module SPCore # Store signal data and provide some useful methods for working with # (testing and analyzing) the data. # # @author James Tunnell class Signal include Hashmake::HashMakeable # Used to process hashed arguments in #initialize. ARG_SPECS = { :data => arg_spec(:reqd => true, :type => Array, :validator => ->(a){ a.any? }), :sample_rate => arg_spec(:reqd => true, :type => Fixnum, :validator => ->(a){ a > 0.0 }) } attr_reader :data, :sample_rate # A new instance of Signal. # # @param [Hash] hashed_args Hashed arguments. Required keys are :data and # :sample_rate. See ARG_SPECS for more details. def initialize hashed_args hash_make Signal::ARG_SPECS, hashed_args end # Produce a new Signal object with the same data. def clone Signal.new(:data => @data.clone, :sample_rate => @sample_rate) end # Produce a new Signal object with a subset of the current signal data. # @param [Range] range Used to pick the data range. def subset range Signal.new(:data => @data[range], :sample_rate => @sample_rate) end # Size of the signal data. def size @data.size end # Access signal data. def [](arg) @data[arg] end # Plot the signal data, either against sample numbers or fraction of total samples. # @param plot_against_fraction If false, plot data against sample number. If true, # plot against fraction of total samples. def plot_data plot_against_fraction xtitle = (plot_against_fraction ? "fraction of total samples" : "sample numbers") plotter = Plotter.new(:title => "signal data sequence", :xtitle => xtitle, :ytitle => "sample values") titled_sequence = {"signal data" => @data} plotter.plot_1d titled_sequence, plot_against_fraction end # Increase the sample rate of signal data by the given factor using # discrete upsampling method. # @param [Fixnum] upsample_factor Increase the sample rate by this factor. # @param [Fixnum] filter_order The filter order for the discrete lowpass filter. def upsample_discrete upsample_factor, filter_order @data = DiscreteResampling.upsample @data, @sample_rate, upsample_factor, filter_order @sample_rate *= upsample_factor return self end # Decrease the sample rate of signal data by the given factor using # discrete downsampling method. # @param [Fixnum] downsample_factor Decrease the sample rate by this factor. # @param [Fixnum] filter_order The filter order for the discrete lowpass filter. def downsample_discrete downsample_factor, filter_order @data = DiscreteResampling.downsample @data, @sample_rate, downsample_factor, filter_order @sample_rate /= downsample_factor return self end # Change the sample rate of signal data by the given up/down factors, using # discrete upsampling and downsampling methods. # @param [Fixnum] upsample_factor Increase the sample rate by this factor. # @param [Fixnum] downsample_factor Decrease the sample rate by this factor. # @param [Fixnum] filter_order The filter order for the discrete lowpass filter. def resample_discrete upsample_factor, downsample_factor, filter_order @data = DiscreteResampling.resample @data, @sample_rate, upsample_factor, downsample_factor, filter_order @sample_rate *= upsample_factor @sample_rate /= downsample_factor return self end # Increase the sample rate of signal data by the given factor using # polynomial interpolation. # @param [Fixnum] upsample_factor Increase the sample rate by this factor. def upsample_polynomial upsample_factor @data = PolynomialResampling.upsample @data, @sample_rate, upsample_factor @sample_rate *= upsample_factor return self end # Change the sample rate of signal data by the given up/down factors, using # polynomial upsampling and discrete downsampling. # @param [Fixnum] upsample_factor Increase the sample rate by this factor. # @param [Fixnum] downsample_factor Decrease the sample rate by this factor. # @param [Fixnum] filter_order The filter order for the discrete lowpass filter. def resample_hybrid upsample_factor, downsample_factor, filter_order @data = HybridResampling.resample @data, @sample_rate, upsample_factor, downsample_factor, filter_order @sample_rate *= upsample_factor @sample_rate /= downsample_factor return self end # Run FFT on signal data to find magnitude of frequency components. # @param convert_to_db If true, magnitudes are converted to dB values. # @return [Hash] contains frequencies mapped to magnitudes. def freq_magnitudes convert_to_db = false fft_output = FFT.forward @data fft_output = fft_output[0...(fft_output.size / 2)] # ignore second half fft_output = fft_output.map {|x| x.magnitude } # map complex value to magnitude if convert_to_db fft_output = fft_output.map {|x| Gain.linear_to_db x} end freq_magnitudes = {} fft_output.each_index do |i| size = fft_output.size * 2 # mul by 2 because the second half of original fft_output was removed freq = (@sample_rate * i) / size freq_magnitudes[freq] = fft_output[i] end return freq_magnitudes end # Calculate the energy in current signal data. def energy return @data.inject(0.0){|sum,x| sum + (x * x)} end # Return a def envelope attack_time, release_time raise ArgumentError, "attack_time #{attack_time } is less than or equal to zero" if attack_time <= 0.0 raise ArgumentError, "release_time #{release_time} is less than or equal to zero" if release_time <= 0.0 env_detector = EnvelopeDetector.new(:attack_time => attack_time, :release_time => release_time, :sample_rate => @sample_rate) envelope = Array.new(@data.count) for i in 0...@data.count do envelope[i] = env_detector.process_sample @data[i] end return envelope end # Add data in array or other signal to the beginning of current data. def prepend other if other.is_a?(Array) @data = other.concat @data elsif other.is_a?(Signal) @data = other.data.concat @data end return self end # Add data in array or other signal to the end of current data. def append other if other.is_a?(Array) @data = @data.concat other elsif other.is_a?(Signal) @data = @data.concat other.data end return self end # Add value, values in array, or values in other signal to the current # data values, and update the current data with the results. # @param other Can be Numeric (add same value to all data values), Array, or Signal. def +(other) if other.is_a?(Numeric) @data.each_index do |i| @data[i] += other end elsif other.is_a?(Signal) raise ArgumentError, "other.data.size #{other.size} is not equal to data.size #{@data.size}" if other.data.size != @data.size @data.each_index do |i| @data[i] += other.data[i] end elsif other.is_a?(Array) raise ArgumentError, "other.size #{other.size} is not equal to data.size #{@data.size}" if other.size != @data.size @data.each_index do |i| @data[i] += other[i] end else raise ArgumentError, "other is not a Numeric, Signal, or Array" end return self end # Subtract value, values in array, or values in other signal from the current # data values, and update the current data with the results. # @param other Can be Numeric (subtract same value from all data values), Array, or Signal. def -(other) if other.is_a?(Numeric) @data.each_index do |i| @data[i] -= other end elsif other.is_a?(Signal) raise ArgumentError, "other.data.size #{other.size} is not equal to data.size #{@data.size}" if other.data.size != @data.size @data.each_index do |i| @data[i] -= other.data[i] end elsif other.is_a?(Array) raise ArgumentError, "other.size #{other.size} is not equal to data.size #{@data.size}" if other.size != @data.size @data.each_index do |i| @data[i] -= other[i] end else raise ArgumentError, "other is not a Numeric, Signal, or Array" end return self end # Multiply value, values in array, or values in other signal with the current # data values, and update the current data with the results. # @param other Can be Numeric (multiply all data values by the same value), # Array, or Signal. def *(other) if other.is_a?(Numeric) @data.each_index do |i| @data[i] *= other end elsif other.is_a?(Signal) raise ArgumentError, "other.data.size #{other.size} is not equal to data.size #{@data.size}" if other.data.size != @data.size @data.each_index do |i| @data[i] *= other.data[i] end elsif other.is_a?(Array) raise ArgumentError, "other.size #{other.size} is not equal to data.size #{@data.size}" if other.size != @data.size @data.each_index do |i| @data[i] *= other[i] end else raise ArgumentError, "other is not a Numeric, Signal, or Array" end return self end # Divide value, values in array, or values in other signal into the current # data values, and update the current data with the results. # @param other Can be Numeric (divide same all data values by the same value), # Array, or Signal. def /(other) if other.is_a?(Numeric) @data.each_index do |i| @data[i] /= other end elsif other.is_a?(Signal) raise ArgumentError, "other.data.size #{other.size} is not equal to data.size #{@data.size}" if other.data.size != @data.size @data.each_index do |i| @data[i] /= other.data[i] end elsif other.is_a?(Array) raise ArgumentError, "other.size #{other.size} is not equal to data.size #{@data.size}" if other.size != @data.size @data.each_index do |i| @data[i] /= other[i] end else raise ArgumentError, "other is not a Numeric, Signal, or Array" end return self end alias_method :add, :+ alias_method :subtract, :- alias_method :multiply, :* alias_method :divide, :/ # Determine how well the another signal (g) correlates to the current signal (f). # Correlation is determined at every point in f. The signal g must not be # longer than f. Correlation involves moving g along f and performing # convolution. Starting a the beginning of f, it continues until the end # of g hits the end of f. Doesn't actually convolve, though. Instead, it # adds # # @param [Array] other_signal The signal to look for in the current signal. # @param [true/false] normalize Flag to indicate if normalization should be # performed on input signals (performed on a copy # of the original data). # @raise [ArgumentError] if other_signal is not a Signal or Array. # @raise [ArgumentError] if other_signal is longer than the current signal data. def cross_correlation other_signal, normalize = true if other_signal.is_a? Signal other_data = other_signal.data elsif other_signal.is_a? Array other_data = other_signal else raise ArgumentError, "other_signal is not a Signal or Array" end f = @data g = other_data raise ArgumentError, "g.count #{g.count} is greater than f.count #{f.count}" if g.count > f.count g_size = g.count f_size = f.count f_g_diff = f_size - g_size cross_correlation = [] if normalize max = (f.max_by {|x| x.abs }).abs.to_f f = f.clone g = g.clone f.each_index {|i| f[i] = f[i] / max } g.each_index {|i| g[i] = g[i] / max } end #puts "f: #{f.inspect}" #puts "g: #{g.inspect}" for n in 0..f_g_diff do f_window = (n...(n + g_size)).entries g_window = (0...g_size).entries sample = 0.0 for i in 0...f_window.count do i_f = f_window[i] i_g = g_window[i] #if use_relative_error target = g[i_g].to_f actual = f[i_f] #if target == 0.0 && actual != 0.0 && normalize # puts "target is #{target} and actual is #{actual}" # error = 1.0 #else error = (target - actual).abs# / target #end sample += error #else # sample += (f[i_f] * g[i_g]) #end end cross_correlation << (sample)# / g_size.to_f) end return cross_correlation end end end