module ChunkyPNG # The Color module defines methods for handling colors. Within the ChunkyPNG # library, the concepts of pixels and colors are both used, and they are # both represented by a Integer. # # Pixels/colors are represented in RGBA componetns. Each of the four # components is stored with a depth of 8 bits (maximum value = 255 = # {ChunkyPNG::Color::MAX}). Together, these components are stored in a 4-byte # Integer. # # A color will always be represented using these 4 components in memory. # When the image is encoded, a more suitable representation can be used # (e.g. rgb, grayscale, palette-based), for which several conversion methods # are provided in this module. module Color extend self # The maximum value of each color component. MAX = 0xff #################################################################### # CONSTRUCTING COLOR VALUES #################################################################### # Creates a new color using an r, g, b triple and an alpha value. # @return [Integer] The newly constructed color value. def rgba(r, g, b, a) r << 24 | g << 16 | b << 8 | a end # Creates a new color using an r, g, b triple. # @return [Integer] The newly constructed color value. def rgb(r, g, b) r << 24 | g << 16 | b << 8 | 0xff end # Creates a new color using a grayscale teint. # @return [ChunkyPNG::Color] The newly constructed color value. def grayscale(teint) teint << 24 | teint << 16 | teint << 8 | 0xff end # Creates a new color using a grayscale teint and alpha value. # @return [Integer] The newly constructed color value. def grayscale_alpha(teint, a) teint << 24 | teint << 16 | teint << 8 | a end #################################################################### # COLOR IMPORTING #################################################################### # Creates a color by unpacking an rgb triple from a string. # # @param [String] stream The string to load the color from. It should be # at least 3 + pos bytes long. # @param [Integer] pos The position in the string to load the triple from. # @return [Integer] The newly constructed color value. def from_rgb_stream(stream, pos = 0) rgb(*stream.unpack("@#{pos}C3")) end # Creates a color by unpacking an rgba triple from a string # # @param [String] stream The string to load the color from. It should be # at least 4 + pos bytes long. # @param [Integer] pos The position in the string to load the triple from. # @return [Integer] The newly constructed color value. def from_rgba_stream(stream, pos = 0) rgba(*stream.unpack("@#{pos}C4")) end # Creates a color by converting it from a string in hex notation. # # It supports colors with (#rrggbbaa) or without (#rrggbb) alpha channel. # Color strings may include the prefix "0x" or "#". # # @param [String] str The color in hex notation. @return [Integer] The # converted color value. def from_hex(str) case str when /^(?:#|0x)?([0-9a-f]{6})$/i then ($1.hex << 8) | 0xff when /^(?:#|0x)?([0-9a-f]{8})$/i then $1.hex else raise ChunkyPNG::ExpectationFailed, "Not a valid hex color notation: #{str.inspect}!" end end #################################################################### # PROPERTIES #################################################################### # Returns the red-component from the color value. # # @param [Integer] value The color value. # @return [Integer] A value between 0 and MAX. def r(value) (value & 0xff000000) >> 24 end # Returns the green-component from the color value. # # @param [Integer] value The color value. # @return [Integer] A value between 0 and MAX. def g(value) (value & 0x00ff0000) >> 16 end # Returns the blue-component from the color value. # # @param [Integer] value The color value. # @return [Integer] A value between 0 and MAX. def b(value) (value & 0x0000ff00) >> 8 end # Returns the alpha channel value for the color value. # # @param [Integer] value The color value. # @return [Integer] A value between 0 and MAX. def a(value) value & 0x000000ff end # Returns true if this color is fully opaque. # # @param [Integer] value The color to test. # @return [true, false] True if the alpha channel equals MAX. def opaque?(value) a(value) == 0x000000ff end # Returns the opaque value of this color by removing the alpha channel. # @param [Integer] value The color to transform. # @return [Integer] The opauq color def opaque!(value) value | 0x000000ff end # Returns true if this color is fully transparent. # # @param [Integer] value The color to test. # @return [true, false] True if the r, g and b component are equal. def grayscale?(value) r(value) == b(value) && b(value) == g(value) end # Returns true if this color is fully transparent. # # @param [Integer] value The color to test. # @return [true, false] True if the alpha channel equals 0. def fully_transparent?(value) a(value) == 0x00000000 end #################################################################### # ALPHA COMPOSITION #################################################################### # Multiplies two fractions using integer math, where the fractions are stored using an # integer between 0 and 255. This method is used as a helper method for compositing # colors using integer math. # # This is a quicker implementation of ((a * b) / 255.0).round. # # @param [Integer] a The first fraction. # @param [Integer] b The second fraction. # @return [Integer] The result of the multiplication. def int8_mult(a, b) t = a * b + 0x80 ((t >> 8) + t) >> 8 end # Composes two colors with an alpha channel using integer math. # # This version is faster than the version based on floating point math, so this # compositing function is used by default. # # @param [Integer] fg The foreground color. # @param [Integer] bg The foreground color. # @return [Integer] The composited color. # @see ChunkyPNG::Color#compose_precise def compose_quick(fg, bg) return fg if opaque?(fg) || fully_transparent?(bg) return bg if fully_transparent?(fg) a_com = int8_mult(0xff - a(fg), a(bg)) new_r = int8_mult(a(fg), r(fg)) + int8_mult(a_com, r(bg)) new_g = int8_mult(a(fg), g(fg)) + int8_mult(a_com, g(bg)) new_b = int8_mult(a(fg), b(fg)) + int8_mult(a_com, b(bg)) new_a = a(fg) + a_com rgba(new_r, new_g, new_b, new_a) end # Composes two colors with an alpha channel using floating point math. # # This method uses more precise floating point math, but this precision is lost # when the result is converted back to an integer. Because it is slower than # the version based on integer math, that version is preferred. # # @param [Integer] fg The foreground color. # @param [Integer] bg The foreground color. # @return [Integer] The composited color. # @see ChunkyPNG::Color#compose_quick def compose_precise(fg, bg) return fg if opaque?(fg) || fully_transparent?(bg) return bg if fully_transparent?(fg) fg_a = a(fg).to_f / MAX bg_a = a(bg).to_f / MAX a_com = (1.0 - fg_a) * bg_a new_r = (fg_a * r(fg) + a_com * r(bg)).round new_g = (fg_a * g(fg) + a_com * g(bg)).round new_b = (fg_a * b(fg) + a_com * b(bg)).round new_a = ((fg_a + a_com) * MAX).round rgba(new_r, new_g, new_b, new_a) end alias :compose :compose_quick # Blends the foreground and background color by taking the average of # the components. # # @param [Integer] fg The foreground color. # @param [Integer] bg The foreground color. # @return [Integer] The blended color. def blend(fg, bg) (fg + bg) >> 1 end # Lowers the intensity of a color, by lowering its alpha by a given factor. # @param [Integer] color The color to adjust. # @param [Integer] factor Fade factor as an integer between 0 and 255. # @return [Integer] The faded color. def fade(color, factor) new_alpha = int8_mult(a(color), factor) (color & 0xffffff00) | new_alpha end # Decomposes a color, given a color, a mask color and a background color. # The returned color will be a variant of the mask color, with the alpha # channel set to the best fitting value. This basically is the reverse # operation if alpha composition. # # If the color cannot be decomposed, this method will return the fully # transparentvariant of the mask color. # # @param [Integer] color The color that was the result of compositing. # @param [Integer] mask The opaque variant of the color that was being composed # @param [Integer] bg The background color on which the color was composed. # @param [Integer] tolerance The decomposition tolerance level, a value between 0 and 255. # @return [Integer] The decomposed color,a variant of the masked color with the # alpha channel set to an appropriate value. def decompose_color(color, mask, bg, tolerance = 1) if alpha_decomposable?(color, mask, bg, tolerance) mask & 0xffffff00 | decompose_alpha(color, mask, bg) else mask & 0xffffff00 end end # Checks whether an alpha channel value can successfully be composed # given the resulting color, the mask color and a background color, # all of which should be opaque. # # @param [Integer] color The color that was the result of compositing. # @param [Integer] mask The opauqe variant of the color that was being composed # @param [Integer] bg The background color on which the color was composed. # @param [Integer] tolerance The decomposition tolerance level, a value between 0 and 255. # @return [Integer] The decomposed alpha channel value, between 0 and 255. # @see #decompose_alpha def alpha_decomposable?(color, mask, bg, tolerance = 1) components = decompose_alpha_components(color, mask, bg) sum = components.inject(0) { |a,b| a + b } max = components.max * 3 return components.max <= 255 && components.min >= 0 && (sum + tolerance * 3) >= max end # Decomposes the alpha channel value given the resulting color, the mask color # and a background color, all of which should be opaque. # # Make sure to call {#alpha_decomposable?} first to see if the alpha channel # value can successfully decomposed with a given tolerance, otherwise the return # value of this method is undefined. # # @param [Integer] color The color that was the result of compositing. # @param [Integer] mask The opauqe variant of the color that was being composed # @param [Integer] bg The background color on which the color was composed. # @return [Integer] The best fitting alpha channel, a value between 0 and 255. # @see #alpha_decomposable? def decompose_alpha(color, mask, bg) components = decompose_alpha_components(color, mask, bg) (components.inject(0) { |a,b| a + b } / 3.0).round end # Decomposes an alpha channel for either the r, g or b color channel. # @param [:r, :g, :b] The channel to decompose the alpha channel from. # @param [Integer] color The color that was the result of compositing. # @param [Integer] mask The opauqe variant of the color that was being composed # @param [Integer] bg The background color on which the color was composed. # @param [Integer] The decomposed alpha value for the channel. def decompose_alpha_component(channel, color, mask, bg) ((send(channel, bg) - send(channel, color)).to_f / (send(channel, bg) - send(channel, mask)).to_f * MAX).round end # Decomposes the alpha channels for the r, g and b color channel. # @param [Integer] color The color that was the result of compositing. # @param [Integer] mask The opauqe variant of the color that was being composed # @param [Integer] bg The background color on which the color was composed. # @return [Array] The decomposed alpha values for the r, g and b channels. def decompose_alpha_components(color, mask, bg) [ decompose_alpha_component(:r, color, mask, bg), decompose_alpha_component(:g, color, mask, bg), decompose_alpha_component(:b, color, mask, bg) ] end #################################################################### # CONVERSIONS #################################################################### # Returns a string representing this color using hex notation (i.e. #rrggbbaa). # # @param [Integer] value The color to convert. # @return [String] The color in hex notation, starting with a pound sign. def to_hex(color, include_alpha = true) include_alpha ? ('#%08x' % color) : ('#%06x' % [color >> 8]) end # Returns an array with the separate RGBA values for this color. # # @param [Integer] color The color to convert. # @return [Array] An array with 4 Integer elements. def to_truecolor_alpha_bytes(color) [r(color), g(color), b(color), a(color)] end # Returns an array with the separate RGB values for this color. # The alpha channel will be discarded. # # @param [Integer] color The color to convert. # @return [Array] An array with 3 Integer elements. def to_truecolor_bytes(color) [r(color), g(color), b(color)] end # Returns an array with the grayscale teint value for this color. # # This method expects the r,g and b value to be equal, and the alpha # channel will be discarded. # # @param [Integer] color The grayscale color to convert. # @return [Array] An array with 1 Integer element. def to_grayscale_bytes(color) [b(color)] # assumption r == g == b end # Returns an array with the grayscale teint and alpha channel values # for this color. # # This method expects the r,g and b value to be equal. # # @param [Integer] color The grayscale color to convert. # @return [Array] An array with 2 Integer elements. def to_grayscale_alpha_bytes(color) [b(color), a(color)] # assumption r == g == b end #################################################################### # COLOR CONSTANTS #################################################################### # Black pixel/color BLACK = rgb( 0, 0, 0) # White pixel/color WHITE = rgb(255, 255, 255) # Fully transparent pixel/color TRANSPARENT = rgba(0, 0, 0, 0) #################################################################### # STATIC UTILITY METHODS #################################################################### # Returns the size in bytes of a pixel when it is stored using a given color mode. # @param [Integer] color_mode The color mode in which the pixels are stored. # @return [Integer] The number of bytes used per pixel in a datastream. def bytesize(color_mode) case color_mode when ChunkyPNG::COLOR_INDEXED then 1 when ChunkyPNG::COLOR_TRUECOLOR then 3 when ChunkyPNG::COLOR_TRUECOLOR_ALPHA then 4 when ChunkyPNG::COLOR_GRAYSCALE then 1 when ChunkyPNG::COLOR_GRAYSCALE_ALPHA then 2 else raise ChunkyPNG::NotSupported, "Don't know the bytesize of pixels in this colormode: #{color_mode}!" end end end end