<% (is_float ? ["","_nan"] : [""]).each do |j| [64,32].each do |i| %> #define idx_t int<%=i%>_t static void <%=c_iter%>_index<%=i%><%=j%>(na_loop_t *const lp) { size_t n, idx; char *d_ptr, *i_ptr, *o_ptr; ssize_t d_step, i_step; INIT_COUNTER(lp, n); INIT_PTR(lp, 0, d_ptr, d_step); idx = f_<%=name%><%=j%>(n,d_ptr,d_step); INIT_PTR(lp, 1, i_ptr, i_step); o_ptr = NDL_PTR(lp,2); *(idx_t*)o_ptr = *(idx_t*)(i_ptr + i_step * idx); } #undef idx_t <% end;end %> /* <%=name%>. Return an index of result. <% if is_float %> @overload <%=name%>(axis:nil, nan:false) @param [TrueClass] nan If true, apply NaN-aware algorithm (return NaN posision if exist). <% else %> @overload <%=name%>(axis:nil) <% end %> @param [Numeric,Array,Range] axis Affected dimensions. @return [Integer,Numo::Int] returns result index of <%=name%>. @example Numo::NArray[3,4,1,2].min_index => 3 */ static VALUE <%=c_func(-1)%>(int argc, VALUE *argv, VALUE self) { narray_t *na; VALUE idx, reduce; ndfunc_arg_in_t ain[3] = {{Qnil,0},{Qnil,0},{sym_reduce,0}}; ndfunc_arg_out_t aout[1] = {{0,0,0}}; ndfunc_t ndf = {0, STRIDE_LOOP_NIP|NDF_FLAT_REDUCE|NDF_EXTRACT, 3,1, ain,aout}; GetNArray(self,na); if (na->ndim==0) { return INT2FIX(0); } if (na->size > (~(u_int32_t)0)) { aout[0].type = numo_cInt64; idx = nary_new(numo_cInt64, na->ndim, na->shape); ndf.func = <%=c_iter%>_index64; <% if is_float %> reduce = na_reduce_dimension(argc, argv, 1, &self, &ndf, <%=c_iter%>_index64_nan); <% else %> reduce = na_reduce_dimension(argc, argv, 1, &self, &ndf, 0); <% end %> } else { aout[0].type = numo_cInt32; idx = nary_new(numo_cInt32, na->ndim, na->shape); ndf.func = <%=c_iter%>_index32; <% if is_float %> reduce = na_reduce_dimension(argc, argv, 1, &self, &ndf, <%=c_iter%>_index32_nan); <% else %> reduce = na_reduce_dimension(argc, argv, 1, &self, &ndf, 0); <% end %> } rb_funcall(idx, rb_intern("seq"), 0); return na_ndloop(&ndf, 3, self, idx, reduce); }