// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "codegen.h" #include "deoptimizer.h" #include "full-codegen.h" #include "safepoint-table.h" namespace v8 { namespace internal { int Deoptimizer::table_entry_size_ = 10; int Deoptimizer::patch_size() { return MacroAssembler::kCallInstructionLength; } #ifdef DEBUG // Overwrites code with int3 instructions. static void ZapCodeRange(Address from, Address to) { CHECK(from <= to); int length = static_cast(to - from); CodePatcher destroyer(from, length); while (length-- > 0) { destroyer.masm()->int3(); } } #endif // Iterate through the entries of a SafepointTable that corresponds to // deoptimization points. class SafepointTableDeoptimiztionEntryIterator { public: explicit SafepointTableDeoptimiztionEntryIterator(Code* code) : code_(code), table_(code), index_(-1), limit_(table_.length()) { FindNextIndex(); } SafepointEntry Next(Address* pc) { if (index_ >= limit_) { *pc = NULL; return SafepointEntry(); // Invalid entry. } *pc = code_->instruction_start() + table_.GetPcOffset(index_); SafepointEntry entry = table_.GetEntry(index_); FindNextIndex(); return entry; } private: void FindNextIndex() { ASSERT(index_ < limit_); while (++index_ < limit_) { if (table_.GetEntry(index_).deoptimization_index() != Safepoint::kNoDeoptimizationIndex) { return; } } } Code* code_; SafepointTable table_; // Index of next deoptimization entry. If negative after calling // FindNextIndex, there are no more, and Next will return an invalid // SafepointEntry. int index_; // Table length. int limit_; }; void Deoptimizer::DeoptimizeFunction(JSFunction* function) { AssertNoAllocation no_allocation; if (!function->IsOptimized()) return; // Get the optimized code. Code* code = function->code(); // Invalidate the relocation information, as it will become invalid by the // code patching below, and is not needed any more. code->InvalidateRelocation(); // For each return after a safepoint insert a absolute call to the // corresponding deoptimization entry, or a short call to an absolute // jump if space is short. The absolute jumps are put in a table just // before the safepoint table (space was allocated there when the Code // object was created, if necessary). Address instruction_start = function->code()->instruction_start(); Address jump_table_address = instruction_start + function->code()->safepoint_table_offset(); Address previous_pc = instruction_start; SafepointTableDeoptimiztionEntryIterator deoptimizations(function->code()); Address entry_pc = NULL; SafepointEntry current_entry = deoptimizations.Next(&entry_pc); while (current_entry.is_valid()) { int gap_code_size = current_entry.gap_code_size(); unsigned deoptimization_index = current_entry.deoptimization_index(); #ifdef DEBUG // Destroy the code which is not supposed to run again. ZapCodeRange(previous_pc, entry_pc); #endif // Position where Call will be patched in. Address call_address = entry_pc + gap_code_size; // End of call instruction, if using a direct call to a 64-bit address. Address call_end_address = call_address + MacroAssembler::kCallInstructionLength; // Find next deoptimization entry, if any. Address next_pc = NULL; SafepointEntry next_entry = deoptimizations.Next(&next_pc); if (!next_entry.is_valid() || next_pc >= call_end_address) { // Room enough to write a long call instruction. CodePatcher patcher(call_address, Assembler::kCallInstructionLength); patcher.masm()->Call(GetDeoptimizationEntry(deoptimization_index, LAZY), RelocInfo::NONE); previous_pc = call_end_address; } else { // Not room enough for a long Call instruction. Write a short call // instruction to a long jump placed elsewhere in the code. Address short_call_end_address = call_address + MacroAssembler::kShortCallInstructionLength; ASSERT(next_pc >= short_call_end_address); // Write jump in jump-table. jump_table_address -= MacroAssembler::kJumpInstructionLength; CodePatcher jump_patcher(jump_table_address, MacroAssembler::kJumpInstructionLength); jump_patcher.masm()->Jump( GetDeoptimizationEntry(deoptimization_index, LAZY), RelocInfo::NONE); // Write call to jump at call_offset. CodePatcher call_patcher(call_address, MacroAssembler::kShortCallInstructionLength); call_patcher.masm()->call(jump_table_address); previous_pc = short_call_end_address; } // Continue with next deoptimization entry. current_entry = next_entry; entry_pc = next_pc; } #ifdef DEBUG // Destroy the code which is not supposed to run again. ZapCodeRange(previous_pc, jump_table_address); #endif // Add the deoptimizing code to the list. DeoptimizingCodeListNode* node = new DeoptimizingCodeListNode(code); node->set_next(deoptimizing_code_list_); deoptimizing_code_list_ = node; // Set the code for the function to non-optimized version. function->ReplaceCode(function->shared()->code()); if (FLAG_trace_deopt) { PrintF("[forced deoptimization: "); function->PrintName(); PrintF(" / %" V8PRIxPTR "]\n", reinterpret_cast(function)); } } void Deoptimizer::PatchStackCheckCodeAt(Address pc_after, Code* check_code, Code* replacement_code) { Address call_target_address = pc_after - kIntSize; ASSERT(check_code->entry() == Assembler::target_address_at(call_target_address)); // The stack check code matches the pattern: // // cmp rsp, // jae ok // call // test rax, // ok: ... // // We will patch away the branch so the code is: // // cmp rsp, ;; Not changed // nop // nop // call // test rax, // ok: // ASSERT(*(call_target_address - 3) == 0x73 && // jae *(call_target_address - 2) == 0x05 && // offset *(call_target_address - 1) == 0xe8); // call *(call_target_address - 3) = 0x90; // nop *(call_target_address - 2) = 0x90; // nop Assembler::set_target_address_at(call_target_address, replacement_code->entry()); } void Deoptimizer::RevertStackCheckCodeAt(Address pc_after, Code* check_code, Code* replacement_code) { Address call_target_address = pc_after - kIntSize; ASSERT(replacement_code->entry() == Assembler::target_address_at(call_target_address)); // Replace the nops from patching (Deoptimizer::PatchStackCheckCode) to // restore the conditional branch. ASSERT(*(call_target_address - 3) == 0x90 && // nop *(call_target_address - 2) == 0x90 && // nop *(call_target_address - 1) == 0xe8); // call *(call_target_address - 3) = 0x73; // jae *(call_target_address - 2) = 0x05; // offset Assembler::set_target_address_at(call_target_address, check_code->entry()); } void Deoptimizer::DoComputeOsrOutputFrame() { UNIMPLEMENTED(); } void Deoptimizer::DoComputeFrame(TranslationIterator* iterator, int frame_index) { // Read the ast node id, function, and frame height for this output frame. Translation::Opcode opcode = static_cast(iterator->Next()); USE(opcode); ASSERT(Translation::FRAME == opcode); int node_id = iterator->Next(); JSFunction* function = JSFunction::cast(ComputeLiteral(iterator->Next())); unsigned height = iterator->Next(); unsigned height_in_bytes = height * kPointerSize; if (FLAG_trace_deopt) { PrintF(" translating "); function->PrintName(); PrintF(" => node=%d, height=%d\n", node_id, height_in_bytes); } // The 'fixed' part of the frame consists of the incoming parameters and // the part described by JavaScriptFrameConstants. unsigned fixed_frame_size = ComputeFixedSize(function); unsigned input_frame_size = static_cast(input_->GetFrameSize()); unsigned output_frame_size = height_in_bytes + fixed_frame_size; // Allocate and store the output frame description. FrameDescription* output_frame = new(output_frame_size) FrameDescription(output_frame_size, function); bool is_bottommost = (0 == frame_index); bool is_topmost = (output_count_ - 1 == frame_index); ASSERT(frame_index >= 0 && frame_index < output_count_); ASSERT(output_[frame_index] == NULL); output_[frame_index] = output_frame; // The top address for the bottommost output frame can be computed from // the input frame pointer and the output frame's height. For all // subsequent output frames, it can be computed from the previous one's // top address and the current frame's size. intptr_t top_address; if (is_bottommost) { // 2 = context and function in the frame. top_address = input_->GetRegister(rbp.code()) - (2 * kPointerSize) - height_in_bytes; } else { top_address = output_[frame_index - 1]->GetTop() - output_frame_size; } output_frame->SetTop(top_address); // Compute the incoming parameter translation. int parameter_count = function->shared()->formal_parameter_count() + 1; unsigned output_offset = output_frame_size; unsigned input_offset = input_frame_size; for (int i = 0; i < parameter_count; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } input_offset -= (parameter_count * kPointerSize); // There are no translation commands for the caller's pc and fp, the // context, and the function. Synthesize their values and set them up // explicitly. // // The caller's pc for the bottommost output frame is the same as in the // input frame. For all subsequent output frames, it can be read from the // previous one. This frame's pc can be computed from the non-optimized // function code and AST id of the bailout. output_offset -= kPointerSize; input_offset -= kPointerSize; intptr_t value; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = output_[frame_index - 1]->GetPc(); } output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's pc\n", top_address + output_offset, output_offset, value); } // The caller's frame pointer for the bottommost output frame is the same // as in the input frame. For all subsequent output frames, it can be // read from the previous one. Also compute and set this frame's frame // pointer. output_offset -= kPointerSize; input_offset -= kPointerSize; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = output_[frame_index - 1]->GetFp(); } output_frame->SetFrameSlot(output_offset, value); intptr_t fp_value = top_address + output_offset; ASSERT(!is_bottommost || input_->GetRegister(rbp.code()) == fp_value); output_frame->SetFp(fp_value); if (is_topmost) output_frame->SetRegister(rbp.code(), fp_value); if (FLAG_trace_deopt) { PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR " ; caller's fp\n", fp_value, output_offset, value); } // For the bottommost output frame the context can be gotten from the input // frame. For all subsequent output frames it can be gotten from the function // so long as we don't inline functions that need local contexts. output_offset -= kPointerSize; input_offset -= kPointerSize; if (is_bottommost) { value = input_->GetFrameSlot(input_offset); } else { value = reinterpret_cast(function->context()); } output_frame->SetFrameSlot(output_offset, value); if (is_topmost) output_frame->SetRegister(rsi.code(), value); if (FLAG_trace_deopt) { PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR "; context\n", top_address + output_offset, output_offset, value); } // The function was mentioned explicitly in the BEGIN_FRAME. output_offset -= kPointerSize; input_offset -= kPointerSize; value = reinterpret_cast(function); // The function for the bottommost output frame should also agree with the // input frame. ASSERT(!is_bottommost || input_->GetFrameSlot(input_offset) == value); output_frame->SetFrameSlot(output_offset, value); if (FLAG_trace_deopt) { PrintF(" 0x%08" V8PRIxPTR ": [top + %d] <- 0x%08" V8PRIxPTR "; function\n", top_address + output_offset, output_offset, value); } // Translate the rest of the frame. for (unsigned i = 0; i < height; ++i) { output_offset -= kPointerSize; DoTranslateCommand(iterator, frame_index, output_offset); } ASSERT(0 == output_offset); // Compute this frame's PC, state, and continuation. Code* non_optimized_code = function->shared()->code(); FixedArray* raw_data = non_optimized_code->deoptimization_data(); DeoptimizationOutputData* data = DeoptimizationOutputData::cast(raw_data); Address start = non_optimized_code->instruction_start(); unsigned pc_and_state = GetOutputInfo(data, node_id, function->shared()); unsigned pc_offset = FullCodeGenerator::PcField::decode(pc_and_state); intptr_t pc_value = reinterpret_cast(start + pc_offset); output_frame->SetPc(pc_value); FullCodeGenerator::State state = FullCodeGenerator::StateField::decode(pc_and_state); output_frame->SetState(Smi::FromInt(state)); // Set the continuation for the topmost frame. if (is_topmost) { Code* continuation = (bailout_type_ == EAGER) ? Builtins::builtin(Builtins::NotifyDeoptimized) : Builtins::builtin(Builtins::NotifyLazyDeoptimized); output_frame->SetContinuation( reinterpret_cast(continuation->entry())); } if (output_count_ - 1 == frame_index) iterator->Done(); } #define __ masm()-> void Deoptimizer::EntryGenerator::Generate() { GeneratePrologue(); CpuFeatures::Scope scope(SSE2); // Save all general purpose registers before messing with them. const int kNumberOfRegisters = Register::kNumRegisters; const int kDoubleRegsSize = kDoubleSize * XMMRegister::kNumAllocatableRegisters; __ subq(rsp, Immediate(kDoubleRegsSize)); for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); int offset = i * kDoubleSize; __ movsd(Operand(rsp, offset), xmm_reg); } // We push all registers onto the stack, even though we do not need // to restore all later. for (int i = 0; i < kNumberOfRegisters; i++) { Register r = Register::toRegister(i); __ push(r); } const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize + kDoubleRegsSize; // When calling new_deoptimizer_function we need to pass the last argument // on the stack on windows and in r8 on linux. The remaining arguments are // all passed in registers (different ones on linux and windows though). #ifdef _WIN64 Register arg4 = r9; Register arg3 = r8; Register arg2 = rdx; Register arg1 = rcx; #else Register arg4 = rcx; Register arg3 = rdx; Register arg2 = rsi; Register arg1 = rdi; #endif // We use this to keep the value of the fifth argument temporarily. // Unfortunately we can't store it directly in r8 (used for passing // this on linux), since it is another parameter passing register on windows. Register arg5 = r11; // Get the bailout id from the stack. __ movq(arg3, Operand(rsp, kSavedRegistersAreaSize)); // Get the address of the location in the code object if possible // and compute the fp-to-sp delta in register arg5. if (type() == EAGER) { __ Set(arg4, 0); __ lea(arg5, Operand(rsp, kSavedRegistersAreaSize + 1 * kPointerSize)); } else { __ movq(arg4, Operand(rsp, kSavedRegistersAreaSize + 1 * kPointerSize)); __ lea(arg5, Operand(rsp, kSavedRegistersAreaSize + 2 * kPointerSize)); } __ subq(arg5, rbp); __ neg(arg5); // Allocate a new deoptimizer object. __ PrepareCallCFunction(5); __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movq(arg1, rax); __ movq(arg2, Immediate(type())); // Args 3 and 4 are already in the right registers. // On windows put the argument on the stack (PrepareCallCFunction have // created space for this). On linux pass the argument in r8. #ifdef _WIN64 __ movq(Operand(rsp, 0 * kPointerSize), arg5); #else __ movq(r8, arg5); #endif __ CallCFunction(ExternalReference::new_deoptimizer_function(), 5); // Preserve deoptimizer object in register rax and get the input // frame descriptor pointer. __ movq(rbx, Operand(rax, Deoptimizer::input_offset())); // Fill in the input registers. for (int i = kNumberOfRegisters -1; i >= 0; i--) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ pop(Operand(rbx, offset)); } // Fill in the double input registers. int double_regs_offset = FrameDescription::double_registers_offset(); for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; i++) { int dst_offset = i * kDoubleSize + double_regs_offset; __ pop(Operand(rbx, dst_offset)); } // Remove the bailout id from the stack. if (type() == EAGER) { __ addq(rsp, Immediate(kPointerSize)); } else { __ addq(rsp, Immediate(2 * kPointerSize)); } // Compute a pointer to the unwinding limit in register rcx; that is // the first stack slot not part of the input frame. __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset())); __ addq(rcx, rsp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ lea(rdx, Operand(rbx, FrameDescription::frame_content_offset())); Label pop_loop; __ bind(&pop_loop); __ pop(Operand(rdx, 0)); __ addq(rdx, Immediate(sizeof(intptr_t))); __ cmpq(rcx, rsp); __ j(not_equal, &pop_loop); // Compute the output frame in the deoptimizer. __ push(rax); __ PrepareCallCFunction(1); __ movq(arg1, rax); __ CallCFunction(ExternalReference::compute_output_frames_function(), 1); __ pop(rax); // Replace the current frame with the output frames. Label outer_push_loop, inner_push_loop; // Outer loop state: rax = current FrameDescription**, rdx = one past the // last FrameDescription**. __ movl(rdx, Operand(rax, Deoptimizer::output_count_offset())); __ movq(rax, Operand(rax, Deoptimizer::output_offset())); __ lea(rdx, Operand(rax, rdx, times_8, 0)); __ bind(&outer_push_loop); // Inner loop state: rbx = current FrameDescription*, rcx = loop index. __ movq(rbx, Operand(rax, 0)); __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset())); __ bind(&inner_push_loop); __ subq(rcx, Immediate(sizeof(intptr_t))); __ push(Operand(rbx, rcx, times_1, FrameDescription::frame_content_offset())); __ testq(rcx, rcx); __ j(not_zero, &inner_push_loop); __ addq(rax, Immediate(kPointerSize)); __ cmpq(rax, rdx); __ j(below, &outer_push_loop); // In case of OSR, we have to restore the XMM registers. if (type() == OSR) { for (int i = 0; i < XMMRegister::kNumAllocatableRegisters; ++i) { XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i); int src_offset = i * kDoubleSize + double_regs_offset; __ movsd(xmm_reg, Operand(rbx, src_offset)); } } // Push state, pc, and continuation from the last output frame. if (type() != OSR) { __ push(Operand(rbx, FrameDescription::state_offset())); } __ push(Operand(rbx, FrameDescription::pc_offset())); __ push(Operand(rbx, FrameDescription::continuation_offset())); // Push the registers from the last output frame. for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); __ push(Operand(rbx, offset)); } // Restore the registers from the stack. for (int i = kNumberOfRegisters - 1; i >= 0 ; i--) { Register r = Register::toRegister(i); // Do not restore rsp, simply pop the value into the next register // and overwrite this afterwards. if (r.is(rsp)) { ASSERT(i > 0); r = Register::toRegister(i - 1); } __ pop(r); } // Set up the roots register. ExternalReference roots_address = ExternalReference::roots_address(); __ movq(r13, roots_address); __ movq(kSmiConstantRegister, reinterpret_cast(Smi::FromInt(kSmiConstantRegisterValue)), RelocInfo::NONE); // Return to the continuation point. __ ret(0); } void Deoptimizer::TableEntryGenerator::GeneratePrologue() { // Create a sequence of deoptimization entries. Label done; for (int i = 0; i < count(); i++) { int start = masm()->pc_offset(); USE(start); __ push_imm32(i); __ jmp(&done); ASSERT(masm()->pc_offset() - start == table_entry_size_); } __ bind(&done); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64