MethodOptions; class FileOptions; class UninterpretedOption; class SourceCodeInfo; // Defined in message.h class Message; // Defined in descriptor.cc class DescriptorBuilder; class FileDescriptorTables; // Defined in unknown_field_set.h. class UnknownField; // NB, all indices are zero-based. struct SourceLocation { int start_line; int end_line; int start_column; int end_column; // Doc comments found at the source location. // TODO(kenton): Maybe this struct should have been named SourceInfo or // something instead. Oh well. string leading_comments; string trailing_comments; }; // Describes a type of protocol message, or a particular group within a // message. To obtain the Descriptor for a given message object, call // Message::GetDescriptor(). Generated message classes also have a // static method called descriptor() which returns the type's descriptor. // Use DescriptorPool to construct your own descriptors. class LIBPROTOBUF_EXPORT Descriptor { public: // The name of the message type, not including its scope. const string& name() const; // The fully-qualified name of the message type, scope delimited by // periods. For example, message type "Foo" which is declared in package // "bar" has full name "bar.Foo". If a type "Baz" is nested within // Foo, Baz's full_name is "bar.Foo.Baz". To get only the part that // comes after the last '.', use name(). const string& full_name() const; // Index of this descriptor within the file or containing type's message // type array. int index() const; // The .proto file in which this message type was defined. Never NULL. const FileDescriptor* file() const; // If this Descriptor describes a nested type, this returns the type // in which it is nested. Otherwise, returns NULL. const Descriptor* containing_type() const; // Get options for this message type. These are specified in the .proto file // by placing lines like "option foo = 1234;" in the message definition. // Allowed options are defined by MessageOptions in // google/protobuf/descriptor.proto, and any available extensions of that // message. const MessageOptions& options() const; // Write the contents of this Descriptor into the given DescriptorProto. // The target DescriptorProto must be clear before calling this; if it // isn't, the result may be garbage. void CopyTo(DescriptorProto* proto) const; // Write the contents of this decriptor in a human-readable form. Output // will be suitable for re-parsing. string DebugString() const; // Returns true if this is a placeholder for an unknown type. This will // only be the case if this descriptor comes from a DescriptorPool // with AllowUnknownDependencies() set. bool is_placeholder() const; // Field stuff ----------------------------------------------------- // The number of fields in this message type. int field_count() const; // Gets a field by index, where 0 <= index < field_count(). // These are returned in the order they were defined in the .proto file. const FieldDescriptor* field(int index) const; // Looks up a field by declared tag number. Returns NULL if no such field // exists. const FieldDescriptor* FindFieldByNumber(int number) const; // Looks up a field by name. Returns NULL if no such field exists. const FieldDescriptor* FindFieldByName(const string& name) const; // Looks up a field by lowercased name (as returned by lowercase_name()). // This lookup may be ambiguous if multiple field names differ only by case, // in which case the field returned is chosen arbitrarily from the matches. const FieldDescriptor* FindFieldByLowercaseName( const string& lowercase_name) const; // Looks up a field by camel-case name (as returned by camelcase_name()). // This lookup may be ambiguous if multiple field names differ in a way that // leads them to have identical camel-case names, in which case the field // returned is chosen arbitrarily from the matches. const FieldDescriptor* FindFieldByCamelcaseName( const string& camelcase_name) const; // The number of oneofs in this message type. int oneof_decl_count() const; // Get a oneof by index, where 0 <= index < oneof_decl_count(). // These are returned in the order they were defined in the .proto file. const OneofDescriptor* oneof_decl(int index) const; // Looks up a oneof by name. Returns NULL if no such oneof exists. const OneofDescriptor* FindOneofByName(const string& name) const; // Nested type stuff ----------------------------------------------- // The number of nested types in this message type. int nested_type_count() const; // Gets a nested type by index, where 0 <= index < nested_type_count(). // These are returned in the order they were defined in the .proto file. const Descriptor* nested_type(int index) const; // Looks up a nested type by name. Returns NULL if no such nested type // exists. const Descriptor* FindNestedTypeByName(const string& name) const; // Enum stuff ------------------------------------------------------ // The number of enum types in this message type. int enum_type_count() const; // Gets an enum type by index, where 0 <= index < enum_type_count(). // These are returned in the order they were defined in the .proto file. const EnumDescriptor* enum_type(int index) const; // Looks up an enum type by name. Returns NULL if no such enum type exists. const EnumDescriptor* FindEnumTypeByName(const string& name) const; // Looks up an enum value by name, among all enum types in this message. // Returns NULL if no such value exists. const EnumValueDescriptor* FindEnumValueByName(const string& name) const; // Extensions ------------------------------------------------------ // A range of field numbers which are designated for third-party // extensions. struct ExtensionRange { int start; // inclusive int end; // exclusive }; // The number of extension ranges in this message type. int extension_range_count() const; // Gets an extension range by index, where 0 <= index < // extension_range_count(). These are returned in the order they were defined // in the .proto file. const ExtensionRange* extension_range(int index) const; // Returns true if the number is in one of the extension ranges. bool IsExtensionNumber(int number) const; // Returns NULL if no extension range contains the given number. const ExtensionRange* FindExtensionRangeContainingNumber(int number) const; // The number of extensions -- extending *other* messages -- that were // defined nested within this message type's scope. int extension_count() const; // Get an extension by index, where 0 <= index < extension_count(). // These are returned in the order they were defined in the .proto file. const FieldDescriptor* extension(int index) const; // Looks up a named extension (which extends some *other* message type) // defined within this message type's scope. const FieldDescriptor* FindExtensionByName(const string& name) const; // Similar to FindFieldByLowercaseName(), but finds extensions defined within // this message type's scope. const FieldDescriptor* FindExtensionByLowercaseName(const string& name) const; // Similar to FindFieldByCamelcaseName(), but finds extensions defined within // this message type's scope. const FieldDescriptor* FindExtensionByCamelcaseName(const string& name) const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this message declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: typedef MessageOptions OptionsType; // Internal version of DebugString; controls the level of indenting for // correct depth void DebugString(int depth, string *contents) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(vector* output) const; const string* name_; const string* full_name_; const FileDescriptor* file_; const Descriptor* containing_type_; const MessageOptions* options_; // True if this is a placeholder for an unknown type. bool is_placeholder_; // True if this is a placeholder and the type name wasn't fully-qualified. bool is_unqualified_placeholder_; int field_count_; FieldDescriptor* fields_; int oneof_decl_count_; OneofDescriptor* oneof_decls_; int nested_type_count_; Descriptor* nested_types_; int enum_type_count_; EnumDescriptor* enum_types_; int extension_range_count_; ExtensionRange* extension_ranges_; int extension_count_; FieldDescriptor* extensions_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in descriptor.cc // and update them to initialize the field. // Must be constructed using DescriptorPool. Descriptor() {} friend class DescriptorBuilder; friend class EnumDescriptor; friend class FieldDescriptor; friend class OneofDescriptor; friend class MethodDescriptor; friend class FileDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Descriptor); }; // Describes a single field of a message. To get the descriptor for a given // field, first get the Descriptor for the message in which it is defined, // then call Descriptor::FindFieldByName(). To get a FieldDescriptor for // an extension, do one of the following: // - Get the Descriptor or FileDescriptor for its containing scope, then // call Descriptor::FindExtensionByName() or // FileDescriptor::FindExtensionByName(). // - Given a DescriptorPool, call DescriptorPool::FindExtensionByNumber(). // - Given a Reflection for a message object, call // Reflection::FindKnownExtensionByName() or // Reflection::FindKnownExtensionByNumber(). // Use DescriptorPool to construct your own descriptors. class LIBPROTOBUF_EXPORT FieldDescriptor { public: // Identifies a field type. 0 is reserved for errors. The order is weird // for historical reasons. Types 12 and up are new in proto2. enum Type { TYPE_DOUBLE = 1, // double, exactly eight bytes on the wire. TYPE_FLOAT = 2, // float, exactly four bytes on the wire. TYPE_INT64 = 3, // int64, varint on the wire. Negative numbers // take 10 bytes. Use TYPE_SINT64 if negative // values are likely. TYPE_UINT64 = 4, // uint64, varint on the wire. TYPE_INT32 = 5, // int32, varint on the wire. Negative numbers // take 10 bytes. Use TYPE_SINT32 if negative // values are likely. TYPE_FIXED64 = 6, // uint64, exactly eight bytes on the wire. TYPE_FIXED32 = 7, // uint32, exactly four bytes on the wire. TYPE_BOOL = 8, // bool, varint on the wire. TYPE_STRING = 9, // UTF-8 text. TYPE_GROUP = 10, // Tag-delimited message. Deprecated. TYPE_MESSAGE = 11, // Length-delimited message. TYPE_BYTES = 12, // Arbitrary byte array. TYPE_UINT32 = 13, // uint32, varint on the wire TYPE_ENUM = 14, // Enum, varint on the wire TYPE_SFIXED32 = 15, // int32, exactly four bytes on the wire TYPE_SFIXED64 = 16, // int64, exactly eight bytes on the wire TYPE_SINT32 = 17, // int32, ZigZag-encoded varint on the wire TYPE_SINT64 = 18, // int64, ZigZag-encoded varint on the wire MAX_TYPE = 18, // Constant useful for defining lookup tables // indexed by Type. }; // Specifies the C++ data type used to represent the field. There is a // fixed mapping from Type to CppType where each Type maps to exactly one // CppType. 0 is reserved for errors. enum CppType { CPPTYPE_INT32 = 1, // TYPE_INT32, TYPE_SINT32, TYPE_SFIXED32 CPPTYPE_INT64 = 2, // TYPE_INT64, TYPE_SINT64, TYPE_SFIXED64 CPPTYPE_UINT32 = 3, // TYPE_UINT32, TYPE_FIXED32 CPPTYPE_UINT64 = 4, // TYPE_UINT64, TYPE_FIXED64 CPPTYPE_DOUBLE = 5, // TYPE_DOUBLE CPPTYPE_FLOAT = 6, // TYPE_FLOAT CPPTYPE_BOOL = 7, // TYPE_BOOL CPPTYPE_ENUM = 8, // TYPE_ENUM CPPTYPE_STRING = 9, // TYPE_STRING, TYPE_BYTES CPPTYPE_MESSAGE = 10, // TYPE_MESSAGE, TYPE_GROUP MAX_CPPTYPE = 10, // Constant useful for defining lookup tables // indexed by CppType. }; // Identifies whether the field is optional, required, or repeated. 0 is // reserved for errors. enum Label { LABEL_OPTIONAL = 1, // optional LABEL_REQUIRED = 2, // required LABEL_REPEATED = 3, // repeated MAX_LABEL = 3, // Constant useful for defining lookup tables // indexed by Label. }; // Valid field numbers are positive integers up to kMaxNumber. static const int kMaxNumber = (1 << 29) - 1; // First field number reserved for the protocol buffer library implementation. // Users may not declare fields that use reserved numbers. static const int kFirstReservedNumber = 19000; // Last field number reserved for the protocol buffer library implementation. // Users may not declare fields that use reserved numbers. static const int kLastReservedNumber = 19999; const string& name() const; // Name of this field within the message. const string& full_name() const; // Fully-qualified name of the field. const FileDescriptor* file() const;// File in which this field was defined. bool is_extension() const; // Is this an extension field? int number() const; // Declared tag number. // Same as name() except converted to lower-case. This (and especially the // FindFieldByLowercaseName() method) can be useful when parsing formats // which prefer to use lowercase naming style. (Although, technically // field names should be lowercased anyway according to the protobuf style // guide, so this only makes a difference when dealing with old .proto files // which do not follow the guide.) const string& lowercase_name() const; // Same as name() except converted to camel-case. In this conversion, any // time an underscore appears in the name, it is removed and the next // letter is capitalized. Furthermore, the first letter of the name is // lower-cased. Examples: // FooBar -> fooBar // foo_bar -> fooBar // fooBar -> fooBar // This (and especially the FindFieldByCamelcaseName() method) can be useful // when parsing formats which prefer to use camel-case naming style. const string& camelcase_name() const; Type type() const; // Declared type of this field. const char* type_name() const; // Name of the declared type. CppType cpp_type() const; // C++ type of this field. const char* cpp_type_name() const; // Name of the C++ type. Label label() const; // optional/required/repeated bool is_required() const; // shorthand for label() == LABEL_REQUIRED bool is_optional() const; // shorthand for label() == LABEL_OPTIONAL bool is_repeated() const; // shorthand for label() == LABEL_REPEATED bool is_packable() const; // shorthand for is_repeated() && // IsTypePackable(type()) bool is_packed() const; // shorthand for is_packable() && // options().packed() // Index of this field within the message's field array, or the file or // extension scope's extensions array. int index() const; // Does this field have an explicitly-declared default value? bool has_default_value() const; // Get the field default value if cpp_type() == CPPTYPE_INT32. If no // explicit default was defined, the default is 0. int32 default_value_int32() const; // Get the field default value if cpp_type() == CPPTYPE_INT64. If no // explicit default was defined, the default is 0. int64 default_value_int64() const; // Get the field default value if cpp_type() == CPPTYPE_UINT32. If no // explicit default was defined, the default is 0. uint32 default_value_uint32() const; // Get the field default value if cpp_type() == CPPTYPE_UINT64. If no // explicit default was defined, the default is 0. uint64 default_value_uint64() const; // Get the field default value if cpp_type() == CPPTYPE_FLOAT. If no // explicit default was defined, the default is 0.0. float default_value_float() const; // Get the field default value if cpp_type() == CPPTYPE_DOUBLE. If no // explicit default was defined, the default is 0.0. double default_value_double() const; // Get the field default value if cpp_type() == CPPTYPE_BOOL. If no // explicit default was defined, the default is false. bool default_value_bool() const; // Get the field default value if cpp_type() == CPPTYPE_ENUM. If no // explicit default was defined, the default is the first value defined // in the enum type (all enum types are required to have at least one value). // This never returns NULL. const EnumValueDescriptor* default_value_enum() const; // Get the field default value if cpp_type() == CPPTYPE_STRING. If no // explicit default was defined, the default is the empty string. const string& default_value_string() const; // The Descriptor for the message of which this is a field. For extensions, // this is the extended type. Never NULL. const Descriptor* containing_type() const; // If the field is a member of a oneof, this is the one, otherwise this is // NULL. const OneofDescriptor* containing_oneof() const; // If the field is a member of a oneof, returns the index in that oneof. int index_in_oneof() const; // An extension may be declared within the scope of another message. If this // field is an extension (is_extension() is true), then extension_scope() // returns that message, or NULL if the extension was declared at global // scope. If this is not an extension, extension_scope() is undefined (may // assert-fail). const Descriptor* extension_scope() const; // If type is TYPE_MESSAGE or TYPE_GROUP, returns a descriptor for the // message or the group type. Otherwise, returns null. const Descriptor* message_type() const; // If type is TYPE_ENUM, returns a descriptor for the enum. Otherwise, // returns null. const EnumDescriptor* enum_type() const; // EXPERIMENTAL; DO NOT USE. // If this field is a map field, experimental_map_key() is the field // that is the key for this map. // experimental_map_key()->containing_type() is the same as message_type(). const FieldDescriptor* experimental_map_key() const; // Get the FieldOptions for this field. This includes things listed in // square brackets after the field definition. E.g., the field: // optional string text = 1 [ctype=CORD]; // has the "ctype" option set. Allowed options are defined by FieldOptions // in google/protobuf/descriptor.proto, and any available extensions of that // message. const FieldOptions& options() const; // See Descriptor::CopyTo(). void CopyTo(FieldDescriptorProto* proto) const; // See Descriptor::DebugString(). string DebugString() const; // Helper method to get the CppType for a particular Type. static CppType TypeToCppType(Type type); // Helper method to get the name of a Type. static const char* TypeName(Type type); // Helper method to get the name of a CppType. static const char* CppTypeName(CppType cpp_type); // Return true iff [packed = true] is valid for fields of this type. static inline bool IsTypePackable(Type field_type); // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this field declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: typedef FieldOptions OptionsType; // See Descriptor::DebugString(). enum PrintLabelFlag { PRINT_LABEL, OMIT_LABEL }; void DebugString(int depth, PrintLabelFlag print_label_flag, string* contents) const; // formats the default value appropriately and returns it as a string. // Must have a default value to call this. If quote_string_type is true, then // types of CPPTYPE_STRING whill be surrounded by quotes and CEscaped. string DefaultValueAsString(bool quote_string_type) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(vector* output) const; const string* name_; const string* full_name_; const string* lowercase_name_; const string* camelcase_name_; const FileDescriptor* file_; int number_; Type type_; Label label_; bool is_extension_; int index_in_oneof_; const Descriptor* containing_type_; const OneofDescriptor* containing_oneof_; const Descriptor* extension_scope_; const Descriptor* message_type_; const EnumDescriptor* enum_type_; const FieldDescriptor* experimental_map_key_; const FieldOptions* options_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in // descriptor.cc and update them to initialize the field. bool has_default_value_; union { int32 default_value_int32_; int64 default_value_int64_; uint32 default_value_uint32_; uint64 default_value_uint64_; float default_value_float_; double default_value_double_; bool default_value_bool_; const EnumValueDescriptor* default_value_enum_; const string* default_value_string_; }; static const CppType kTypeToCppTypeMap[MAX_TYPE + 1]; static const char * const kTypeToName[MAX_TYPE + 1]; static const char * const kCppTypeToName[MAX_CPPTYPE + 1]; static const char * const kLabelToName[MAX_LABEL + 1]; // Must be constructed using DescriptorPool. FieldDescriptor() {} friend class DescriptorBuilder; friend class FileDescriptor; friend class Descriptor; friend class OneofDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FieldDescriptor); }; // Describes a oneof defined in a message type. class LIBPROTOBUF_EXPORT OneofDescriptor { public: const string& name() const; // Name of this oneof. const string& full_name() const; // Fully-qualified name of the oneof. // Index of this oneof within the message's oneof array. int index() const; // The Descriptor for the message containing this oneof. const Descriptor* containing_type() const; // The number of (non-extension) fields which are members of this oneof. int field_count() const; // Get a member of this oneof, in the order in which they were declared in the // .proto file. Does not include extensions. const FieldDescriptor* field(int index) const; // See Descriptor::CopyTo(). void CopyTo(OneofDescriptorProto* proto) const; // See Descriptor::DebugString(). string DebugString() const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this oneof declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: // See Descriptor::DebugString(). void DebugString(int depth, string* contents) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(vector* output) const; const string* name_; const string* full_name_; const Descriptor* containing_type_; bool is_extendable_; int field_count_; const FieldDescriptor** fields_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() // in descriptor.cc and update them to initialize the field. // Must be constructed using DescriptorPool. OneofDescriptor() {} friend class DescriptorBuilder; friend class Descriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(OneofDescriptor); }; // Describes an enum type defined in a .proto file. To get the EnumDescriptor // for a generated enum type, call TypeName_descriptor(). Use DescriptorPool // to construct your own descriptors. class LIBPROTOBUF_EXPORT EnumDescriptor { public: // The name of this enum type in the containing scope. const string& name() const; // The fully-qualified name of the enum type, scope delimited by periods. const string& full_name() const; // Index of this enum within the file or containing message's enum array. int index() const; // The .proto file in which this enum type was defined. Never NULL. const FileDescriptor* file() const; // The number of values for this EnumDescriptor. Guaranteed to be greater // than zero. int value_count() const; // Gets a value by index, where 0 <= index < value_count(). // These are returned in the order they were defined in the .proto file. const EnumValueDescriptor* value(int index) const; // Looks up a value by name. Returns NULL if no such value exists. const EnumValueDescriptor* FindValueByName(const string& name) const; // Looks up a value by number. Returns NULL if no such value exists. If // multiple values have this number, the first one defined is returned. const EnumValueDescriptor* FindValueByNumber(int number) const; // If this enum type is nested in a message type, this is that message type. // Otherwise, NULL. const Descriptor* containing_type() const; // Get options for this enum type. These are specified in the .proto file by // placing lines like "option foo = 1234;" in the enum definition. Allowed // options are defined by EnumOptions in google/protobuf/descriptor.proto, // and any available extensions of that message. const EnumOptions& options() const; // See Descriptor::CopyTo(). void CopyTo(EnumDescriptorProto* proto) const; // See Descriptor::DebugString(). string DebugString() const; // Returns true if this is a placeholder for an unknown enum. This will // only be the case if this descriptor comes from a DescriptorPool // with AllowUnknownDependencies() set. bool is_placeholder() const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this enum declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: typedef EnumOptions OptionsType; // See Descriptor::DebugString(). void DebugString(int depth, string *contents) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(vector* output) const; const string* name_; const string* full_name_; const FileDescriptor* file_; const Descriptor* containing_type_; const EnumOptions* options_; // True if this is a placeholder for an unknown type. bool is_placeholder_; // True if this is a placeholder and the type name wasn't fully-qualified. bool is_unqualified_placeholder_; int value_count_; EnumValueDescriptor* values_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in // descriptor.cc and update them to initialize the field. // Must be constructed using DescriptorPool. EnumDescriptor() {} friend class DescriptorBuilder; friend class Descriptor; friend class FieldDescriptor; friend class EnumValueDescriptor; friend class FileDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(EnumDescriptor); }; // Describes an individual enum constant of a particular type. To get the // EnumValueDescriptor for a given enum value, first get the EnumDescriptor // for its type, then use EnumDescriptor::FindValueByName() or // EnumDescriptor::FindValueByNumber(). Use DescriptorPool to construct // your own descriptors. class LIBPROTOBUF_EXPORT EnumValueDescriptor { public: const string& name() const; // Name of this enum constant. int index() const; // Index within the enums's Descriptor. int number() const; // Numeric value of this enum constant. // The full_name of an enum value is a sibling symbol of the enum type. // e.g. the full name of FieldDescriptorProto::TYPE_INT32 is actually // "google.protobuf.FieldDescriptorProto.TYPE_INT32", NOT // "google.protobuf.FieldDescriptorProto.Type.TYPE_INT32". This is to conform // with C++ scoping rules for enums. const string& full_name() const; // The type of this value. Never NULL. const EnumDescriptor* type() const; // Get options for this enum value. These are specified in the .proto file // by adding text like "[foo = 1234]" after an enum value definition. // Allowed options are defined by EnumValueOptions in // google/protobuf/descriptor.proto, and any available extensions of that // message. const EnumValueOptions& options() const; // See Descriptor::CopyTo(). void CopyTo(EnumValueDescriptorProto* proto) const; // See Descriptor::DebugString(). string DebugString() const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this enum value declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: typedef EnumValueOptions OptionsType; // See Descriptor::DebugString(). void DebugString(int depth, string *contents) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(vector* output) const; const string* name_; const string* full_name_; int number_; const EnumDescriptor* type_; const EnumValueOptions* options_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() // in descriptor.cc and update them to initialize the field. // Must be constructed using DescriptorPool. EnumValueDescriptor() {} friend class DescriptorBuilder; friend class EnumDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(EnumValueDescriptor); }; // Describes an RPC service. To get the ServiceDescriptor for a service, // call Service::GetDescriptor(). Generated service classes also have a // static method called descriptor() which returns the type's // ServiceDescriptor. Use DescriptorPool to construct your own descriptors. class LIBPROTOBUF_EXPORT ServiceDescriptor { public: // The name of the service, not including its containing scope. const string& name() const; // The fully-qualified name of the service, scope delimited by periods. const string& full_name() const; // Index of this service within the file's services array. int index() const; // The .proto file in which this service was defined. Never NULL. const FileDescriptor* file() const; // Get options for this service type. These are specified in the .proto file // by placing lines like "option foo = 1234;" in the service definition. // Allowed options are defined by ServiceOptions in // google/protobuf/descriptor.proto, and any available extensions of that // message. const ServiceOptions& options() const; // The number of methods this service defines. int method_count() const; // Gets a MethodDescriptor by index, where 0 <= index < method_count(). // These are returned in the order they were defined in the .proto file. const MethodDescriptor* method(int index) const; // Look up a MethodDescriptor by name. const MethodDescriptor* FindMethodByName(const string& name) const; // See Descriptor::CopyTo(). void CopyTo(ServiceDescriptorProto* proto) const; // See Descriptor::DebugString(). string DebugString() const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this service declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: typedef ServiceOptions OptionsType; // See Descriptor::DebugString(). void DebugString(string *contents) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(vector* output) const; const string* name_; const string* full_name_; const FileDescriptor* file_; const ServiceOptions* options_; int method_count_; MethodDescriptor* methods_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in // descriptor.cc and update them to initialize the field. // Must be constructed using DescriptorPool. ServiceDescriptor() {} friend class DescriptorBuilder; friend class FileDescriptor; friend class MethodDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ServiceDescriptor); }; // Describes an individual service method. To obtain a MethodDescriptor given // a service, first get its ServiceDescriptor, then call // ServiceDescriptor::FindMethodByName(). Use DescriptorPool to construct your // own descriptors. class LIBPROTOBUF_EXPORT MethodDescriptor { public: // Name of this method, not including containing scope. const string& name() const; // The fully-qualified name of the method, scope delimited by periods. const string& full_name() const; // Index within the service's Descriptor. int index() const; // Gets the service to which this method belongs. Never NULL. const ServiceDescriptor* service() const; // Gets the type of protocol message which this method accepts as input. const Descriptor* input_type() const; // Gets the type of protocol message which this message produces as output. const Descriptor* output_type() const; // Get options for this method. These are specified in the .proto file by // placing lines like "option foo = 1234;" in curly-braces after a method // declaration. Allowed options are defined by MethodOptions in // google/protobuf/descriptor.proto, and any available extensions of that // message. const MethodOptions& options() const; // See Descriptor::CopyTo(). void CopyTo(MethodDescriptorProto* proto) const; // See Descriptor::DebugString(). string DebugString() const; // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of this method declaration. Returns false and leaves // |*out_location| unchanged iff location information was not available. bool GetSourceLocation(SourceLocation* out_location) const; private: typedef MethodOptions OptionsType; // See Descriptor::DebugString(). void DebugString(int depth, string *contents) const; // Walks up the descriptor tree to generate the source location path // to this descriptor from the file root. void GetLocationPath(vector* output) const; const string* name_; const string* full_name_; const ServiceDescriptor* service_; const Descriptor* input_type_; const Descriptor* output_type_; const MethodOptions* options_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in // descriptor.cc and update them to initialize the field. // Must be constructed using DescriptorPool. MethodDescriptor() {} friend class DescriptorBuilder; friend class ServiceDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MethodDescriptor); }; // Describes a whole .proto file. To get the FileDescriptor for a compiled-in // file, get the descriptor for something defined in that file and call // descriptor->file(). Use DescriptorPool to construct your own descriptors. class LIBPROTOBUF_EXPORT FileDescriptor { public: // The filename, relative to the source tree. // e.g. "google/protobuf/descriptor.proto" const string& name() const; // The package, e.g. "google.protobuf.compiler". const string& package() const; // The DescriptorPool in which this FileDescriptor and all its contents were // allocated. Never NULL. const DescriptorPool* pool() const; // The number of files imported by this one. int dependency_count() const; // Gets an imported file by index, where 0 <= index < dependency_count(). // These are returned in the order they were defined in the .proto file. const FileDescriptor* dependency(int index) const; // The number of files public imported by this one. // The public dependency list is a subset of the dependency list. int public_dependency_count() const; // Gets a public imported file by index, where 0 <= index < // public_dependency_count(). // These are returned in the order they were defined in the .proto file. const FileDescriptor* public_dependency(int index) const; // The number of files that are imported for weak fields. // The weak dependency list is a subset of the dependency list. int weak_dependency_count() const; // Gets a weak imported file by index, where 0 <= index < // weak_dependency_count(). // These are returned in the order they were defined in the .proto file. const FileDescriptor* weak_dependency(int index) const; // Number of top-level message types defined in this file. (This does not // include nested types.) int message_type_count() const; // Gets a top-level message type, where 0 <= index < message_type_count(). // These are returned in the order they were defined in the .proto file. const Descriptor* message_type(int index) const; // Number of top-level enum types defined in this file. (This does not // include nested types.) int enum_type_count() const; // Gets a top-level enum type, where 0 <= index < enum_type_count(). // These are returned in the order they were defined in the .proto file. const EnumDescriptor* enum_type(int index) const; // Number of services defined in this file. int service_count() const; // Gets a service, where 0 <= index < service_count(). // These are returned in the order they were defined in the .proto file. const ServiceDescriptor* service(int index) const; // Number of extensions defined at file scope. (This does not include // extensions nested within message types.) int extension_count() const; // Gets an extension's descriptor, where 0 <= index < extension_count(). // These are returned in the order they were defined in the .proto file. const FieldDescriptor* extension(int index) const; // Get options for this file. These are specified in the .proto file by // placing lines like "option foo = 1234;" at the top level, outside of any // other definitions. Allowed options are defined by FileOptions in // google/protobuf/descriptor.proto, and any available extensions of that // message. const FileOptions& options() const; // Find a top-level message type by name. Returns NULL if not found. const Descriptor* FindMessageTypeByName(const string& name) const; // Find a top-level enum type by name. Returns NULL if not found. const EnumDescriptor* FindEnumTypeByName(const string& name) const; // Find an enum value defined in any top-level enum by name. Returns NULL if // not found. const EnumValueDescriptor* FindEnumValueByName(const string& name) const; // Find a service definition by name. Returns NULL if not found. const ServiceDescriptor* FindServiceByName(const string& name) const; // Find a top-level extension definition by name. Returns NULL if not found. const FieldDescriptor* FindExtensionByName(const string& name) const; // Similar to FindExtensionByName(), but searches by lowercased-name. See // Descriptor::FindFieldByLowercaseName(). const FieldDescriptor* FindExtensionByLowercaseName(const string& name) const; // Similar to FindExtensionByName(), but searches by camelcased-name. See // Descriptor::FindFieldByCamelcaseName(). const FieldDescriptor* FindExtensionByCamelcaseName(const string& name) const; // See Descriptor::CopyTo(). // Notes: // - This method does NOT copy source code information since it is relatively // large and rarely needed. See CopySourceCodeInfoTo() below. void CopyTo(FileDescriptorProto* proto) const; // Write the source code information of this FileDescriptor into the given // FileDescriptorProto. See CopyTo() above. void CopySourceCodeInfoTo(FileDescriptorProto* proto) const; // See Descriptor::DebugString(). string DebugString() const; // Returns true if this is a placeholder for an unknown file. This will // only be the case if this descriptor comes from a DescriptorPool // with AllowUnknownDependencies() set. bool is_placeholder() const; private: // Source Location --------------------------------------------------- // Updates |*out_location| to the source location of the complete // extent of the declaration or declaration-part denoted by |path|. // Returns false and leaves |*out_location| unchanged iff location // information was not available. (See SourceCodeInfo for // description of path encoding.) bool GetSourceLocation(const vector& path, SourceLocation* out_location) const; typedef FileOptions OptionsType; const string* name_; const string* package_; const DescriptorPool* pool_; int dependency_count_; const FileDescriptor** dependencies_; int public_dependency_count_; int* public_dependencies_; int weak_dependency_count_; int* weak_dependencies_; int message_type_count_; Descriptor* message_types_; int enum_type_count_; EnumDescriptor* enum_types_; int service_count_; ServiceDescriptor* services_; int extension_count_; bool is_placeholder_; FieldDescriptor* extensions_; const FileOptions* options_; const FileDescriptorTables* tables_; const SourceCodeInfo* source_code_info_; // IMPORTANT: If you add a new field, make sure to search for all instances // of Allocate() and AllocateArray() in // descriptor.cc and update them to initialize the field. FileDescriptor() {} friend class DescriptorBuilder; friend class Descriptor; friend class FieldDescriptor; friend class OneofDescriptor; friend class EnumDescriptor; friend class EnumValueDescriptor; friend class MethodDescriptor; friend class ServiceDescriptor; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(FileDescriptor); }; // =================================================================== // Used to construct descriptors. // // Normally you won't want to build your own descriptors. Message classes // constructed by the protocol compiler will provide them for you. However, // if you are implementing Message on your own, or if you are writing a // program which can operate on totally arbitrary types and needs to load // them from some sort of database, you might need to. // // Since Descriptors are composed of a whole lot of cross-linked bits of // data that would be a pain to put together manually, the // DescriptorPool class is provided to make the process easier. It can // take a FileDescriptorProto (defined in descriptor.proto), validate it, // and convert it to a set of nicely cross-linked Descriptors. // // DescriptorPool also helps with memory management. Descriptors are // composed of many objects containing static data and pointers to each // other. In all likelihood, when it comes time to delete this data, // you'll want to delete it all at once. In fact, it is not uncommon to // have a whole pool of descriptors all cross-linked with each other which // you wish to delete all at once. This class represents such a pool, and // handles the memory management for you. // // You can also search for descriptors within a DescriptorPool by name, and // extensions by number. class LIBPROTOBUF_EXPORT DescriptorPool { public: // Create a normal, empty DescriptorPool. DescriptorPool(); // Constructs a DescriptorPool that, when it can't find something among the // descriptors already in the pool, looks for it in the given // DescriptorDatabase. // Notes: // - If a DescriptorPool is constructed this way, its BuildFile*() methods // must not be called (they will assert-fail). The only way to populate // the pool with descriptors is to call the Find*By*() methods. // - The Find*By*() methods may block the calling thread if the // DescriptorDatabase blocks. This in turn means that parsing messages // may block if they need to look up extensions. // - The Find*By*() methods will use mutexes for thread-safety, thus making // them slower even when they don't have to fall back to the database. // In fact, even the Find*By*() methods of descriptor objects owned by // this pool will be slower, since they will have to obtain locks too. // - An ErrorCollector may optionally be given to collect validation errors // in files loaded from the database. If not given, errors will be printed // to GOOGLE_LOG(ERROR). Remember that files are built on-demand, so this // ErrorCollector may be called from any thread that calls one of the // Find*By*() methods. // - The DescriptorDatabase must not be mutated during the lifetime of // the DescriptorPool. Even if the client takes care to avoid data races, // changes to the content of the DescriptorDatabase may not be reflected // in subsequent lookups in the DescriptorPool. class ErrorCollector; explicit DescriptorPool(DescriptorDatabase* fallback_database, ErrorCollector* error_collector = NULL); ~DescriptorPool(); // Get a pointer to the generated pool. Generated protocol message classes // which are compiled into the binary will allocate their descriptors in // this pool. Do not add your own descriptors to this pool. static const DescriptorPool* generated_pool(); // Find a FileDescriptor in the pool by file name. Returns NULL if not // found. const FileDescriptor* FindFileByName(const string& name) const; // Find the FileDescriptor in the pool which defines the given symbol. // If any of the Find*ByName() methods below would succeed, then this is // equivalent to calling that method and calling the result's file() method. // Otherwise this returns NULL. const FileDescriptor* FindFileContainingSymbol( const string& symbol_name) const; // Looking up descriptors ------------------------------------------ // These find descriptors by fully-qualified name. These will find both // top-level descriptors and nested descriptors. They return NULL if not // found. const Descriptor* FindMessageTypeByName(const string& name) const; const FieldDescriptor* FindFieldByName(const string& name) const; const FieldDescriptor* FindExtensionByName(const string& name) const; const OneofDescriptor* FindOneofByName(const string& name) const; const EnumDescriptor* FindEnumTypeByName(const string& name) const; const EnumValueDescriptor* FindEnumValueByName(const string& name) const; const ServiceDescriptor* FindServiceByName(const string& name) const; const MethodDescriptor* FindMethodByName(const string& name) const; // Finds an extension of the given type by number. The extendee must be // a member of this DescriptorPool or one of its underlays. const FieldDescriptor* FindExtensionByNumber(const Descriptor* extendee, int number) const; // Finds extensions of extendee. The extensions will be appended to // out in an undefined order. Only extensions defined directly in // this DescriptorPool or one of its underlays are guaranteed to be // found: extensions defined in the fallback database might not be found // depending on the database implementation. void FindAllExtensions(const Descriptor* extendee, vector* out) const; // Building descriptors -------------------------------------------- // When converting a FileDescriptorProto to a FileDescriptor, various // errors might be detected in the input. The caller may handle these // programmatically by implementing an ErrorCollector. class LIBPROTOBUF_EXPORT ErrorCollector { public: inline ErrorCollector() {} virtual ~ErrorCollector(); // These constants specify what exact part of the construct is broken. // This is useful e.g. for mapping the error back to an exact location // in a .proto file. enum ErrorLocation { NAME, // the symbol name, or the package name for files NUMBER, // field or extension range number TYPE, // field type EXTENDEE, // field extendee DEFAULT_VALUE, // field default value INPUT_TYPE, // method input type OUTPUT_TYPE, // method output type OPTION_NAME, // name in assignment OPTION_VALUE, // value in option assignment OTHER // some other problem }; // Reports an error in the FileDescriptorProto. Use this function if the // problem occured should interrupt building the FileDescriptorProto. virtual void AddError( const string& filename, // File name in which the error occurred. const string& element_name, // Full name of the erroneous element. const Message* descriptor, // Descriptor of the erroneous element. ErrorLocation location, // One of the location constants, above. const string& message // Human-readable error message. ) = 0; // Reports a warning in the FileDescriptorProto. Use this function if the // problem occured should NOT interrupt building the FileDescriptorProto. virtual void AddWarning( const string& filename, // File name in which the error occurred. const string& element_name, // Full name of the erroneous element. const Message* descriptor, // Descriptor of the erroneous element. ErrorLocation location, // One of the location constants, above. const string& message // Human-readable error message. ) {} private: GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ErrorCollector); }; // Convert the FileDescriptorProto to real descriptors and place them in // this DescriptorPool. All dependencies of the file must already be in // the pool. Returns the resulting FileDescriptor, or NULL if there were // problems with the input (e.g. the message was invalid, or dependencies // were missing). Details about the errors are written to GOOGLE_LOG(ERROR). const FileDescriptor* BuildFile(const FileDescriptorProto& proto); // Same as BuildFile() except errors are sent to the given ErrorCollector. const FileDescriptor* BuildFileCollectingErrors( const FileDescriptorProto& proto, ErrorCollector* error_collector); // By default, it is an error if a FileDescriptorProto contains references // to types or other files that are not found in the DescriptorPool (or its // backing DescriptorDatabase, if any). If you call // AllowUnknownDependencies(), however, then unknown types and files // will be replaced by placeholder descriptors (which can be identified by // the is_placeholder() method). This can allow you to // perform some useful operations with a .proto file even if you do not // have access to other .proto files on which it depends. However, some // heuristics must be used to fill in the gaps in information, and these // can lead to descriptors which are inaccurate. For example, the // DescriptorPool may be forced to guess whether an unknown type is a message // or an enum, as well as what package it resides in. Furthermore, // placeholder types will not be discoverable via FindMessageTypeByName() // and similar methods, which could confuse some descriptor-based algorithms. // Generally, the results of this option should be handled with extreme care. void AllowUnknownDependencies() { allow_unknown_ = true; } // By default, weak imports are allowed to be missing, in which case we will // use a placeholder for the dependency and convert the field to be an Empty // message field. If you call EnforceWeakDependencies(true), however, the // DescriptorPool will report a import not found error. void EnforceWeakDependencies(bool enforce) { enforce_weak_ = enforce; } // Internal stuff -------------------------------------------------- // These methods MUST NOT be called from outside the proto2 library. // These methods may contain hidden pitfalls and may be removed in a // future library version. // Create a DescriptorPool which is overlaid on top of some other pool. // If you search for a descriptor in the overlay and it is not found, the // underlay will be searched as a backup. If the underlay has its own // underlay, that will be searched next, and so on. This also means that // files built in the overlay will be cross-linked with the underlay's // descriptors if necessary. The underlay remains property of the caller; // it must remain valid for the lifetime of the newly-constructed pool. // // Example: Say you want to parse a .proto file at runtime in order to use // its type with a DynamicMessage. Say this .proto file has dependencies, // but you know that all the dependencies will be things that are already // compiled into the binary. For ease of use, you'd like to load the types // right out of generated_pool() rather than have to parse redundant copies // of all these .protos and runtime. But, you don't want to add the parsed // types directly into generated_pool(): this is not allowed, and would be // bad design anyway. So, instead, you could use generated_pool() as an // underlay for a new DescriptorPool in which you add only the new file. // // WARNING: Use of underlays can lead to many subtle gotchas. Instead, // try to formulate what you want to do in terms of DescriptorDatabases. explicit DescriptorPool(const DescriptorPool* underlay); // Called by generated classes at init time to add their descriptors to // generated_pool. Do NOT call this in your own code! filename must be a // permanent string (e.g. a string literal). static void InternalAddGeneratedFile( const void* encoded_file_descriptor, int size); // For internal use only: Gets a non-const pointer to the generated pool. // This is called at static-initialization time only, so thread-safety is // not a concern. If both an underlay and a fallback database are present, // the underlay takes precedence. static DescriptorPool* internal_generated_pool(); // For internal use only: Changes the behavior of BuildFile() such that it // allows the file to make reference to message types declared in other files // which it did not officially declare as dependencies. void InternalDontEnforceDependencies(); // For internal use only. void internal_set_underlay(const DescriptorPool* underlay) { underlay_ = underlay; } // For internal (unit test) use only: Returns true if a FileDescriptor has // been constructed for the given file, false otherwise. Useful for testing // lazy descriptor initialization behavior. bool InternalIsFileLoaded(const string& filename) const; // Add a file to unused_import_track_files_. DescriptorBuilder will log // warnings for those files if there is any unused import. void AddUnusedImportTrackFile(const string& file_name); void ClearUnusedImportTrackFiles(); private: friend class Descriptor; friend class FieldDescriptor; friend class EnumDescriptor; friend class ServiceDescriptor; friend class FileDescriptor; friend class DescriptorBuilder; // Return true if the given name is a sub-symbol of any non-package // descriptor that already exists in the descriptor pool. (The full // definition of such types is already known.) bool IsSubSymbolOfBuiltType(const string& name) const; // Tries to find something in the fallback database and link in the // corresponding proto file. Returns true if successful, in which case // the caller should search for the thing again. These are declared // const because they are called by (semantically) const methods. bool TryFindFileInFallbackDatabase(const string& name) const; bool TryFindSymbolInFallbackDatabase(const string& name) const; bool TryFindExtensionInFallbackDatabase(const Descriptor* containing_type, int field_number) const; // Like BuildFile() but called internally when the file has been loaded from // fallback_database_. Declared const because it is called by (semantically) // const methods. const FileDescriptor* BuildFileFromDatabase( const FileDescriptorProto& proto) const; // If fallback_database_ is NULL, this is NULL. Otherwise, this is a mutex // which must be locked while accessing tables_. Mutex* mutex_; // See constructor. DescriptorDatabase* fallback_database_; ErrorCollector* default_error_collector_; const DescriptorPool* underlay_; // This class contains a lot of hash maps with complicated types that // we'd like to keep out of the header. class Tables; scoped_ptr tables_; bool enforce_dependencies_; bool allow_unknown_; bool enforce_weak_; std::set unused_import_track_files_; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DescriptorPool); }; // inline methods ==================================================== // These macros makes this repetitive code more readable. #define PROTOBUF_DEFINE_ACCESSOR(CLASS, FIELD, TYPE) \ inline TYPE CLASS::FIELD() const { return FIELD##_; } // Strings fields are stored as pointers but returned as const references. #define PROTOBUF_DEFINE_STRING_ACCESSOR(CLASS, FIELD) \ inline const string& CLASS::FIELD() const { return *FIELD##_; } // Arrays take an index parameter, obviously. #define PROTOBUF_DEFINE_ARRAY_ACCESSOR(CLASS, FIELD, TYPE) \ inline TYPE CLASS::FIELD(int index) const { return FIELD##s_ + index; } #define PROTOBUF_DEFINE_OPTIONS_ACCESSOR(CLASS, TYPE) \ inline const TYPE& CLASS::options() const { return *options_; } PROTOBUF_DEFINE_STRING_ACCESSOR(Descriptor, name) PROTOBUF_DEFINE_STRING_ACCESSOR(Descriptor, full_name) PROTOBUF_DEFINE_ACCESSOR(Descriptor, file, const FileDescriptor*) PROTOBUF_DEFINE_ACCESSOR(Descriptor, containing_type, const Descriptor*) PROTOBUF_DEFINE_ACCESSOR(Descriptor, field_count, int) PROTOBUF_DEFINE_ACCESSOR(Descriptor, oneof_decl_count, int) PROTOBUF_DEFINE_ACCESSOR(Descriptor, nested_type_count, int) PROTOBUF_DEFINE_ACCESSOR(Descriptor, enum_type_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, field, const FieldDescriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, oneof_decl, const OneofDescriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, nested_type, const Descriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, enum_type, const EnumDescriptor*) PROTOBUF_DEFINE_ACCESSOR(Descriptor, extension_range_count, int) PROTOBUF_DEFINE_ACCESSOR(Descriptor, extension_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, extension_range, const Descriptor::ExtensionRange*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(Descriptor, extension, const FieldDescriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(Descriptor, MessageOptions); PROTOBUF_DEFINE_ACCESSOR(Descriptor, is_placeholder, bool) PROTOBUF_DEFINE_STRING_ACCESSOR(FieldDescriptor, name) PROTOBUF_DEFINE_STRING_ACCESSOR(FieldDescriptor, full_name) PROTOBUF_DEFINE_STRING_ACCESSOR(FieldDescriptor, lowercase_name) PROTOBUF_DEFINE_STRING_ACCESSOR(FieldDescriptor, camelcase_name) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, file, const FileDescriptor*) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, number, int) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, is_extension, bool) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, type, FieldDescriptor::Type) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, label, FieldDescriptor::Label) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, containing_type, const Descriptor*) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, containing_oneof, const OneofDescriptor*) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, index_in_oneof, int) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, extension_scope, const Descriptor*) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, message_type, const Descriptor*) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, enum_type, const EnumDescriptor*) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, experimental_map_key, const FieldDescriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(FieldDescriptor, FieldOptions) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, has_default_value, bool) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_int32 , int32 ) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_int64 , int64 ) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_uint32, uint32) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_uint64, uint64) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_float , float ) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_double, double) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_bool , bool ) PROTOBUF_DEFINE_ACCESSOR(FieldDescriptor, default_value_enum, const EnumValueDescriptor*) PROTOBUF_DEFINE_STRING_ACCESSOR(FieldDescriptor, default_value_string) PROTOBUF_DEFINE_STRING_ACCESSOR(OneofDescriptor, name) PROTOBUF_DEFINE_STRING_ACCESSOR(OneofDescriptor, full_name) PROTOBUF_DEFINE_ACCESSOR(OneofDescriptor, containing_type, const Descriptor*) PROTOBUF_DEFINE_ACCESSOR(OneofDescriptor, field_count, int) PROTOBUF_DEFINE_STRING_ACCESSOR(EnumDescriptor, name) PROTOBUF_DEFINE_STRING_ACCESSOR(EnumDescriptor, full_name) PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, file, const FileDescriptor*) PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, containing_type, const Descriptor*) PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, value_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(EnumDescriptor, value, const EnumValueDescriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(EnumDescriptor, EnumOptions); PROTOBUF_DEFINE_ACCESSOR(EnumDescriptor, is_placeholder, bool) PROTOBUF_DEFINE_STRING_ACCESSOR(EnumValueDescriptor, name) PROTOBUF_DEFINE_STRING_ACCESSOR(EnumValueDescriptor, full_name) PROTOBUF_DEFINE_ACCESSOR(EnumValueDescriptor, number, int) PROTOBUF_DEFINE_ACCESSOR(EnumValueDescriptor, type, const EnumDescriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(EnumValueDescriptor, EnumValueOptions) PROTOBUF_DEFINE_STRING_ACCESSOR(ServiceDescriptor, name) PROTOBUF_DEFINE_STRING_ACCESSOR(ServiceDescriptor, full_name) PROTOBUF_DEFINE_ACCESSOR(ServiceDescriptor, file, const FileDescriptor*) PROTOBUF_DEFINE_ACCESSOR(ServiceDescriptor, method_count, int) PROTOBUF_DEFINE_ARRAY_ACCESSOR(ServiceDescriptor, method, const MethodDescriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(ServiceDescriptor, ServiceOptions); PROTOBUF_DEFINE_STRING_ACCESSOR(MethodDescriptor, name) PROTOBUF_DEFINE_STRING_ACCESSOR(MethodDescriptor, full_name) PROTOBUF_DEFINE_ACCESSOR(MethodDescriptor, service, const ServiceDescriptor*) PROTOBUF_DEFINE_ACCESSOR(MethodDescriptor, input_type, const Descriptor*) PROTOBUF_DEFINE_ACCESSOR(MethodDescriptor, output_type, const Descriptor*) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(MethodDescriptor, MethodOptions); PROTOBUF_DEFINE_STRING_ACCESSOR(FileDescriptor, name) PROTOBUF_DEFINE_STRING_ACCESSOR(FileDescriptor, package) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, pool, const DescriptorPool*) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, dependency_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, public_dependency_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, weak_dependency_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, message_type_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, enum_type_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, service_count, int) PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, extension_count, int) PROTOBUF_DEFINE_OPTIONS_ACCESSOR(FileDescriptor, FileOptions); PROTOBUF_DEFINE_ACCESSOR(FileDescriptor, is_placeholder, bool) PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, message_type, const Descriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, enum_type, const EnumDescriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, service, const ServiceDescriptor*) PROTOBUF_DEFINE_ARRAY_ACCESSOR(FileDescriptor, extension, const FieldDescriptor*) #undef PROTOBUF_DEFINE_ACCESSOR #undef PROTOBUF_DEFINE_STRING_ACCESSOR #undef PROTOBUF_DEFINE_ARRAY_ACCESSOR // A few accessors differ from the macros... inline bool Descriptor::IsExtensionNumber(int number) const { return FindExtensionRangeContainingNumber(number) != NULL; } inline bool FieldDescriptor::is_required() const { return label() == LABEL_REQUIRED; } inline bool FieldDescriptor::is_optional() const { return label() == LABEL_OPTIONAL; } inline bool FieldDescriptor::is_repeated() const { return label() == LABEL_REPEATED; } inline bool FieldDescriptor::is_packable() const { return is_repeated() && IsTypePackable(type()); } // To save space, index() is computed by looking at the descriptor's position // in the parent's array of children. inline int FieldDescriptor::index() const { if (!is_extension_) { return static_cast(this - containing_type_->fields_); } else if (extension_scope_ != NULL) { return static_cast(this - extension_scope_->extensions_); } else { return static_cast(this - file_->extensions_); } } inline int Descriptor::index() const { if (containing_type_ == NULL) { return static_cast(this - file_->message_types_); } else { return static_cast(this - containing_type_->nested_types_); } } inline int OneofDescriptor::index() const { return static_cast(this - containing_type_->oneof_decls_); } inline int EnumDescriptor::index() const { if (containing_type_ == NULL) { return static_cast(this - file_->enum_types_); } else { return static_cast(this - containing_type_->enum_types_); } } inline int EnumValueDescriptor::index() const { return static_cast(this - type_->values_); } inline int ServiceDescriptor::index() const { return static_cast(this - file_->services_); } inline int MethodDescriptor::index() const { return static_cast(this - service_->methods_); } inline const char* FieldDescriptor::type_name() const { return kTypeToName[type_]; } inline FieldDescriptor::CppType FieldDescriptor::cpp_type() const { return kTypeToCppTypeMap[type_]; } inline const char* FieldDescriptor::cpp_type_name() const { return kCppTypeToName[kTypeToCppTypeMap[type_]]; } inline FieldDescriptor::CppType FieldDescriptor::TypeToCppType(Type type) { return kTypeToCppTypeMap[type]; } inline const char* FieldDescriptor::TypeName(Type type) { return kTypeToName[type]; } inline const char* FieldDescriptor::CppTypeName(CppType cpp_type) { return kCppTypeToName[cpp_type]; } inline bool FieldDescriptor::IsTypePackable(Type field_type) { return (field_type != FieldDescriptor::TYPE_STRING && field_type != FieldDescriptor::TYPE_GROUP && field_type != FieldDescriptor::TYPE_MESSAGE && field_type != FieldDescriptor::TYPE_BYTES); } inline const FileDescriptor* FileDescriptor::dependency(int index) const { return dependencies_[index]; } inline const FileDescriptor* FileDescriptor::public_dependency( int index) const { return dependencies_[public_dependencies_[index]]; } inline const FileDescriptor* FileDescriptor::weak_dependency( int index) const { return dependencies_[weak_dependencies_[index]]; } // Can't use PROTOBUF_DEFINE_ARRAY_ACCESSOR because fields_ is actually an array // of pointers rather than the usual array of objects. inline const FieldDescriptor* OneofDescriptor::field(int index) const { return fields_[index]; } } // namespace protobuf } // namespace google #endif // GOOGLE_PROTOBUF_DESCRIPTOR_H__