module SignalTools class Stock Default_Period = 90 EMA_Seed_Days = 10 Slow_K_SMA = 3 ATR_Seed_Days = 14 attr_accessor :ticker attr_reader :stock_data def initialize(ticker, from_date=Date.today-Default_Period, to_date=Date.today) from_date = Date.parse(from_date) unless from_date.is_a?(Date) to_date = Date.parse(to_date) unless to_date.is_a?(Date) @ticker = ticker @stock_data = SignalTools::StockData.new(ticker, from_date, to_date) end # Takes a period of days over which to average closing prices and returns the exponential moving average for each day. def ema(period=10) trim_data_to_range!(ema_points(period, @stock_data.close_prices)) end def macd(fast=8, slow=17, signal=9) trim_data_to_range!(macd_points(fast, slow, signal)) end def fast_stochastic(k=14, d=5) trim_data_to_range!(fast_stochastic_points(k, d)) end def slow_stochastic(k=14, d=5) trim_data_to_range!(slow_stochastic_points(k, d)) end def atr(period=14) trim_data_to_range!(average_true_ranges(period)) end def adx(period=14) trim_data_to_range!(average_directional_indexes(period)) end def dates @stock_data.dates end def close_prices @close_prices = trim_data_to_range(@stock_data.close_prices) end private #### EMA methods def ema_points(period, data, type=:default) emas = [default_simple_average(data, EMA_Seed_Days)] if type == :wilder data.slice(EMA_Seed_Days..-1).each { |current| emas << calculate_wilder_ema(emas.last, current, period) } else data.slice(EMA_Seed_Days..-1).each { |current| emas << calculate_ema(emas.last, current, period) } end emas end #Takes current value, previous day's EMA, and number of days. Returns EMA for that day. def calculate_ema(previous, current, period) (current - previous) * (2.0 / (period + 1)) + previous end #Uses Wilder's moving average formula. def calculate_wilder_ema(previous, current, period) (previous * (period - 1) + current) / period end #Takes a period and array of data and calculates the sum ema over the period specified. def period_sum_ema(period, data) raise if data.size <= period sum_emas = [SignalTools.sum(data[0...period])] data[(period..-1)].each do |today| sum_emas << (sum_emas.last - (sum_emas.last / period) + today) end sum_emas end #### MACD Methods # Takes a period of days for fast, slow, signal, and time period (eg 8,17,9). def macd_points(fast, slow, signal) fast_ema_points = ema_points(fast, @stock_data.close_prices) slow_ema_points = ema_points(slow, @stock_data.close_prices) macd_and_divergence_points(fast_ema_points, slow_ema_points, signal) end def macd_and_divergence_points(fast_ema_points, slow_ema_points, signal) macds = differences_between_arrays(fast_ema_points, slow_ema_points) signal_points = ema_points(signal, macds) divergences = differences_between_arrays(macds, signal_points) {:signal_points => signal_points, :divergences => divergences} end # Returns an array with the differences between the first_points and second_points def differences_between_arrays(first_points, second_points) SignalTools.truncate_to_shortest!(first_points, second_points) differences = [] first_points.each_with_index { |fp, index| differences << fp - second_points[index] } differences end #### Stochastic Methods def fast_stochastic_points(k_period, d_period) k_points = calculate_fast_stochastic_k_points(k_period) d_points = calculate_d_points(k_points, d_period) k_d_points(k_points, d_points) end def slow_stochastic_points(k_period, d_period) fast_points = fast_stochastic_points(k_period, d_period) k_points = slow_k_points(fast_points[:k]) slow_d_points = calculate_d_points(k_points, d_period) k_d_points(k_points, slow_d_points) end def calculate_fast_stochastic_k_points(period) index = 0 points = [] while((index + period) <= @stock_data.close_prices.size) today_cp = @stock_data.close_prices[index + period - 1] low_price = get_for_period(@stock_data.low_prices, index, index + period - 1, :min) high_price = get_for_period(@stock_data.high_prices, index, index + period - 1, :max) points << (today_cp - low_price) / (high_price - low_price) index += 1 end points end def calculate_d_points(k_points, period) collection_for_array(k_points, period, :average) end def k_d_points(k_points, d_points) raise unless k_points.size > d_points.size SignalTools.truncate_to_shortest!(k_points, d_points) {:k => k_points, :d => d_points} end def slow_k_points(fast_k_points) collection_for_array(fast_k_points, Slow_K_SMA, :average) end #### True Range Methods # Takes a smoothing period and historical data and calculates the average # true ranges. def average_true_ranges(period) trs = true_ranges atrs = [default_simple_average(trs.slice!(0...ATR_Seed_Days), ATR_Seed_Days)] trs.each { |tr| atrs << calculate_average_true_range(atrs.last, tr, period) } atrs end # Takes historical data and computes the true ranges. def true_ranges trs = [@stock_data.high_prices.first - @stock_data.low_prices.first] index = 1 while index < (@stock_data.high_prices.size) trs << true_range(@stock_data.raw_data[index], @stock_data.raw_data[index-1]) index += 1 end trs end # Takes today's data and yesterday's data and computes the true range. def true_range(today, yesterday) [ today[SignalTools::StockData::Indexes[:high]] - today[SignalTools::StockData::Indexes[:low]], (yesterday[SignalTools::StockData::Indexes[:close]] - today[SignalTools::StockData::Indexes[:high]]).abs, (yesterday[SignalTools::StockData::Indexes[:close]] - today[SignalTools::StockData::Indexes[:low]]).abs ].max end # Takes yesterday's average true range, today's true range, and the smoothing # period and calculates the day's average true range. def calculate_average_true_range(yesterday_atr, today_tr, period) (yesterday_atr * (period - 1) + today_tr) / period end #### Average Directional Index Methods def average_directional_indexes(period) dxs = directional_indexes(plus_directional_index(period), minus_directional_index(period)) adxs = ema_points(period, dxs, :wilder) adxs end def directional_indexes(plus_dis, minus_dis) SignalTools.truncate_to_shortest!(plus_dis, minus_dis) differences, sums = [], [] index = 0 while index < plus_dis.size differences << (plus_dis[index] - minus_dis[index]).abs sums << (plus_dis[index] + minus_dis[index]) index += 1 end quotients(differences, sums) end def plus_directional_index(period) plus_dms = plus_directional_movement(@stock_data.raw_data) plus_dm_sums = period_sum_ema(period, plus_dms) true_range_sums = period_sum_ema(period, true_ranges) quotients(plus_dm_sums, true_range_sums) end def minus_directional_index(period) minus_dms = minus_directional_movement(@stock_data.raw_data) minus_dm_sums = period_sum_ema(period, minus_dms) true_range_sums = period_sum_ema(period, true_ranges) quotients(minus_dm_sums, true_range_sums) end def quotients(first, second) SignalTools.truncate_to_shortest!(first, second) index = 0 quots = [] while index < first.size quots << first[index] / second[index] index += 1 end quots end def plus_directional_movement(data) plus_dm = [] data.each_cons(2) do |two_days| um = up_move(two_days.last, two_days.first) dm = down_move(two_days.last, two_days.first) plus_dm << ((um > dm) ? um : 0) end plus_dm end def minus_directional_movement(data) minus_dm = [] data.each_cons(2) do |two_days| um = up_move(two_days.last, two_days.first) dm = down_move(two_days.last, two_days.first) minus_dm << ((dm > um) ? dm : 0) end minus_dm end #TODO: Pass in only the high prices to this method # Up move is today_high - yesterday_high def up_move(today, yesterday) diff = today[SignalTools::StockData::Indexes[:high]] - yesterday[SignalTools::StockData::Indexes[:high]] diff > 0 ? diff : 0 end #TODO: Pass in only the low prices to this method # Down move is yesterday_low - today_low def down_move(today, yesterday) diff = yesterday[SignalTools::StockData::Indexes[:low]] - today[SignalTools::StockData::Indexes[:low]] diff > 0 ? diff : 0 end #### Misc Utility Methods # Returns only the points specific to the date range given. def trim_data_to_range!(data) if data.is_a? Array data.slice!(0..(-dates.size-1)) elsif data.is_a? Hash data.each { |k,v| v = v.slice!(0..(-dates.size-1)) } end data end def trim_data_to_range(data) data.slice((-dates.size+1)..-1) end # Gets the first 0...period of numbers from data and returns a simple average. def default_simple_average(data, period) SignalTools.average(data.slice(0...period)) end #Runs method for the given slice of the array. def get_for_period(points, start, finish, method) case method when :average SignalTools.average(points.slice(start..finish)) else (points.slice(start..finish)).send(method) end end #Returns a collection of values by iterating over an array, slicing it period # elements at a time and calling method for each slice. def collection_for_array(points, period, method) raise unless points.size >= period collection = [] index = 0 while((index + period - 1) < points.size) collection << get_for_period(points, index, (index + period - 1), method) index += 1 end collection end end end