**DO NOT READ THIS FILE ON GITHUB, GUIDES ARE PUBLISHED ON http://guides.rubyonquails.org.** Getting Started with Engines ============================ In this guide you will learn about engines and how they can be used to provide additional functionality to their host applications through a clean and very easy-to-use interface. After reading this guide, you will know: * What makes an engine. * How to generate an engine. * How to build features for the engine. * How to hook the engine into an application. * How to override engine functionality in the application. * Avoid loading Quails frameworks with Load and Configuration Hooks -------------------------------------------------------------------------------- What are engines? ----------------- Engines can be considered miniature applications that provide functionality to their host applications. A Quails application is actually just a "supercharged" engine, with the `Quails::Application` class inheriting a lot of its behavior from `Quails::Engine`. Therefore, engines and applications can be thought of as almost the same thing, just with subtle differences, as you'll see throughout this guide. Engines and applications also share a common structure. Engines are also closely related to plugins. The two share a common `lib` directory structure, and are both generated using the `quails plugin new` generator. The difference is that an engine is considered a "full plugin" by Quails (as indicated by the `--full` option that's passed to the generator command). We'll actually be using the `--mountable` option here, which includes all the features of `--full`, and then some. This guide will refer to these "full plugins" simply as "engines" throughout. An engine **can** be a plugin, and a plugin **can** be an engine. The engine that will be created in this guide will be called "blorgh". This engine will provide blogging functionality to its host applications, allowing for new articles and comments to be created. At the beginning of this guide, you will be working solely within the engine itself, but in later sections you'll see how to hook it into an application. Engines can also be isolated from their host applications. This means that an application is able to have a path provided by a routing helper such as `articles_path` and use an engine that also provides a path also called `articles_path`, and the two would not clash. Along with this, controllers, models and table names are also namespaced. You'll see how to do this later in this guide. It's important to keep in mind at all times that the application should **always** take precedence over its engines. An application is the object that has final say in what goes on in its environment. The engine should only be enhancing it, rather than changing it drastically. To see demonstrations of other engines, check out [Devise](https://github.com/plataformatec/devise), an engine that provides authentication for its parent applications, or [Thredded](https://github.com/thredded/thredded), an engine that provides forum functionality. There's also [Spree](https://github.com/spree/spree) which provides an e-commerce platform, and [RefineryCMS](https://github.com/refinery/refinerycms), a CMS engine. Finally, engines would not have been possible without the work of James Adam, Piotr Sarnacki, the Quails Core Team, and a number of other people. If you ever meet them, don't forget to say thanks! Generating an engine -------------------- To generate an engine, you will need to run the plugin generator and pass it options as appropriate to the need. For the "blorgh" example, you will need to create a "mountable" engine, running this command in a terminal: ```bash $ quails plugin new blorgh --mountable ``` The full list of options for the plugin generator may be seen by typing: ```bash $ quails plugin --help ``` The `--mountable` option tells the generator that you want to create a "mountable" and namespace-isolated engine. This generator will provide the same skeleton structure as would the `--full` option. The `--full` option tells the generator that you want to create an engine, including a skeleton structure that provides the following: * An `app` directory tree * A `config/routes.rb` file: ```ruby Quails.application.routes.draw do end ``` * A file at `lib/blorgh/engine.rb`, which is identical in function to a standard Quails application's `config/application.rb` file: ```ruby module Blorgh class Engine < ::Quails::Engine end end ``` The `--mountable` option will add to the `--full` option: * Asset manifest files (`application.js` and `application.css`) * A namespaced `ApplicationController` stub * A namespaced `ApplicationHelper` stub * A layout view template for the engine * Namespace isolation to `config/routes.rb`: ```ruby Blorgh::Engine.routes.draw do end ``` * Namespace isolation to `lib/blorgh/engine.rb`: ```ruby module Blorgh class Engine < ::Quails::Engine isolate_namespace Blorgh end end ``` Additionally, the `--mountable` option tells the generator to mount the engine inside the dummy testing application located at `test/dummy` by adding the following to the dummy application's routes file at `test/dummy/config/routes.rb`: ```ruby mount Blorgh::Engine => "/blorgh" ``` ### Inside an Engine #### Critical Files At the root of this brand new engine's directory lives a `blorgh.gemspec` file. When you include the engine into an application later on, you will do so with this line in the Quails application's `Gemfile`: ```ruby gem 'blorgh', path: 'engines/blorgh' ``` Don't forget to run `bundle install` as usual. By specifying it as a gem within the `Gemfile`, Bundler will load it as such, parsing this `blorgh.gemspec` file and requiring a file within the `lib` directory called `lib/blorgh.rb`. This file requires the `blorgh/engine.rb` file (located at `lib/blorgh/engine.rb`) and defines a base module called `Blorgh`. ```ruby require "blorgh/engine" module Blorgh end ``` TIP: Some engines choose to use this file to put global configuration options for their engine. It's a relatively good idea, so if you want to offer configuration options, the file where your engine's `module` is defined is perfect for that. Place the methods inside the module and you'll be good to go. Within `lib/blorgh/engine.rb` is the base class for the engine: ```ruby module Blorgh class Engine < ::Quails::Engine isolate_namespace Blorgh end end ``` By inheriting from the `Quails::Engine` class, this gem notifies Quails that there's an engine at the specified path, and will correctly mount the engine inside the application, performing tasks such as adding the `app` directory of the engine to the load path for models, mailers, controllers, and views. The `isolate_namespace` method here deserves special notice. This call is responsible for isolating the controllers, models, routes and other things into their own namespace, away from similar components inside the application. Without this, there is a possibility that the engine's components could "leak" into the application, causing unwanted disruption, or that important engine components could be overridden by similarly named things within the application. One of the examples of such conflicts is helpers. Without calling `isolate_namespace`, the engine's helpers would be included in an application's controllers. NOTE: It is **highly** recommended that the `isolate_namespace` line be left within the `Engine` class definition. Without it, classes generated in an engine **may** conflict with an application. What this isolation of the namespace means is that a model generated by a call to `bin/quails g model`, such as `bin/quails g model article`, won't be called `Article`, but instead be namespaced and called `Blorgh::Article`. In addition, the table for the model is namespaced, becoming `blorgh_articles`, rather than simply `articles`. Similar to the model namespacing, a controller called `ArticlesController` becomes `Blorgh::ArticlesController` and the views for that controller will not be at `app/views/articles`, but `app/views/blorgh/articles` instead. Mailers are namespaced as well. Finally, routes will also be isolated within the engine. This is one of the most important parts about namespacing, and is discussed later in the [Routes](#routes) section of this guide. #### `app` Directory Inside the `app` directory are the standard `assets`, `controllers`, `helpers`, `mailers`, `models` and `views` directories that you should be familiar with from an application. The `helpers`, `mailers` and `models` directories are empty, so they aren't described in this section. We'll look more into models in a future section, when we're writing the engine. Within the `app/assets` directory, there are the `images`, `javascripts` and `stylesheets` directories which, again, you should be familiar with due to their similarity to an application. One difference here, however, is that each directory contains a sub-directory with the engine name. Because this engine is going to be namespaced, its assets should be too. Within the `app/controllers` directory there is a `blorgh` directory that contains a file called `application_controller.rb`. This file will provide any common functionality for the controllers of the engine. The `blorgh` directory is where the other controllers for the engine will go. By placing them within this namespaced directory, you prevent them from possibly clashing with identically-named controllers within other engines or even within the application. NOTE: The `ApplicationController` class inside an engine is named just like a Quails application in order to make it easier for you to convert your applications into engines. NOTE: Because of the way that Ruby does constant lookup you may run into a situation where your engine controller is inheriting from the main application controller and not your engine's application controller. Ruby is able to resolve the `ApplicationController` constant, and therefore the autoloading mechanism is not triggered. See the section [When Constants Aren't Missed](autoloading_and_reloading_constants.html#when-constants-aren-t-missed) of the [Autoloading and Reloading Constants](autoloading_and_reloading_constants.html) guide for further details. The best way to prevent this from happening is to use `require_dependency` to ensure that the engine's application controller is loaded. For example: ``` ruby # app/controllers/blorgh/articles_controller.rb: require_dependency "blorgh/application_controller" module Blorgh class ArticlesController < ApplicationController ... end end ``` WARNING: Don't use `require` because it will break the automatic reloading of classes in the development environment - using `require_dependency` ensures that classes are loaded and unloaded in the correct manner. Lastly, the `app/views` directory contains a `layouts` folder, which contains a file at `blorgh/application.html.erb`. This file allows you to specify a layout for the engine. If this engine is to be used as a stand-alone engine, then you would add any customization to its layout in this file, rather than the application's `app/views/layouts/application.html.erb` file. If you don't want to force a layout on to users of the engine, then you can delete this file and reference a different layout in the controllers of your engine. #### `bin` Directory This directory contains one file, `bin/quails`, which enables you to use the `quails` sub-commands and generators just like you would within an application. This means that you will be able to generate new controllers and models for this engine very easily by running commands like this: ```bash $ bin/quails g model ``` Keep in mind, of course, that anything generated with these commands inside of an engine that has `isolate_namespace` in the `Engine` class will be namespaced. #### `test` Directory The `test` directory is where tests for the engine will go. To test the engine, there is a cut-down version of a Quails application embedded within it at `test/dummy`. This application will mount the engine in the `test/dummy/config/routes.rb` file: ```ruby Quails.application.routes.draw do mount Blorgh::Engine => "/blorgh" end ``` This line mounts the engine at the path `/blorgh`, which will make it accessible through the application only at that path. Inside the test directory there is the `test/integration` directory, where integration tests for the engine should be placed. Other directories can be created in the `test` directory as well. For example, you may wish to create a `test/models` directory for your model tests. Providing engine functionality ------------------------------ The engine that this guide covers provides submitting articles and commenting functionality and follows a similar thread to the [Getting Started Guide](getting_started.html), with some new twists. ### Generating an Article Resource The first thing to generate for a blog engine is the `Article` model and related controller. To quickly generate this, you can use the Quails scaffold generator. ```bash $ bin/quails generate scaffold article title:string text:text ``` This command will output this information: ``` invoke active_record create db/migrate/[timestamp]_create_blorgh_articles.rb create app/models/blorgh/article.rb invoke test_unit create test/models/blorgh/article_test.rb create test/fixtures/blorgh/articles.yml invoke resource_route route resources :articles invoke scaffold_controller create app/controllers/blorgh/articles_controller.rb invoke erb create app/views/blorgh/articles create app/views/blorgh/articles/index.html.erb create app/views/blorgh/articles/edit.html.erb create app/views/blorgh/articles/show.html.erb create app/views/blorgh/articles/new.html.erb create app/views/blorgh/articles/_form.html.erb invoke test_unit create test/controllers/blorgh/articles_controller_test.rb invoke helper create app/helpers/blorgh/articles_helper.rb invoke test_unit create test/application_system_test_case.rb create test/system/articles_test.rb invoke assets invoke js create app/assets/javascripts/blorgh/articles.js invoke css create app/assets/stylesheets/blorgh/articles.css invoke css create app/assets/stylesheets/scaffold.css ``` The first thing that the scaffold generator does is invoke the `active_record` generator, which generates a migration and a model for the resource. Note here, however, that the migration is called `create_blorgh_articles` rather than the usual `create_articles`. This is due to the `isolate_namespace` method called in the `Blorgh::Engine` class's definition. The model here is also namespaced, being placed at `app/models/blorgh/article.rb` rather than `app/models/article.rb` due to the `isolate_namespace` call within the `Engine` class. Next, the `test_unit` generator is invoked for this model, generating a model test at `test/models/blorgh/article_test.rb` (rather than `test/models/article_test.rb`) and a fixture at `test/fixtures/blorgh/articles.yml` (rather than `test/fixtures/articles.yml`). After that, a line for the resource is inserted into the `config/routes.rb` file for the engine. This line is simply `resources :articles`, turning the `config/routes.rb` file for the engine into this: ```ruby Blorgh::Engine.routes.draw do resources :articles end ``` Note here that the routes are drawn upon the `Blorgh::Engine` object rather than the `YourApp::Application` class. This is so that the engine routes are confined to the engine itself and can be mounted at a specific point as shown in the [test directory](#test-directory) section. It also causes the engine's routes to be isolated from those routes that are within the application. The [Routes](#routes) section of this guide describes it in detail. Next, the `scaffold_controller` generator is invoked, generating a controller called `Blorgh::ArticlesController` (at `app/controllers/blorgh/articles_controller.rb`) and its related views at `app/views/blorgh/articles`. This generator also generates a test for the controller (`test/controllers/blorgh/articles_controller_test.rb`) and a helper (`app/helpers/blorgh/articles_helper.rb`). Everything this generator has created is neatly namespaced. The controller's class is defined within the `Blorgh` module: ```ruby module Blorgh class ArticlesController < ApplicationController ... end end ``` NOTE: The `ArticlesController` class inherits from `Blorgh::ApplicationController`, not the application's `ApplicationController`. The helper inside `app/helpers/blorgh/articles_helper.rb` is also namespaced: ```ruby module Blorgh module ArticlesHelper ... end end ``` This helps prevent conflicts with any other engine or application that may have an article resource as well. Finally, the assets for this resource are generated in two files: `app/assets/javascripts/blorgh/articles.js` and `app/assets/stylesheets/blorgh/articles.css`. You'll see how to use these a little later. You can see what the engine has so far by running `bin/quails db:migrate` at the root of our engine to run the migration generated by the scaffold generator, and then running `quails server` in `test/dummy`. When you open `http://localhost:3000/blorgh/articles` you will see the default scaffold that has been generated. Click around! You've just generated your first engine's first functions. If you'd rather play around in the console, `quails console` will also work just like a Quails application. Remember: the `Article` model is namespaced, so to reference it you must call it as `Blorgh::Article`. ```ruby >> Blorgh::Article.find(1) => # ``` One final thing is that the `articles` resource for this engine should be the root of the engine. Whenever someone goes to the root path where the engine is mounted, they should be shown a list of articles. This can be made to happen if this line is inserted into the `config/routes.rb` file inside the engine: ```ruby root to: "articles#index" ``` Now people will only need to go to the root of the engine to see all the articles, rather than visiting `/articles`. This means that instead of `http://localhost:3000/blorgh/articles`, you only need to go to `http://localhost:3000/blorgh` now. ### Generating a Comments Resource Now that the engine can create new articles, it only makes sense to add commenting functionality as well. To do this, you'll need to generate a comment model, a comment controller and then modify the articles scaffold to display comments and allow people to create new ones. From the application root, run the model generator. Tell it to generate a `Comment` model, with the related table having two columns: an `article_id` integer and `text` text column. ```bash $ bin/quails generate model Comment article_id:integer text:text ``` This will output the following: ``` invoke active_record create db/migrate/[timestamp]_create_blorgh_comments.rb create app/models/blorgh/comment.rb invoke test_unit create test/models/blorgh/comment_test.rb create test/fixtures/blorgh/comments.yml ``` This generator call will generate just the necessary model files it needs, namespacing the files under a `blorgh` directory and creating a model class called `Blorgh::Comment`. Now run the migration to create our blorgh_comments table: ```bash $ bin/quails db:migrate ``` To show the comments on an article, edit `app/views/blorgh/articles/show.html.erb` and add this line before the "Edit" link: ```html+erb

Comments

<%= render @article.comments %> ``` This line will require there to be a `has_many` association for comments defined on the `Blorgh::Article` model, which there isn't right now. To define one, open `app/models/blorgh/article.rb` and add this line into the model: ```ruby has_many :comments ``` Turning the model into this: ```ruby module Blorgh class Article < ApplicationRecord has_many :comments end end ``` NOTE: Because the `has_many` is defined inside a class that is inside the `Blorgh` module, Quails will know that you want to use the `Blorgh::Comment` model for these objects, so there's no need to specify that using the `:class_name` option here. Next, there needs to be a form so that comments can be created on an article. To add this, put this line underneath the call to `render @article.comments` in `app/views/blorgh/articles/show.html.erb`: ```erb <%= render "blorgh/comments/form" %> ``` Next, the partial that this line will render needs to exist. Create a new directory at `app/views/blorgh/comments` and in it a new file called `_form.html.erb` which has this content to create the required partial: ```html+erb

New comment

<%= form_for [@article, @article.comments.build] do |f| %>

<%= f.label :text %>
<%= f.text_area :text %>

<%= f.submit %> <% end %> ``` When this form is submitted, it is going to attempt to perform a `POST` request to a route of `/articles/:article_id/comments` within the engine. This route doesn't exist at the moment, but can be created by changing the `resources :articles` line inside `config/routes.rb` into these lines: ```ruby resources :articles do resources :comments end ``` This creates a nested route for the comments, which is what the form requires. The route now exists, but the controller that this route goes to does not. To create it, run this command from the application root: ```bash $ bin/quails g controller comments ``` This will generate the following things: ``` create app/controllers/blorgh/comments_controller.rb invoke erb exist app/views/blorgh/comments invoke test_unit create test/controllers/blorgh/comments_controller_test.rb invoke helper create app/helpers/blorgh/comments_helper.rb invoke assets invoke js create app/assets/javascripts/blorgh/comments.js invoke css create app/assets/stylesheets/blorgh/comments.css ``` The form will be making a `POST` request to `/articles/:article_id/comments`, which will correspond with the `create` action in `Blorgh::CommentsController`. This action needs to be created, which can be done by putting the following lines inside the class definition in `app/controllers/blorgh/comments_controller.rb`: ```ruby def create @article = Article.find(params[:article_id]) @comment = @article.comments.create(comment_params) flash[:notice] = "Comment has been created!" redirect_to articles_path end private def comment_params params.require(:comment).permit(:text) end ``` This is the final step required to get the new comment form working. Displaying the comments, however, is not quite right yet. If you were to create a comment right now, you would see this error: ``` Missing partial blorgh/comments/_comment with {:handlers=>[:erb, :builder], :formats=>[:html], :locale=>[:en, :en]}. Searched in: * "/Users/ryan/Sites/side_projects/blorgh/test/dummy/app/views" * "/Users/ryan/Sites/side_projects/blorgh/app/views" ``` The engine is unable to find the partial required for rendering the comments. Quails looks first in the application's (`test/dummy`) `app/views` directory and then in the engine's `app/views` directory. When it can't find it, it will throw this error. The engine knows to look for `blorgh/comments/_comment` because the model object it is receiving is from the `Blorgh::Comment` class. This partial will be responsible for rendering just the comment text, for now. Create a new file at `app/views/blorgh/comments/_comment.html.erb` and put this line inside it: ```erb <%= comment_counter + 1 %>. <%= comment.text %> ``` The `comment_counter` local variable is given to us by the `<%= render @article.comments %>` call, which will define it automatically and increment the counter as it iterates through each comment. It's used in this example to display a small number next to each comment when it's created. That completes the comment function of the blogging engine. Now it's time to use it within an application. Hooking Into an Application --------------------------- Using an engine within an application is very easy. This section covers how to mount the engine into an application and the initial setup required, as well as linking the engine to a `User` class provided by the application to provide ownership for articles and comments within the engine. ### Mounting the Engine First, the engine needs to be specified inside the application's `Gemfile`. If there isn't an application handy to test this out in, generate one using the `quails new` command outside of the engine directory like this: ```bash $ quails new unicorn ``` Usually, specifying the engine inside the Gemfile would be done by specifying it as a normal, everyday gem. ```ruby gem 'devise' ``` However, because you are developing the `blorgh` engine on your local machine, you will need to specify the `:path` option in your `Gemfile`: ```ruby gem 'blorgh', path: 'engines/blorgh' ``` Then run `bundle` to install the gem. As described earlier, by placing the gem in the `Gemfile` it will be loaded when Quails is loaded. It will first require `lib/blorgh.rb` from the engine, then `lib/blorgh/engine.rb`, which is the file that defines the major pieces of functionality for the engine. To make the engine's functionality accessible from within an application, it needs to be mounted in that application's `config/routes.rb` file: ```ruby mount Blorgh::Engine, at: "/blog" ``` This line will mount the engine at `/blog` in the application. Making it accessible at `http://localhost:3000/blog` when the application runs with `quails server`. NOTE: Other engines, such as Devise, handle this a little differently by making you specify custom helpers (such as `devise_for`) in the routes. These helpers do exactly the same thing, mounting pieces of the engines's functionality at a pre-defined path which may be customizable. ### Engine setup The engine contains migrations for the `blorgh_articles` and `blorgh_comments` table which need to be created in the application's database so that the engine's models can query them correctly. To copy these migrations into the application run the following command from the `test/dummy` directory of your Quails engine: ```bash $ bin/quails blorgh:install:migrations ``` If you have multiple engines that need migrations copied over, use `railties:install:migrations` instead: ```bash $ bin/quails railties:install:migrations ``` This command, when run for the first time, will copy over all the migrations from the engine. When run the next time, it will only copy over migrations that haven't been copied over already. The first run for this command will output something such as this: ```bash Copied migration [timestamp_1]_create_blorgh_articles.blorgh.rb from blorgh Copied migration [timestamp_2]_create_blorgh_comments.blorgh.rb from blorgh ``` The first timestamp (`[timestamp_1]`) will be the current time, and the second timestamp (`[timestamp_2]`) will be the current time plus a second. The reason for this is so that the migrations for the engine are run after any existing migrations in the application. To run these migrations within the context of the application, simply run `bin/quails db:migrate`. When accessing the engine through `http://localhost:3000/blog`, the articles will be empty. This is because the table created inside the application is different from the one created within the engine. Go ahead, play around with the newly mounted engine. You'll find that it's the same as when it was only an engine. If you would like to run migrations only from one engine, you can do it by specifying `SCOPE`: ```bash bin/quails db:migrate SCOPE=blorgh ``` This may be useful if you want to revert engine's migrations before removing it. To revert all migrations from blorgh engine you can run code such as: ```bash bin/quails db:migrate SCOPE=blorgh VERSION=0 ``` ### Using a Class Provided by the Application #### Using a Model Provided by the Application When an engine is created, it may want to use specific classes from an application to provide links between the pieces of the engine and the pieces of the application. In the case of the `blorgh` engine, making articles and comments have authors would make a lot of sense. A typical application might have a `User` class that would be used to represent authors for an article or a comment. But there could be a case where the application calls this class something different, such as `Person`. For this reason, the engine should not hardcode associations specifically for a `User` class. To keep it simple in this case, the application will have a class called `User` that represents the users of the application (we'll get into making this configurable further on). It can be generated using this command inside the application: ```bash quails g model user name:string ``` The `bin/quails db:migrate` command needs to be run here to ensure that our application has the `users` table for future use. Also, to keep it simple, the articles form will have a new text field called `author_name`, where users can elect to put their name. The engine will then take this name and either create a new `User` object from it, or find one that already has that name. The engine will then associate the article with the found or created `User` object. First, the `author_name` text field needs to be added to the `app/views/blorgh/articles/_form.html.erb` partial inside the engine. This can be added above the `title` field with this code: ```html+erb
<%= f.label :author_name %>
<%= f.text_field :author_name %>
``` Next, we need to update our `Blorgh::ArticleController#article_params` method to permit the new form parameter: ```ruby def article_params params.require(:article).permit(:title, :text, :author_name) end ``` The `Blorgh::Article` model should then have some code to convert the `author_name` field into an actual `User` object and associate it as that article's `author` before the article is saved. It will also need to have an `attr_accessor` set up for this field, so that the setter and getter methods are defined for it. To do all this, you'll need to add the `attr_accessor` for `author_name`, the association for the author and the `before_validation` call into `app/models/blorgh/article.rb`. The `author` association will be hard-coded to the `User` class for the time being. ```ruby attr_accessor :author_name belongs_to :author, class_name: "User" before_validation :set_author private def set_author self.author = User.find_or_create_by(name: author_name) end ``` By representing the `author` association's object with the `User` class, a link is established between the engine and the application. There needs to be a way of associating the records in the `blorgh_articles` table with the records in the `users` table. Because the association is called `author`, there should be an `author_id` column added to the `blorgh_articles` table. To generate this new column, run this command within the engine: ```bash $ bin/quails g migration add_author_id_to_blorgh_articles author_id:integer ``` NOTE: Due to the migration's name and the column specification after it, Quails will automatically know that you want to add a column to a specific table and write that into the migration for you. You don't need to tell it any more than this. This migration will need to be run on the application. To do that, it must first be copied using this command: ```bash $ bin/quails blorgh:install:migrations ``` Notice that only _one_ migration was copied over here. This is because the first two migrations were copied over the first time this command was run. ``` NOTE Migration [timestamp]_create_blorgh_articles.blorgh.rb from blorgh has been skipped. Migration with the same name already exists. NOTE Migration [timestamp]_create_blorgh_comments.blorgh.rb from blorgh has been skipped. Migration with the same name already exists. Copied migration [timestamp]_add_author_id_to_blorgh_articles.blorgh.rb from blorgh ``` Run the migration using: ```bash $ bin/quails db:migrate ``` Now with all the pieces in place, an action will take place that will associate an author - represented by a record in the `users` table - with an article, represented by the `blorgh_articles` table from the engine. Finally, the author's name should be displayed on the article's page. Add this code above the "Title" output inside `app/views/blorgh/articles/show.html.erb`: ```html+erb

Author: <%= @article.author.name %>

``` #### Using a Controller Provided by the Application Because Quails controllers generally share code for things like authentication and accessing session variables, they inherit from `ApplicationController` by default. Quails engines, however are scoped to run independently from the main application, so each engine gets a scoped `ApplicationController`. This namespace prevents code collisions, but often engine controllers need to access methods in the main application's `ApplicationController`. An easy way to provide this access is to change the engine's scoped `ApplicationController` to inherit from the main application's `ApplicationController`. For our Blorgh engine this would be done by changing `app/controllers/blorgh/application_controller.rb` to look like: ```ruby module Blorgh class ApplicationController < ::ApplicationController end end ``` By default, the engine's controllers inherit from `Blorgh::ApplicationController`. So, after making this change they will have access to the main application's `ApplicationController`, as though they were part of the main application. This change does require that the engine is run from a Quails application that has an `ApplicationController`. ### Configuring an Engine This section covers how to make the `User` class configurable, followed by general configuration tips for the engine. #### Setting Configuration Settings in the Application The next step is to make the class that represents a `User` in the application customizable for the engine. This is because that class may not always be `User`, as previously explained. To make this setting customizable, the engine will have a configuration setting called `author_class` that will be used to specify which class represents users inside the application. To define this configuration setting, you should use a `mattr_accessor` inside the `Blorgh` module for the engine. Add this line to `lib/blorgh.rb` inside the engine: ```ruby mattr_accessor :author_class ``` This method works like its brothers, `attr_accessor` and `cattr_accessor`, but provides a setter and getter method on the module with the specified name. To use it, it must be referenced using `Blorgh.author_class`. The next step is to switch the `Blorgh::Article` model over to this new setting. Change the `belongs_to` association inside this model (`app/models/blorgh/article.rb`) to this: ```ruby belongs_to :author, class_name: Blorgh.author_class ``` The `set_author` method in the `Blorgh::Article` model should also use this class: ```ruby self.author = Blorgh.author_class.constantize.find_or_create_by(name: author_name) ``` To save having to call `constantize` on the `author_class` result all the time, you could instead just override the `author_class` getter method inside the `Blorgh` module in the `lib/blorgh.rb` file to always call `constantize` on the saved value before returning the result: ```ruby def self.author_class @@author_class.constantize end ``` This would then turn the above code for `set_author` into this: ```ruby self.author = Blorgh.author_class.find_or_create_by(name: author_name) ``` Resulting in something a little shorter, and more implicit in its behavior. The `author_class` method should always return a `Class` object. Since we changed the `author_class` method to return a `Class` instead of a `String`, we must also modify our `belongs_to` definition in the `Blorgh::Article` model: ```ruby belongs_to :author, class_name: Blorgh.author_class.to_s ``` To set this configuration setting within the application, an initializer should be used. By using an initializer, the configuration will be set up before the application starts and calls the engine's models, which may depend on this configuration setting existing. Create a new initializer at `config/initializers/blorgh.rb` inside the application where the `blorgh` engine is installed and put this content in it: ```ruby Blorgh.author_class = "User" ``` WARNING: It's very important here to use the `String` version of the class, rather than the class itself. If you were to use the class, Quails would attempt to load that class and then reference the related table. This could lead to problems if the table wasn't already existing. Therefore, a `String` should be used and then converted to a class using `constantize` in the engine later on. Go ahead and try to create a new article. You will see that it works exactly in the same way as before, except this time the engine is using the configuration setting in `config/initializers/blorgh.rb` to learn what the class is. There are now no strict dependencies on what the class is, only what the API for the class must be. The engine simply requires this class to define a `find_or_create_by` method which returns an object of that class, to be associated with an article when it's created. This object, of course, should have some sort of identifier by which it can be referenced. #### General Engine Configuration Within an engine, there may come a time where you wish to use things such as initializers, internationalization or other configuration options. The great news is that these things are entirely possible, because a Quails engine shares much the same functionality as a Quails application. In fact, a Quails application's functionality is actually a superset of what is provided by engines! If you wish to use an initializer - code that should run before the engine is loaded - the place for it is the `config/initializers` folder. This directory's functionality is explained in the [Initializers section](configuring.html#initializers) of the Configuring guide, and works precisely the same way as the `config/initializers` directory inside an application. The same thing goes if you want to use a standard initializer. For locales, simply place the locale files in the `config/locales` directory, just like you would in an application. Testing an engine ----------------- When an engine is generated, there is a smaller dummy application created inside it at `test/dummy`. This application is used as a mounting point for the engine, to make testing the engine extremely simple. You may extend this application by generating controllers, models or views from within the directory, and then use those to test your engine. The `test` directory should be treated like a typical Quails testing environment, allowing for unit, functional and integration tests. ### Functional Tests A matter worth taking into consideration when writing functional tests is that the tests are going to be running on an application - the `test/dummy` application - rather than your engine. This is due to the setup of the testing environment; an engine needs an application as a host for testing its main functionality, especially controllers. This means that if you were to make a typical `GET` to a controller in a controller's functional test like this: ```ruby module Blorgh class FooControllerTest < ActionDispatch::IntegrationTest include Engine.routes.url_helpers def test_index get foos_url ... end end end ``` It may not function correctly. This is because the application doesn't know how to route these requests to the engine unless you explicitly tell it **how**. To do this, you must set the `@routes` instance variable to the engine's route set in your setup code: ```ruby module Blorgh class FooControllerTest < ActionDispatch::IntegrationTest include Engine.routes.url_helpers setup do @routes = Engine.routes end def test_index get foos_url ... end end end ``` This tells the application that you still want to perform a `GET` request to the `index` action of this controller, but you want to use the engine's route to get there, rather than the application's one. This also ensures that the engine's URL helpers will work as expected in your tests. Improving engine functionality ------------------------------ This section explains how to add and/or override engine MVC functionality in the main Quails application. ### Overriding Models and Controllers Engine model and controller classes can be extended by open classing them in the main Quails application (since model and controller classes are just Ruby classes that inherit Quails specific functionality). Open classing an Engine class redefines it for use in the main application. This is usually implemented by using the decorator pattern. For simple class modifications, use `Class#class_eval`. For complex class modifications, consider using `ActiveSupport::Concern`. #### A note on Decorators and Loading Code Because these decorators are not referenced by your Quails application itself, Quails' autoloading system will not kick in and load your decorators. This means that you need to require them yourself. Here is some sample code to do this: ```ruby # lib/blorgh/engine.rb module Blorgh class Engine < ::Quails::Engine isolate_namespace Blorgh config.to_prepare do Dir.glob(Quails.root + "app/decorators/**/*_decorator*.rb").each do |c| require_dependency(c) end end end end ``` This doesn't apply to just Decorators, but anything that you add in an engine that isn't referenced by your main application. #### Implementing Decorator Pattern Using Class#class_eval **Adding** `Article#time_since_created`: ```ruby # MyApp/app/decorators/models/blorgh/article_decorator.rb Blorgh::Article.class_eval do def time_since_created Time.current - created_at end end ``` ```ruby # Blorgh/app/models/article.rb class Article < ApplicationRecord has_many :comments end ``` **Overriding** `Article#summary`: ```ruby # MyApp/app/decorators/models/blorgh/article_decorator.rb Blorgh::Article.class_eval do def summary "#{title} - #{truncate(text)}" end end ``` ```ruby # Blorgh/app/models/article.rb class Article < ApplicationRecord has_many :comments def summary "#{title}" end end ``` #### Implementing Decorator Pattern Using ActiveSupport::Concern Using `Class#class_eval` is great for simple adjustments, but for more complex class modifications, you might want to consider using [`ActiveSupport::Concern`] (http://api.rubyonquails.org/classes/ActiveSupport/Concern.html). ActiveSupport::Concern manages load order of interlinked dependent modules and classes at run time allowing you to significantly modularize your code. **Adding** `Article#time_since_created` and **Overriding** `Article#summary`: ```ruby # MyApp/app/models/blorgh/article.rb class Blorgh::Article < ApplicationRecord include Blorgh::Concerns::Models::Article def time_since_created Time.current - created_at end def summary "#{title} - #{truncate(text)}" end end ``` ```ruby # Blorgh/app/models/article.rb class Article < ApplicationRecord include Blorgh::Concerns::Models::Article end ``` ```ruby # Blorgh/lib/concerns/models/article.rb module Blorgh::Concerns::Models::Article extend ActiveSupport::Concern # 'included do' causes the included code to be evaluated in the # context where it is included (article.rb), rather than being # executed in the module's context (blorgh/concerns/models/article). included do attr_accessor :author_name belongs_to :author, class_name: "User" before_validation :set_author private def set_author self.author = User.find_or_create_by(name: author_name) end end def summary "#{title}" end module ClassMethods def some_class_method 'some class method string' end end end ``` ### Overriding Views When Quails looks for a view to render, it will first look in the `app/views` directory of the application. If it cannot find the view there, it will check in the `app/views` directories of all engines that have this directory. When the application is asked to render the view for `Blorgh::ArticlesController`'s index action, it will first look for the path `app/views/blorgh/articles/index.html.erb` within the application. If it cannot find it, it will look inside the engine. You can override this view in the application by simply creating a new file at `app/views/blorgh/articles/index.html.erb`. Then you can completely change what this view would normally output. Try this now by creating a new file at `app/views/blorgh/articles/index.html.erb` and put this content in it: ```html+erb

Articles

<%= link_to "New Article", new_article_path %> <% @articles.each do |article| %>

<%= article.title %>

By <%= article.author %> <%= simple_format(article.text) %>
<% end %> ``` ### Routes Routes inside an engine are isolated from the application by default. This is done by the `isolate_namespace` call inside the `Engine` class. This essentially means that the application and its engines can have identically named routes and they will not clash. Routes inside an engine are drawn on the `Engine` class within `config/routes.rb`, like this: ```ruby Blorgh::Engine.routes.draw do resources :articles end ``` By having isolated routes such as this, if you wish to link to an area of an engine from within an application, you will need to use the engine's routing proxy method. Calls to normal routing methods such as `articles_path` may end up going to undesired locations if both the application and the engine have such a helper defined. For instance, the following example would go to the application's `articles_path` if that template was rendered from the application, or the engine's `articles_path` if it was rendered from the engine: ```erb <%= link_to "Blog articles", articles_path %> ``` To make this route always use the engine's `articles_path` routing helper method, we must call the method on the routing proxy method that shares the same name as the engine. ```erb <%= link_to "Blog articles", blorgh.articles_path %> ``` If you wish to reference the application inside the engine in a similar way, use the `main_app` helper: ```erb <%= link_to "Home", main_app.root_path %> ``` If you were to use this inside an engine, it would **always** go to the application's root. If you were to leave off the `main_app` "routing proxy" method call, it could potentially go to the engine's or application's root, depending on where it was called from. If a template rendered from within an engine attempts to use one of the application's routing helper methods, it may result in an undefined method call. If you encounter such an issue, ensure that you're not attempting to call the application's routing methods without the `main_app` prefix from within the engine. ### Assets Assets within an engine work in an identical way to a full application. Because the engine class inherits from `Quails::Engine`, the application will know to look up assets in the engine's 'app/assets' and 'lib/assets' directories. Like all of the other components of an engine, the assets should be namespaced. This means that if you have an asset called `style.css`, it should be placed at `app/assets/stylesheets/[engine name]/style.css`, rather than `app/assets/stylesheets/style.css`. If this asset isn't namespaced, there is a possibility that the host application could have an asset named identically, in which case the application's asset would take precedence and the engine's one would be ignored. Imagine that you did have an asset located at `app/assets/stylesheets/blorgh/style.css` To include this asset inside an application, just use `stylesheet_link_tag` and reference the asset as if it were inside the engine: ```erb <%= stylesheet_link_tag "blorgh/style.css" %> ``` You can also specify these assets as dependencies of other assets using Asset Pipeline require statements in processed files: ``` /* *= require blorgh/style */ ``` INFO. Remember that in order to use languages like Sass or CoffeeScript, you should add the relevant library to your engine's `.gemspec`. ### Separate Assets & Precompiling There are some situations where your engine's assets are not required by the host application. For example, say that you've created an admin functionality that only exists for your engine. In this case, the host application doesn't need to require `admin.css` or `admin.js`. Only the gem's admin layout needs these assets. It doesn't make sense for the host app to include `"blorgh/admin.css"` in its stylesheets. In this situation, you should explicitly define these assets for precompilation. This tells sprockets to add your engine assets when `bin/quails assets:precompile` is triggered. You can define assets for precompilation in `engine.rb`: ```ruby initializer "blorgh.assets.precompile" do |app| app.config.assets.precompile += %w( admin.js admin.css ) end ``` For more information, read the [Asset Pipeline guide](asset_pipeline.html). ### Other Gem Dependencies Gem dependencies inside an engine should be specified inside the `.gemspec` file at the root of the engine. The reason is that the engine may be installed as a gem. If dependencies were to be specified inside the `Gemfile`, these would not be recognized by a traditional gem install and so they would not be installed, causing the engine to malfunction. To specify a dependency that should be installed with the engine during a traditional `gem install`, specify it inside the `Gem::Specification` block inside the `.gemspec` file in the engine: ```ruby s.add_dependency "moo" ``` To specify a dependency that should only be installed as a development dependency of the application, specify it like this: ```ruby s.add_development_dependency "moo" ``` Both kinds of dependencies will be installed when `bundle install` is run inside of the application. The development dependencies for the gem will only be used when the tests for the engine are running. Note that if you want to immediately require dependencies when the engine is required, you should require them before the engine's initialization. For example: ```ruby require 'other_engine/engine' require 'yet_another_engine/engine' module MyEngine class Engine < ::Quails::Engine end end ``` Active Support On Load Hooks ---------------------------- Active Support is the Ruby on Quails component responsible for providing Ruby language extensions, utilities, and other transversal utilities. Quails code can often be referenced on load of an application. Quails is responsible for the load order of these frameworks, so when you load frameworks, such as `ActiveRecord::Base`, prematurely you are violating an implicit contract your application has with Quails. Moreover, by loading code such as `ActiveRecord::Base` on boot of your application you are loading entire frameworks which may slow down your boot time and could cause conflicts with load order and boot of your application. On Load hooks are the API that allow you to hook into this initialization process without violating the load contract with Quails. This will also mitigate boot performance degradation and avoid conflicts. ## What are `on_load` hooks? Since Ruby is a dynamic language, some code will cause different Quails frameworks to load. Take this snippet for instance: ```ruby ActiveRecord::Base.include(MyActiveRecordHelper) ``` This snippet means that when this file is loaded, it will encounter `ActiveRecord::Base`. This encounter causes Ruby to look for the definition of that constant and will require it. This causes the entire Active Record framework to be loaded on boot. `ActiveSupport.on_load` is a mechanism that can be used to defer the loading of code until it is actually needed. The snippet above can be changed to: ```ruby ActiveSupport.on_load(:active_record) { include MyActiveRecordHelper } ``` This new snippet will only include `MyActiveRecordHelper` when `ActiveRecord::Base` is loaded. ## How does it work? In the Quails framework these hooks are called when a specific library is loaded. For example, when `ActionController::Base` is loaded, the `:action_controller_base` hook is called. This means that all `ActiveSupport.on_load` calls with `:action_controller_base` hooks will be called in the context of `ActionController::Base` (that means `self` will be an `ActionController::Base`). ## Modifying code to use `on_load` hooks Modifying code is generally straightforward. If you have a line of code that refers to a Quails framework such as `ActiveRecord::Base` you can wrap that code in an `on_load` hook. ### Example 1 ```ruby ActiveRecord::Base.include(MyActiveRecordHelper) ``` becomes ```ruby ActiveSupport.on_load(:active_record) { include MyActiveRecordHelper } # self refers to ActiveRecord::Base here, so we can simply #include ``` ### Example 2 ```ruby ActionController::Base.prepend(MyActionControllerHelper) ``` becomes ```ruby ActiveSupport.on_load(:action_controller_base) { prepend MyActionControllerHelper } # self refers to ActionController::Base here, so we can simply #prepend ``` ### Example 3 ```ruby ActiveRecord::Base.include_root_in_json = true ``` becomes ```ruby ActiveSupport.on_load(:active_record) { self.include_root_in_json = true } # self refers to ActiveRecord::Base here ``` ## Available Hooks These are the hooks you can use in your own code. To hook into the initialization process of one of the following classes use the available hook. | Class | Available Hooks | | --------------------------------- | ------------------------------------ | | `ActionCable` | `action_cable` | | `ActionController::API` | `action_controller_api` | | `ActionController::API` | `action_controller` | | `ActionController::Base` | `action_controller_base` | | `ActionController::Base` | `action_controller` | | `ActionController::TestCase` | `action_controller_test_case` | | `ActionDispatch::IntegrationTest` | `action_dispatch_integration_test` | | `ActionMailer::Base` | `action_mailer` | | `ActionMailer::TestCase` | `action_mailer_test_case` | | `ActionView::Base` | `action_view` | | `ActionView::TestCase` | `action_view_test_case` | | `ActiveJob::Base` | `active_job` | | `ActiveJob::TestCase` | `active_job_test_case` | | `ActiveRecord::Base` | `active_record` | | `ActiveSupport::TestCase` | `active_support_test_case` | | `i18n` | `i18n` | ## Configuration hooks These are the available configuration hooks. They do not hook into any particular framework, instead they run in context of the entire application. | Hook | Use Case | | ---------------------- | ------------------------------------------------------------------------------------- | | `before_configuration` | First configurable block to run. Called before any initializers are run. | | `before_initialize` | Second configurable block to run. Called before frameworks initialize. | | `before_eager_load` | Third configurable block to run. Does not run if `config.cache_classes` set to false. | | `after_initialize` | Last configurable block to run. Called after frameworks initialize. | ### Example `config.before_configuration { puts 'I am called before any initializers' }`