require 'rubyneat' =begin rdoc = Critter =end module NEAT #= Critters for NEAT # The Critter class comprises a Genotype and a Phenotype. # The Genotype comprises Genes and Neurons. class Critter < NeatOb attr_reader :population attr_accessor :genotype, :phenotype # Ratings assigned by Evaluator attr_accessor :fitness, :novelty # Critter construction. We construct the genotype. # The phenotype will be constructed by the Expressor operator. def initialize(pop, mating = false, &block) super pop.controller @population = pop @genotype = Genotype.new(self, mating) block.(self) unless block.nil? end # Get the Critter ready for the Expressor to # express the geneotype. def ready_for_expression! @genotype.wire! @phenotype = NEAT::Critter::Phenotype[self] @phenotype end # Exoress this critter using the Expressor plugin. def express! @controller.expressor.express! self end # This initializes neurons in preparation for recurrence. # Note that the Critter should already have expressed its # genotype before this is called. def initialize_neurons! @phenotype.initialize_neurons end # A single evaluation step. Evaluate and # generate fitness, novelty, etc. # Returns the result. def evaluate! @controller.evaluator.evaluate! self end #= Genotype part of the Critter # List of connections, basically. # # Also, basic phentypic expression (which may be overriden by # the expressor) # #= Notes # Currently, all lists of neurons and genes are Hashes. The # neurons are indexed by their own names, and the genes # are indexed by their innovation numbers. # class Genotype < NeatOb # Critter to which we belong attr_accessor :critter # Genes keyed by innovation numbers attr_accessor :genes # List of neurons hashed by name attr_accessor :neurons # Instantiations of neural inputs and outputs attr_reader :neural_inputs, :neural_outputs # This will be set to true if there are dangling neurons. attr_accessor :dangling_neurons alias :dangling_neurons? :dangling_neurons # Map neurons to the genes that marks them as output # { oneu_name => [ gene_1, gene_2,... gene_n], ...} # Just take the in_neuron name and the weight to do # the call to that neuron function with the appropriate weights attr_reader :neural_gene_map def initialize(critter, mating = false, &block) super critter.controller @critter = critter # Initialize basic structures @genes = nil @neural_inputs = Hash[@critter.population.input_neurons.map { |sym, ineu| [sym, ineu.new(@controller, sym)] }] @neural_outputs = Hash[@critter.population.output_neurons.map { |sym, ineu| [sym, ineu.new(@controller, sym)] }] @neurons = @neural_inputs.clone # this must be a shallow clone! @neurons.merge! @neural_outputs @controller.evolver.gen_initial_genes!(self) unless mating block.(self) unless block.nil? end # We add genes given here to the genome. # An array of genes is returned from the block # and we simply add them in. # @param [boolean] clean # @param [Proc] block def neucleate(clean: true, &block) genes = Hash[block.(self).map { |g| g.genotype = self [g.innovation, g] }] if clean @genes = genes else @genes.merge! genes end nuke_redundancies! end # Remove any redundancies in the genome, # any genes refering to the same two neurons. # Simply choose one and delete the rest. # TODO: implement nuke_redundancies! def nuke_redundancies! log.warn 'nuke_redundancies! NIY' end # Make the neurons forget their wiring. def forget! @neurons.each { |name, neu| neu.clear_graph } @neural_gene_map = Hash.new {|h, k| h[k] = [] } end # Wire up the neurons based on the genes. def wire! forget! @genes.each do |innov, gene| if gene.enabled? raise NeatException.new "Can't find #{gene.out_neuron}" if @neurons[gene.out_neuron].nil? @neurons[gene.out_neuron] << @neurons[gene.in_neuron] @neural_gene_map[gene.out_neuron] << gene unless gene.in_neuron.nil? end end unless @genes.nil? if @genes.nil? $log.error 'Genes Not Present' end end # Add new neurons to the fold def add_neurons(*neus) neus.each do |neu| @neurons[neu.name] = neu end end # Genes added here MUST correspond to pre-existing neurons. # Be sure to do add_neurons first!!!! def add_genes(*genes) genes.each do |gene| raise NeatException.new "Neuron #{gene.in_neuron} missing" unless @neurons.member? gene.in_neuron raise NeatException.new "Neuron #{gene.out_neuron} missing" unless @neurons.member? gene.out_neuron @genes[gene.innovation] = gene end end # We take the neural hashes (presumably from other neurons), and innervate them. # We do this in distinctions based on the neuron's names. # FIXME We need to randomly select a neuron in the case of clashes. # @param [Hash] hneus -- hashes of neurons to innervate def innervate!(*hneus) hneus.each do |neus| @neurons.merge! neus.dclone end end # Go through the list of neurons and drop # any neurons not referenced by the genes. # # Then go through the genes and drop any that # are dangling (i.e. no matching neurons) # # Then make sure that @neural_inputs and @neural_outputs reference the actual # instance neurons in @neurons # # TODO add this circularity check to prune! def prune! # Take care of dangling neurons neunames = @genes.values.map{|g| [g.in_neuron, g.out_neuron]}.flatten.to_set @neurons = Hash[@neurons.values.reject do |n| not neunames.member? n.name end.map do |n| [n.name, n] end] # Take care of dangling genes @genes = Hash[@genes.values.reject do |gene| not (@neurons.member?(gene.in_neuron) and @neurons.member?(gene.out_neuron)) end.map do |gene| [gene.name, gene] end] # Make sure @neural_inputs and @neural_outputs are consistent @neural_inputs = Hash[@neural_inputs.values.map{|n| [n.name, @neurons[n.name]]}] @neural_outputs = Hash[@neural_outputs.values.map{|n| [n.name, @neurons[n.name]]}] end # Calculate the cost of this genotype. def fitness_cost p = @controller.parms p.fitness_cost_per_neuron * @neurons.size + p.fitness_cost_per_gene * @genes.size end def dump_s to_s + "\ngenes:\n" + @genes.map{|k, gene| gene.to_s}.join("\n") + "\nneurons:\n" + @neurons.map{|k, neu| neu.to_s}.join("\n") end #= Gene Specification # The Gene specifices a singlular input and # output neuron, which represents a connection # between them, along with the weight of that # connection, which may be positive, negative, or zero. # # There is also the enabled flag class Gene < NeatOb # parent genotype attr_accessor :genotype # innovation number attr_accessor :innovation # input neuron's name (where our output goes) # ouptut neuron's name (neuron to be queried) attr_accessor :in_neuron, :out_neuron # weight of the connection attr_accessor :weight # Is this gene enabled? attr_accessor :enabled def initialize(genotype, &block) super genotype.controller @genotype = genotype @enabled = true @innovation = NEAT::new_innovation @in_neuron = @out_neuron = nil block.(self) unless block.nil? end def enabled? ; @enabled ; end def disabled? ; not enabled? ; end # Create a new Gene and set it up fully. ## genotype -- genotype ## input -- name of input neuron connection ## output -- name of output neuron connection ## weight -- weight to give neuron (optional) ## innov -- innovation number of gene (optional) def self.[](genotype, input, output, weight = 0.0, innov = nil) g = Gene.new genotype g.in_neuron = (input.kind_of? Symbol) ? input : input.name g.out_neuron = (output.kind_of? Symbol) ? output : output.name g.weight = weight g.innovation = innov unless innov.nil? return g end def to_s super + "[i%s,w%s,%s]" % [@innovation, @weight, self.enabled?] end alias_method :dump_s, :to_s end end #= Phenotype part of the Critter # This is created by Evolver. class Phenotype < NeatOb include Math # Critter to which we belong attr_accessor :critter # Expressed code as a string (that was instance_eval()ed) attr_accessor :code def self.[](critter) ph = Phenotype.new critter.controller ph.critter = critter ph.code = "## Phenotype Code %s for critter %s\n" % [ph.name, critter.name] return ph end # Take what is in code and express that! def express! instance_eval @code self end # This function is re-written by Expressor -- with parameters and all. # It returns a "response" in the form of a response hash. # TODO This *is* network activation, so we should rename this at a later date... def stimulate nil end # This gives us a complete def to_s "## %s\n%s" % [super, @code] end end # Compare ourselves against another critter for # compability. # # The function to be used here is: ## distance = c1*E + c2*D + c3*W # # Where: ## E, D - The number of excess and disjoint genes repesctively. ## N - The number of genes in the largest genome. ## W - The sum of absolute weight differences. # # This is a variation of the formulation suggested by the Stanley # paper, which normalizes the E and D terms by N. def compare(oc) c1 = @controller.parms.excess_coefficient c2 = @controller.parms.disjoint_coefficient c3 = @controller.parms.weight_coefficient e = excess(oc) d = disjoint(oc) w = weight_diff(oc) return c1 * e + c2 * d + c3 * w end # Critter print def dump_s to_s + @genotype.dump_s + "\n" + @phenotype.to_s + "\n" end private # Return a count of excesses. def excess(oc) (@genotype.genes.size - oc.genotype.genes.size).abs end # Return the count of disjoint genes def disjoint(oc) a = @genotype.genes.keys b = oc.genotype.genes.keys (a - b).size + (b - a).size - excess(oc) end # def weight_diff(oc) ag = @genotype.genes bg = oc.genotype.genes matches = ag.keys & bg.keys unless matches.empty? matches.map{|i| (ag[i].weight - bg[i].weight).abs}.reduce{|w, ws| w + ws} / matches.size else 0 end end end end