require 'dydx/algebra/formula' require 'dydx/algebra/set/base' require 'dydx/algebra/set/num' require 'dydx/algebra/set/fixnum' require 'dydx/algebra/set/symbol' require 'dydx/algebra/set/e' require 'dydx/algebra/set/pi' require 'dydx/algebra/set/log' require 'dydx/algebra/set/sin' require 'dydx/algebra/set/cos' require 'dydx/algebra/set/tan' require 'dydx/algebra/operator/formula' require 'dydx/algebra/operator/symbol' require 'dydx/algebra/operator/num' require 'dydx/algebra/operator/general' module Dydx module Algebra include Set module Set Symbol.class_eval{ include Operator::Symbol } class Num; include Operator::Num; end class E; include Operator::General; end class Pi; include Operator::General; end class Log; include Operator::General; end class Sin; include Operator::General; end class Cos; include Operator::General; end class Tan; include Operator::General; end end class Formula; include Operator::Formula; end def _(num) if num >= 0 eval("@p#{num} ||= Num.new(num)") else eval("@n#{-1 * num} ||= Num.new(num)") end end def pi @pi ||= Pi.new end def e @e ||= E.new end def log(formula) if formula.multiplication? f, g = formula.f, formula.g log(f) + log(g) elsif formula.exponentiation? f, g = formula.f, formula.g g * log(f) elsif formula.is_1? _(0) elsif formula.is_a?(E) _(1) else Log.new(formula) end end def sin(x) multiplier = x.is_multiple_of(pi) if multiplier.is_a?(Num) _(0) else Sin.new(x) end end def cos(x) multiplier = x.is_multiple_of(pi) if multiplier.is_a?(Num) && multiplier.n % 2 == 0 _(1) elsif multiplier.is_a?(Num) && multiplier.n % 2 == 1 _(-1) else Cos.new(x) end end def tan(x) Tan.new(x) end end end