Sha256: ba9f4294f0dddf0fe2caa03b506be45645c75afaa5b697f52e04e5be384572a3
Contents?: true
Size: 1.07 KB
Versions: 7
Compression:
Stored size: 1.07 KB
Contents
## # Class to create a sample of Gaussian Distributed values class Digiproc::Probability::GaussianDistribution attr_accessor :mean, :stddev, :generator, :data attr_reader :size include Digiproc::Convolvable::InstanceMethods, Digiproc::Initializable, Digiproc::FourierTransformable ## # == Initialize arguments # mean:: [Float] mean of the population # stddev:: [Float] standard deviation of the population # size:: [Integer] number of datapoints # generator:: Strategy for making Gaussian values. Defaults to Digiproc::Strategies::GaussianGeneratorBoxMullerStrategy.new def initialize(mean: , stddev: , size: ,generator: Digiproc::Strategies::GaussianGeneratorBoxMullerStrategy.new) @mean, @stddev, @generator, @size = mean, stddev, generator, size generator.mean = mean generator.stddev = stddev data = [] size.times do data << generator.rand end @data = data initialize_modules(Digiproc::FourierTransformable => {time_data: data}) end end
Version data entries
7 entries across 7 versions & 1 rubygems