module DNN # This module provides utility functions. module Utils # Categorize labels into "num_classes" classes. # @param [Numo::SFloat] y Label data. # @param [Numo::SFloat] num_classes Number of classes to classify. # @param [Class] narray_type Type of Numo::Narray data after classification. def self.to_categorical(y, num_classes, narray_type = nil) narray_type ||= y.class y2 = narray_type.zeros(y.shape[0], num_classes) y.shape[0].times do |i| y2[i, y[i]] = 1 end y2 end # Convert hash to an object. def self.hash_to_obj(hash) return nil if hash == nil dnn_class = DNN.const_get(hash[:class]) dnn_class.from_hash(hash) end # Broadcast to target shape. # @param [Numo::SFloat] x Data to broadcast. # @param [Array] Shape to broadcast. # @return [Numo::SFloat] Broadcasted data. def self.broadcast_to(x, target_shape) Layers::MathUtils.broadcast_to(x, target_shape) end # Return the result of the sigmoid function. def self.sigmoid(x) Losses::SigmoidCrossEntropy.sigmoid(x) end # Return the result of the softmax function. def self.softmax(x) Losses::SoftmaxCrossEntropy.softmax(x) end # Check training or evaluate input data type. def self.check_input_data_type(data_name, data, expected_type) if !data.is_a?(expected_type) && !data.is_a?(Array) raise TypeError, "#{data_name}:#{data.class.name} is not an instance of #{expected_type.name} class or Array class." end if data.is_a?(Array) data.each.with_index do |v, i| unless v.is_a?(expected_type) raise TypeError, "#{data_name}[#{i}]:#{v.class.name} is not an instance of #{expected_type.name} class." end end end end # Perform numerical differentiation. def self.numerical_grad(x, func) (func.(x + 1e-7) - func.(x)) / 1e-7 end # Convert numo to cumo. def self.numo2cumo(na) b = na.to_binary ca = Cumo::SFloat.from_binary(b) ca.reshape(*na.shape) end # Convert cumo to numo. def self.cumo2numo(ca) b = ca.to_binary na = Numo::SFloat.from_binary(b) na.reshape(*ca.shape) end # Force convert to Float. def self.to_f(x) if x.is_a?(Xumo::NArray) x[0].to_f else x.to_f end end end end