require 'statsample/formula/formula' module Statsample # Class for performing regression class FitModel def initialize(formula, df, opts = {}) @formula = FormulaWrapper.new formula, df @df = df @opts = opts end def model @model || fit_model end def predict(new_data) model.predict(df_for_prediction(new_data)) end def df_for_prediction df canonicalize_df(df) end def df_for_regression df = canonicalize_df(@df) df[@formula.y.value] = @df[@formula.y.value] df end def canonicalize_df(orig_df) tokens = @formula.canonical_tokens tokens.shift if tokens.first.value == '1' df = tokens.map { |t| t.to_df orig_df }.reduce(&:merge) df end def fit_model # TODO: Add support for inclusion/exclusion of intercept @model = Statsample::Regression.multiple( df_for_regression, @formula.y.value, @opts ) end end end