Sha256: b0e12c725cc9f62d073c69ee0c739157b4f37186bc14b7127e8e45e1d348d1b7
Contents?: true
Size: 1.34 KB
Versions: 8
Compression:
Stored size: 1.34 KB
Contents
module Rumale module SVM class LogisticRegression include Base::BaseEstimator include Base::Classifier attr_reader weight_vec: Numo::DFloat attr_reader bias_term: Numo::DFloat def initialize: (?penalty: String penalty, ?dual: bool dual, ?reg_param: Float reg_param, ?fit_bias: bool fit_bias, ?bias_scale: Float bias_scale, ?tol: Float tol, ?verbose: bool verbose, ?random_seed: untyped? random_seed) -> void def fit: (Numo::DFloat x, Numo::Int32 y) -> LogisticRegression def decision_function: (Numo::DFloat x) -> Numo::DFloat def predict: (Numo::DFloat x) -> Numo::Int32 def predict_proba: (Numo::DFloat x) -> Numo::DFloat def marshal_dump: () -> { params: Hash[Symbol, untyped], model: untyped, weight_vec: Numo::DFloat, bias_term: Numo::DFloat } def marshal_load: (untyped obj) -> void private def expand_feature: (Numo::DFloat x) -> Numo::DFloat def weight_and_bias: (Numo::DFloat base_weight) -> [Numo::DFloat, Numo::DFloat] def liblinear_params: () -> untyped def solver_type: () -> Integer def binary_class?: () -> bool def fit_bias?: () -> bool def bias_scale: () -> Float def n_classes: () -> Integer def n_features: () -> Integer def trained?: () -> bool end end end
Version data entries
8 entries across 8 versions & 1 rubygems