module Dydx module Algebra class Formula include Helper attr_accessor :operator, :terms def initialize(operator, *terms) @operator, @terms = operator, terms commutate! if (terms[1].num? && operator.commutative?) end def f @terms[0] end def g @terms[1] end def f=(x) @terms[0] = x end def g=(x) @terms[1] = x end def tms terms end # TODO: Cylomatic complexity for differentiate is too high. [7/6] def differentiate(sym = :x) case @operator when :+ then f.d(sym) + g.d(sym) when :* then (f.d(sym) * g) + (f * g.d(sym)) when :** # TODO: if g.num? f.d(sym) * g * (f ** (g - 1)) elsif f == sym g * (f ** (g - 1)) elsif f == e g.d(sym) * self else self * (g * log(f)).d(sym) end end end alias_method :d, :differentiate def to_s if formula?(:*) && (f.minus1? || g.minus1?) "( - #{g} )" elsif g.inverse?(operator) "( #{f} #{operator.inv} #{g.x} )" elsif f.inverse?(operator) "( #{g} #{operator.inv} #{f.x} )" elsif formula?(:*) && !rationals.empty? terms = [f, g] terms.delete(rationals.first) "( #{(terms.first * rationals.first.n.numerator)} / #{rationals.first.n.denominator} )" else "( #{f} #{operator} #{g} )" end end def subst(hash = {}) f.subst(hash).send(operator, g.subst(hash)) end def to_f f.to_f.send(operator, g.to_f) end def include?(x) f == x || g == x end def openable?(operator, x) distributive?(self.operator, operator) && (f.combinable?(x, operator) || g.combinable?(x, operator)) end def rationals [f, g].select{ |term| term.num? && term.n.is_a?(Rational) } end def ==(x) if to_s == x.to_s true else result = commutate!.to_s == x.to_s commutate! result end end def commutate! @terms.reverse! self end def index(tm) tms.index(tm) end def delete(tm) tms.delete(tm) tms.count.one? ? tms.first : self end end end end