Sha256: ba14d93a7e82e5e90eed7fb222b031a98331cb8c67c420fc8050e163b29e265a
Contents?: true
Size: 1.11 KB
Versions: 7
Compression:
Stored size: 1.11 KB
Contents
# frozen_string_literal: true require 'numo/narray' module Rumale module Base # Module for all clustering algorithms in Rumale. module ClusterAnalyzer # An abstract method for analyzing clusters and predicting cluster indices. def fit_predict raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end # Calculate purity of clustering result. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data. # @param y [Numo::Int32] (shape: [n_samples]) True labels for testing data. # @return [Float] Purity def score(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_label_array(y) ::Rumale::Validation.check_sample_size(x, y) predicted = fit_predict(x) cluster_ids = predicted.to_a.uniq class_ids = y.to_a.uniq cluster_ids.sum do |k| pr_sample_ids = predicted.eq(k).where.to_a class_ids.map { |j| (pr_sample_ids & y.eq(j).where.to_a).size }.max end.fdiv(y.size) end end end end
Version data entries
7 entries across 7 versions & 1 rubygems