module IntelliAgent::OpenAI BASIC_MODEL = ENV.fetch('OPENAI_BASIC_MODEL', 'gpt-4o-mini') ADVANCED_MODEL = ENV.fetch('OPENAI_ADVANCED_MODEL', 'gpt-4o-2024-08-06') MAX_TOKENS = ENV.fetch('OPENAI_MAX_TOKENS', 16_383).to_i module ResponseExtender def content dig('choices', 0, 'message', 'content') end def message dig('choices', 0, 'message') end def content? !content.nil? end def tool_calls dig('choices', 0, 'message', 'tool_calls') end def tool_calls? !tool_calls.nil? end def functions return if tool_calls.nil? functions = tool_calls.filter { |tool| tool['type'].eql? 'function' } return if functions.empty? functions_list = [] functions.map.with_index do |function, function_index| function_def = tool_calls.dig(function_index, 'function') functions_list << { id: function['id'], name: function_def['name'], arguments: Oj.load(function_def['arguments'], symbol_keys: true) } end functions_list end def functions? !functions.nil? end end def self.embed(input, model: 'text-embedding-3-large') response = OpenAI::Client.new.embeddings(parameters: { input:, model: }) def response.embedding = dig('data', 0, 'embedding') response end def self.vision(prompt:, image_url:, model: :advanced, response_format: nil, max_tokens: MAX_TOKENS) model = select_model(model) messages = [{ type: :text, text: prompt }, { type: :image_url, image_url: { url: image_url } }] parameters = { model: model, messages: [{ role: :user, content: messages }], max_tokens: } parameters[:response_format] = { type: 'json_object' } if response_format.eql?(:json) response = OpenAI::Client.new.chat(parameters:) def response.content = dig('choices', 0, 'message', 'content').strip response end def self.single_prompt(prompt:, model: :basic, response_format: nil, max_tokens: MAX_TOKENS, tools: nil, function_run_context: self) chat(messages: [{ user: prompt }], model:, response_format:, max_tokens:, tools:, function_run_context:) end def self.single_chat(system:, user:, model: :basic, response_format: nil, max_tokens: MAX_TOKENS, tools: nil, function_run_context: self) chat(messages: [{ system: }, { user: }], model:, response_format:, max_tokens:, tools:, function_run_context:) end def self.chat(messages:, model: :basic, response_format: nil, max_tokens: MAX_TOKENS, tools: nil, function_run_context: self) model = select_model(model) messages = parse_messages(messages) parameters = { model:, messages:, max_tokens: } parameters[:response_format] = { type: 'json_object' } if response_format.eql?(:json) parameters[:tools] = tools if tools response = OpenAI::Client.new.chat(parameters:) response.extend(ResponseExtender) if response.functions? parameters[:messages] << response.message response.functions.each do |function| parameters[:messages] << { tool_call_id: function[:id], role: :tool, name: function[:name], content: parameters[:function_run_context].send(function[:name], **function[:arguments]) } end response = OpenAI::Client.new.chat(parameters:) response.extend(ResponseExtender) end response end def self.models = OpenAI::Client.new.models.list def self.select_model(model) case model when :basic BASIC_MODEL when :advanced ADVANCED_MODEL else model end end def self.parse_messages(messages) case messages in [{ role: String, content: String }, *] messages else messages.map do |msg| role, content = msg.first { role: role.to_s, content: content } end end end end