# File ../../lib/numru/ganalysis/covariance.rb, line 60 def corelation(gphys0, gphys1, *dims) val0 = gphys0.val val1 = gphys1.val if val0.is_a?(NArrayMiss) mask = val0.get_mask else mask = NArray.byte(*(val0.shape)).fill!(1) end if val1.is_a?(NArrayMiss) mask2 = val1.get_mask else mask2 = NArray.byte(*(val1.shape)).fill!(1) end mask.mul!(mask2) val0 = NArrayMiss.to_nam(val0) unless val0.is_a?(NArrayMiss) val1 = NArrayMiss.to_nam(val1) unless val1.is_a?(NArrayMiss) val0 = val0.set_mask(mask) val1 = val1.set_mask(mask) p val0,val1 if $DEBUG gphys0 = gphys0.copy.replace_val(val0) gphys1 = gphys1.copy.replace_val(val1) covariance, ndiv = gphys0.covariance(gphys1,*dims) return covariance/(gphys0.stddev(*dims)*gphys1.stddev(*dims)), mask.to_type(NArray::LINT).sum(*dims) end
# File ../../lib/numru/ganalysis/covariance.rb, line 8 def covariance(gphys0, gphys1, *dims) unless GPhys===gphys0 && GPhys===gphys1 raise "gphys0 and gphys1 must be GPhys" end unless gphys0.shape == gphys1.shape raise "gphys0 and gphys1 must have the same shape" end units = gphys0.units*gphys1.units if dims.length == 0 dims = Array.new gphys0.rank.times{|i| dims.push i } else dims = dims.map{|dim| gphys0.dim_index(dim) } end val0 = gphys0.val val1 = gphys1.val if val0.is_a?(NArrayMiss) if val1.is_a?(NArrayMiss) mask = val0.get_mask * val1.get_mask ndiv = mask.to_type(NArray::LINT).accum(*dims) val0 = val0.set_mask(mask) val1 = val1.set_mask(mask) else ndiv = val0.get_mask.to_type(NArray::LINT).accum(*dims) val1 = NArrayMiss.to_nam(val1,val0.get_mask) end elsif val1.is_a?(NArrayMiss) ndiv = val1.get_mask.to_type(NArray::LINT).accum(*dims) val0 = NArrayMiss.to_nam(val0,val1.get_mask) else ndiv = 1 gphys0.shape.each_with_index{|s,i| ndiv *= s if dims.include?(i) } end val0 -= val0.accum(*dims).div!(ndiv) val1 -= val1.accum(*dims).div!(ndiv) nary = val0.mul_add(val1,*dims) if Float === nary ndiv = ndiv[0] if ndiv.is_a?(NArray) nary /= (ndiv-1) return UNumeric.new(nary, units), ndiv else nary.div!(ndiv-1) vary = VArray.new(nary, {"long_name"=>"covariance","units"=>units.to_s}, "covariance") new_grid = gphys0.grid.delete_axes(dims, "covariance").copy return GPhys.new(new_grid,vary), ndiv end end
Calculate EOF vectors and contribution rate
NumRu::GAnalysis.eof(gphys, dim0[, dim1, ..., dimN[, opts]]) => [eof, rate]
gphys |
GPhys object to be calculated its EOF |
dim0, ..., dimN |
dimension name (String) or number (Ingeter) to calculate variance or covariance, and those dimensions are not contained in the result EOF vectors. |
opts |
a Hash object whose key is String or Symbol. The following options are available: |
* nmodes: Integer, number of EOF modes to be calculate (default all EOF modes) * weight: GPhys or NArray, weight vector +gphys+ is multiplied by the weight vector before calculation of variance covariance matrix and the result eigen vectors are divided by the vector. If weight vector is not set, it is cosine of latitude when the first two axes of the +gphys+ are "lon" and "lat" and +disable_weight+ option is not +true+, else 1. * disable_weight: See weight option.
eof |
GPhys object for array of EOF vectors. |
rate |
GPhys object for array of contribution rate correspoinding to the EOF vectors. |
# File ../../lib/numru/ganalysis/eof.rb, line 51 def eof(gphys, *args) unless defined?(@@EOF_engin) raise "SSL2 (Ruby-SSL2) or LAPACK (Ruby-LAPACK) or GSL (Ruby/GSL) must have been installed. (SSL2 or LAPACK is recommended for large computation)" end if Hash === args[-1] dims = args[0..-2] opts = args[-1] else dims = args opts = Hash.new end dims = dims.map{|dim| gphys.dim_index(dim) } n = 1 n_lost = 1 dims1 = Array.new shape1 = Array.new gphys.shape.each_with_index{|s,i| if dims.include?(i) n_lost *= s else n *= s dims1.push i shape1.push s end } new_grid = gphys.instance_variable_get("@grid").delete_axes(dims, "covariance matrix").copy new_index = NArray.sint(*new_grid.shape).indgen index = NArray.object(gphys.rank) index[dims] = true if w = (opts[:weight] || opts["weight"]) if GPhys === w w = w.val end unless NArray === w raise "weight must be NArray of GPhys" end unless w.shape == new_grid.shape raise "shape of weight is invalid" end w /= w.mean w.reshape!(n) else if !(opts[:disable_weight]||opts["disable_weight"]) && /^lon/ =~ new_grid.coord(0).name && /^lat/ =~ new_grid.coord(1).name rad = NumRu::Units.new("radian") nlon = new_grid.coord(0).length lat = new_grid.coord(1).convert_units(rad).val w = NArray.new(lat.typecode,nlon).fill!(1) * NMath::cos(lat).reshape(1,lat.length) w /= w.mean w.reshape!(n) else w = nil end end ary = NArrayMiss.new(gphys.typecode, n_lost, n) ind_rank = dims1.length ind = Array.new(ind_rank,0) n.times{|n1| index[dims1] = ind val = gphys[*index].val val.reshape!(n_lost) val -= val.mean ary[true,n1] = val break if n1==n-1 ind[0] += 1 ind_rank.times{|i| if ind[i] == shape1[i] ind[i] = 0 ind[i+1] += 1 else break end } } ary.mul!(w.reshape(1,n)) if w nmodes = opts[:nmodes] || opts["nmodes"] || n case @@EOF_engin when "ssl2" print "start calc covariance matrix\n" if $DEBUG nary = NArray.new(gphys.typecode,n*(n+1)/2) nn = 0 total_var = 0 n.times{|n0| for n1 in n0...n nary[nn] = ary[n0].mul_add(ary[n1],0)/(n_lost-1) if n1==n0 total_var += nary[nn] end nn += 1 end } ary = nil # for GC print "start calc eigen vector\n" if $DEBUG val, vec = SSL2.seig2(nary,nmodes) when "lapack" print "start calc covariance matrix\n" if $DEBUG nary = NArray.new(gphys.typecode,n,n) total_var = 0.0 n.times{|n0| nary[n0...n,n0] = (ary[true,n0...n].mul_add(ary[true,n0],0)/(n_lost-1)).get_array! total_var += nary[n0,n0] } ary = nil # for GC print "start calc eigen vector\n" if $DEBUG case nary.typecode when NArray::DFLOAT m, val, vec, isuppz, work, iwork, info, = NumRu::Lapack.dsyevr("V", "I", "L", nary, 0, 0, n-nmodes+1, n, 0.0, -1, -1) m, val, vec, = NumRu::Lapack.dsyevr("V", "I", "L", nary, 0, 0, n-nmodes+1, n, 0.0, work[0], iwork[0]) when NArray::SFLOAT m, val, vec, isuppz, work, iwork, info, = NumRu::Lapack.ssyevr("V", "I", "L", nary, 0, 0, n-nmodes+1, n, 0.0, -1, -1) m, val, vec, = NumRu::Lapack.ssyevr("V", "I", "L", nary, 0, 0, n-nmodes+1, n, 0.0, work[0], iwork[0]) end val = val[-1..0] vec = vec[true,-1..0] when "gsl" print "start calc covariance matrix\n" if $DEBUG nary = NArray.new(gphys.typecode,n,n) n.times{|n0| nary[n0...n,n0] = (ary[true,n0...n].mul_add(ary[true,n0],0)/(n_lost-1)).get_array! nary[n0,n0...n] = nary[n0...n,n0] } ary = nil # for GC print "start calc eigen vector\n" if $DEBUG val, vec = GSL::Eigen::symmv(nary.to_gm) GSL::Eigen.symmv_sort(val, vec, GSL::Eigen::SORT_VAL_DESC) vec = vec.to_na[0...nmodes,true].transpose(1,0) val = val.to_na total_var = val.sum val = val[0...nmodes] end axes = new_grid.instance_variable_get('@axes') axis_order = Axis.new axis_order.pos = VArray.new(NArray.sint(nmodes).indgen(1), {}, "mode") axes << axis_order new_grid = Grid.new(*axes) vec /= w if w vec.reshape!(*new_grid.shape) vec *= NMath::sqrt( val.reshape( *([1]*(axes.length-1)+[nmodes]) ) ) va_eof = VArray.new(vec, {"long_name"=>"EOF vector","units"=>gphys.units.to_s }, "EOF") eof = GPhys.new(new_grid, va_eof) va_rate = VArray.new(val.div!(total_var), {"long_name"=>"EOF contribution rate", "units"=>"1" }, "rate") rate = GPhys.new(Grid.new(axis_order), va_rate) return [eof, rate] end
# File ../../lib/numru/ganalysis/eof.rb, line 209 def eof2(gphys1, gphys2, *args) if Hash === args[-1] opts = args[-1] else opts = Hash.new end raise ArgumentError, "The 1st arg must be a GPhys of rank 1: arg1 = #{gphys1.inspect}" unless gphys1.rank==1 raise ArgumentError, "The 2nd arg must be a GPhys of rank 1: arg2 = #{gphys2.inspect}" unless gphys2.rank==1 raise ArgumentError, "The 1st and 2nd args must have the same length: #{gphys1.length}!=#{gphys2.length}" unless gphys2.rank==1 nam = NArrayMiss.new(gphys1.typecode, 2, gphys1.length) nam[0,true] = gphys1.val nam[1,true] = gphys2.val gphys = GPhys.new(Grid.new(Axis.new.set_pos(VArray.new(NArray[0,1],{},"var")), gphys1.axis(0)), VArray.new(nam,gphys1.data.attr_copy,gphys1.name)) eof(gphys, 1, opts) end
# File ../../lib/numru/ganalysis/histogram.rb, line 15 def histogram(gphys0,opts=Hash.new) unless HistogramGSL raise "gsl is necessary to use this method" end unless GPhys === gphys0 raise "gphys0 (1st arg) must be GPhys" end unless Hash === opts raise "opts (2nd arg) must be Hash" end if opts["bins"] bins = opts["bins"] unless (bins.is_a?(NArray) || bins.is_a?(Array)) raise(TypeError, "option 'bins' must be Array or NArray") end bins = bins.to_gslv if bins.is_a?(NArray) hist = GSL::Histogram.alloc(bins) else nbins = opts["nbins"] || gphys0.total/500 nbins = 10 if nbins < 10 min = opts["min"] || gphys0.min.val max = opts["max"] || gphys0.max.val if log_bins = (opts["log_bins"] && (min > 0)) min = Math.log10(min) max = Math.log10(max) end hist = GSL::Histogram.alloc(nbins,[min,max]) end val = gphys0.val val = val.get_array![val.get_mask!] if NArrayMiss === val val = NMath.log10(val) if log_bins hist.increment(val) bounds = hist.range.to_na bounds = 10 ** bounds if log_bins center = (bounds[0..-2]+bounds[1..-1])/2 cell_width = (bounds[1..-1] - bounds[0..-2]) / 2 name = gphys0.name attr = gphys0.data.attr_copy bounds = VArray.new(bounds, attr, name) center = VArray.new(center, attr, name) axis = Axis.new(true) axis.set_cell(center, bounds, name) axis.set_pos_to_center bin = hist.bin.to_na bin /= cell_width if opts["log_bins"] bin = VArray.new(bin, {"long_name" => (log_bins ? "number per unit bin width" : "number in bins"), "units"=>"1"}, "bin") new_gphys = GPhys.new(Grid.new(axis), bin) new_gphys.set_att("mean",[hist.mean]) new_gphys.set_att("standard_deviation",[hist.sigma]) return new_gphys end
# File ../../lib/numru/ganalysis/histogram.rb, line 72 def histogram2D(gphys0, gphys1, opts=Hash.new) unless HistogramGSL raise "gsl is necessary to use this method" end unless GPhys === gphys0 raise "gphys0 (1st arg) must be GPhys" end unless GPhys === gphys1 raise "gphys1 (2nd arg) must be GPhys" end unless Hash === opts raise "opts (3nd arg) must be Hash" end nbins0 = opts["nbins0"] || gphys0.total/500 nbins0 = 10 if nbins0 < 10 nbins1 = opts["nbins1"] || gphys1.total/500 nbins1 = 10 if nbins1 < 10 min0 = opts["min0"] || gphys0.min.val max0 = opts["max0"] || gphys0.max.val min1 = opts["min1"] || gphys1.min.val max1 = opts["max1"] || gphys1.max.val hist = GSL::Histogram2d.alloc(nbins0,[min0,max0],nbins1,[min1,max1]) val0 = gphys0.val val1 = gphys1.val mask = nil if NArrayMiss === val0 mask = val0.get_mask! val0 = val0.get_array! end if NArrayMiss === val1 if mask mask = mask & val1.get_mask! else mask = val1.get_mask! end val1 = val1.get_array! end if mask val0 = val0[mask] val1 = val1[mask] end hist.increment(val0.to_gslv, val1.to_gslv) bounds0 = hist.xrange.to_na center0 = (bounds0[0..-2]+bounds0[1..-1])/2 name = gphys0.name attr = gphys0.data.attr_copy bounds0 = VArray.new(bounds0, attr, name) center0 = VArray.new(center0, attr, name) axis0 = Axis.new(true) axis0.set_cell(center0, bounds0, name) axis0.set_pos_to_center bounds1 = hist.yrange.to_na center1 = (bounds1[0..-2]+bounds1[1..-1])/2 name = gphys1.name attr = gphys1.data.attr_copy bounds1 = VArray.new(bounds1, attr, name) center1 = VArray.new(center1, attr, name) axis1 = Axis.new(true) axis1.set_cell(center1, bounds1, name) axis1.set_pos_to_center bin = hist.bin.to_na.reshape!(nbins1,nbins0).transpose(1,0) bin = VArray.new(bin, {"long_name"=>"number in bins", "units"=>"1"}, "bin") new_gphys = GPhys.new(Grid.new(axis0,axis1), bin) new_gphys.set_att("mean0",[hist.xmean]) new_gphys.set_att("standard_deviation0",[hist.xsigma]) new_gphys.set_att("mean1",[hist.ymean]) new_gphys.set_att("standard_deviation1",[hist.ysigma]) new_gphys.set_att("covariance",[hist.cov]) return new_gphys end
Generated with the Darkfish Rdoc Generator 2.