ELF>pB@ @8@dd ``!`! xx!x!$$PtdkkkllQtdRtd``!`!GNU9vyU !7s  IH A1cءHUeʈ`H@T)0 dD HX QgTPb )AB P@ ^@@( B#^D` { ( #%'(+,/0124567:>?@ACDFGHIJKMNOQSUVY[]abeghijkmopqsuvx{|~+l8b9gU.(zM|8^s`ҡɐ˷KjKٸ&m|l Wff@:#1Bu-p $0q+UFAD4,U…dV>,[Dnԭl)^0߶^~̙M3mHyZ̬I Mu΍K_/۾lEF4:PVHnP rrS'ΥXP+;U# j$Ӣ/Zt$ƛp|:2Q1Td_ [I\B9s[ :+-tKɳ;k￐ 5qXdK3.Irp[1oθtv[Og vSB}X W !#EX3.INkLIݶn3F@B;&0e pj!% `:GG|v[$?6fxL_䘡_?Gˆ&r SBEjle^4k Ch#(XI~˗a'_qS i&4yE|^^a`V7ҝXQv9gt~dk MzbEdq6{w%@>S/Mh_7PSIԷ.r̳ .}E!BR:㯨& 9   V  $ wa 8 D R"  yL  IW  0F!8  -* M   x  8 pye !0i  < d j  @k`!  Pa<  p[   zY y9 @  9  p1 t y 0H Yg  0m;. \ W y " p  06]X y  @6  0# p  0-  !}_ w - py  =S pI    0s> `}T v  ,*  @0' G@/    0D6  p% N  `;: xa k_^ `^( y Z$ P{F @I u K  H @ pC< N 0J | @QW d PF ]} y;   }- `  0 q ^ pn;1 `t. ! G P[ Т  2 <   DX  дpR xR j j+,  `  E9n x  + P]   py `9  81q  @* o= uNL @-  M / `st!z  qD 0lY @ ! Pu `?; o y ,J `c J r  6+' P i a !      p   PG @] " P  9  PI: Q2 \ 0K y P M SF   "# +  6V  `U # G =  _ Bu @R `\ G    0I t U< @T1 0e ZT' И l_j z Nu pC:  ` l3_ __gmon_start___init_fini_ITM_deregisterTMCloneTable_ITM_registerTMCloneTable__cxa_finalize_Jv_RegisterClassescompute_rho_estimatevec_norm_infadapt_rhoosqp_update_rhoset_rho_vecupdate_rho_vecswap_vectorscold_startupdate_xz_tildeupdate_xupdate_zprojectupdate_ycompute_obj_valquad_formvec_prodcompute_pri_resmat_vecvec_add_scaledvec_scaled_norm_infcompute_pri_tolcompute_dua_resprea_vec_copymat_tpose_veccompute_dua_tolis_primal_infeasiblevec_ew_prodis_dual_infeasiblehas_solutionstore_solutionunscale_solutionvec_mult_scalarupdate_infoosqp_tocupdate_statusc_strcpyreset_infovalidate_data__printf_chkputcharvalidate_linsys_solvervalidate_settingsputs_osqp_errorOSQP_ERROR_MESSAGEvec_norm_inf_diffvec_meanint_vec_set_scalarvec_add_scalarmemcpyprea_int_vec_copyvec_ew_reciprvec_ew_sqrtvec_ew_maxvec_ew_minvec_ew_max_vecvec_ew_min_vecmat_mult_scalarmat_premult_diagmat_postmult_diagmemsetmat_inf_norm_colsmat_inf_norm_rowsmat_inf_norm_cols_sym_triuosqp_set_default_settingsosqp_setupcallocosqp_ticcopy_settingsinit_linsys_solverprint_setup_headerosqp_solveosqp_start_interrupt_listenerosqp_is_interruptedosqp_end_interrupt_listenerprint_summaryfmodprint_headerprint_footerosqp_cleanupcsc_spfreeunload_linsys_solverosqp_update_lin_costosqp_update_boundsosqp_update_lower_boundosqp_update_upper_boundosqp_warm_startosqp_warm_start_xosqp_warm_start_yosqp_update_Punscale_dataosqp_update_Aosqp_update_P_Aosqp_update_max_iterosqp_update_eps_absosqp_update_eps_relosqp_update_eps_prim_infosqp_update_eps_dual_infosqp_update_alphaosqp_update_warm_startosqp_update_scaled_terminationosqp_update_check_terminationosqp_update_deltaosqp_update_polishosqp_update_polish_refine_iterosqp_update_verboseosqp_update_time_limitproject_normalconelimit_scalingcompute_inf_norm_cols_KKT__stack_chk_failosqp_versionLINSYS_SOLVER_NAMEprint_polishclock_gettimeform_KKTcsc_spalloctriplet_to_csrtriplet_to_cscupdate_KKT_Pupdate_KKT_Aupdate_KKT_param2csc_matrixcsc_cumsumcsc_pinvprea_copy_csc_matcsc_donecsc_sympermcsc_to_triulh_load_pardisolh_unload_pardisoinit_linsys_solver_pardisoinit_linsys_solver_qdldlsigemptysetoactsigactionlh_load_libdlopendlerrorlh_unload_libdlcloselh_load_symdlsym__ctype_toupper_loc__ctype_tolower_locamd_l1amd_l2amd_l_postorderamd_l_aatamd_l_controlSuiteSparse_configamd_l_defaultsamd_l_infoamd_l_orderamd_l_validSuiteSparse_mallocSuiteSparse_freeamd_l_preprocessamd_l_post_treeSuiteSparse_divcomplexSuiteSparse_hypotSuiteSparse_reallocSuiteSparse_ticSuiteSparse_tocSuiteSparse_timeSuiteSparse_versionfree_linsys_solver_qdldlupdate_linsys_solver_matrices_qdldlQDLDL_factorupdate_linsys_solver_rho_vec_qdldlsolve_linsys_qdldlQDLDL_etreepermute_xpermutet_xQDLDL_solveQDLDL_LsolveQDLDL_Ltsolvesolve_linsys_pardisofree_linsys_solver_pardisoupdate_linsys_solver_matrices_pardisoupdate_linsys_solver_rho_vec_pardisomkl_set_interface_layermkl_get_max_threadslibm.so.6librt.so.1libdl.so.2libc.so.6_edata__bss_start_endlibosqp.soGLIBC_2.2.5GLIBC_2.3.4GLIBC_2.14GLIBC_2.4GLIBC_2.3   ui -   ui -   ui -  ti 9 E ii P ui - ii Z `!@Ch!C`!`!!1P!JP!P!P!P!fP!8Q!^Ȥ!^x!V!!H!D!%!! !!!&ȟ!П!E؟!!*!!!!!!!K!! !(!20!8!g@!H!P!X!`!h!p!x!!3!!q![!0!!!!Ƞ!AР!ؠ!U!!x!m!y!!!Q! !(!0!8!k@!H!P!:X!M`!{h!p!@x!!!Y!>!!B! !F! !Iȡ!hС!-ء!X!! !!!8!u!!b !(!s0!8!@! H!aP!RX!`!'h!pp!x!<!!!!!!!9!!}Ȣ!Т!آ!!!.!!5!!c!! !(!r0!=8!@!]H!nP!JX!\`!Oh!p!_x!j!z!L!e!C!!!P!!Sȣ!У!أ!d!!!"!!!!T!f !(!0!8!@!H!`P!X!HH f!HtH5Rf!%Tf!@%Rf!h%Jf!h%Bf!h%:f!h%2f!h%*f!h%"f!h%f!hp%f!h`% f!h P%f!h @%e!h 0%e!h %e!h %e!h%e!h%e!h%e!h%e!h%e!h%e!h%e!h%e!h%e!hp%e!h`%e!hP%e!h@%ze!h0%re!h %je!h%be!h%Ze!h%Re!h %Je!h!%Be!h"%:e!h#%2e!h$%*e!h%%"e!h&%e!h'p%e!h(`% e!h)P%e!h*@%d!h+0%d!h, %d!h-%d!h.%d!h/%d!h0%d!h1%d!h2%d!h3%d!h4%d!h5%d!h6%d!h7p%d!h8`%d!h9P%d!h:@%zd!h;0%rd!h< %jd!h=%bd!h>%Zd!h?%Rd!h@%Jd!hA%Bd!hB%:d!hC%2d!hD%*d!hE%"d!hF%d!hGp%d!hH`% d!hIP%d!hJ@%c!hK0%c!hL %c!hM%c!hN%c!hO%c!hP%c!hQ%c!hR%c!hS%c!hT%c!hU%c!hV%c!hWp%c!hX`%c!hYP%c!hZ@%zc!h[0%rc!h\ %jc!h]%bc!h^%Zc!h_%Rc!h`%Jc!ha%Bc!hb%:c!hc%2c!hd%*c!he%"c!hf%c!hgp%c!hh`% c!hiP%c!hj@%b!hk0%b!hl %b!hm%b!hn%b!ho%b!hp%b!hq%b!hr%b!hs%b!ht%b!hu%b!hv%b!hwp%b!hx`%b!hyP%b!hz@%zb!h{0%rb!h| %jb!h}%bb!h~%Zb!h%Rb!h%Jb!h%Bb!h%:b!h%2b!h%*b!h%"b!h%b!hp%b!h`%"]!f%J]!f%R]!f%]!fH=b!Hb!UH)HHvH\!Ht ]fD]@f.H=Yb!H5Rb!UH)HHHH?HHtH ]!Ht ]f]@f.=b!u'H=\!UHt H=Ba!EH]a!@f.H=)Z!H?u ^fDHy\!HtUH]@ATUSHH HHXL`H(LH{PHD$}H{@LD$kH{`L$Z$HL$H_Hx X ^L$*H{pH$$H{hH_$T$$\$H_L$ XI ^^Qf.z4Y  f.v] H []A\@H _[]A\f($$$$fDSH7HHP(f(Yf.w ^1f.vH6HHBx[L i Af.]Z HAHz-o LO1LG(Hr(H 5 HJ09 =9 f(% 6f.v= I A HH9B~L f.w\f.v;Af(IY^Af(HH9BAIf(A^f(x@_LIrH-X MJ(E1MB0HW(1 ' f(=# % Mf.v`H:t3Hw HA Hw   IrHHH9}qA H Af.w\f.v`H:tHf(HHHAHwY^Hw  IrH9|It]1f.H:eHL_HA f(L_ ^IrA A(fHGHwHP HDf.HHHHSHHfH0H0HH{@fHpHH{8[fHpAWAVAUATUSL'HwHI$H LGPHNML$ LIPH9AI9A IQH9I9 D!H fHIJH9IRH9FLHHM9rL9K4t\A[]A\A]A^A_fD1fD\AHH9uD1fDAB`f(\AYY XHH9uHHPHLO Hw@AWAVAUATMYLfLGXUSL9LW8HAM9HAHoHE MXL,HD$L9AM9MuD JD5A!HAE!MZDL9AM9AE Ly`A!HI9HYhAH9D AIL9L9AAEcHT$L$_ff.ATUISHHHHHwPHHx MID$(0HT$Ht$HL$HHHHLLIHLIHѲMHMHHwH*5DHAWAVAUATUSH8HHHHLJHHHD$ 莱HHy脱HHGHy8 HC0L{PE1H$HCXHD$HC@HD$fDH<$L|Ht$H|$mHHͬHH]AHHhH`Pd$aXD$Hff.zt f.1HHtzHHHHumHt@HH ףp= ףHHH?HHH)HHHH95H+HT$ 1HHE1N1fHE1E1HytEHq HHHHHu+EHzHHf.HH9i8jMu+M\HtH1H肫H|$ zHHtHHLe(IIHpHH襬HEXHHxxt H(HRG`XGXXGhGpHHǃHǃH1 ;H8H[]A\A]A^A_fHh`l$XD$fDHH ףp= ףHHH?HHH)HHHH9t H HT$ 1HHE1AAHHHdHHHPYI0f.v|HHL$(HffH*H*YXf(T$T$HL$(\H,HA HHA H9HMHA HyoHq Hb%DHT$ 1HHA H1HHcHAADHT$ 1HH֬f |H*XgfGPXGXXGhGpHǃ@HHH=A脨H0H@ۭ}fDHH@`!HHqHHs0HE8THҭfH谧H(HLe(UH芧HH=HHHHu6MHT$ Hu1HUHHpx萪qH=4OHtH(HHH5f$HEH51H51 (HLHHLl$ USHHAHHHt]HxHtHHxHtץHHx HtvHHx(HteHHx0HtTHHIHHt\HxHt /HHx Ht HHxHt HHx(Ht HHHHtФHHt迤HHt认H{Ht HGHtH1Ht xh4HHCHHx(Ht fHCHx0Ht THCHxHt BHCHx Ht 0HCHx8Ht HCHx@Ht HCHxHHt HCHH{HtH{ HtңH{(HtģH{0Ht趣H{@Ht訣H{HHt蚣H{PHt茣H{XHt~H{8HtpH{`HtbH{hHtTH{pHtFH{xHt8HHt'HHtHHtHHtHHtHHt1H8Ht ʢHHxHt 赢HH覢HHt蕢HHt脢H|HH[]f1HH[]@HUSHHHHH衦HHHp HHHxu9H腤HHX@`@`H1[]HHHp HzHH+HHHx H0qHHLJH@`6fH5Y?Df.HATUSH IHHH营I $HQH~-Ef.1Df.HH9uHq(H:I$HHPHp0&I$HxI$&L螣I$H订I$X@`@`H[]A\@HH5<16H51# Y[]A\HHLJH@`fI$Hp(HHI$HHxPI$Hp0HHI$HHx0H5銣f.H^USHH+HHHHHHPHp(辡HHxHHPH~5HH(Hp0f.wf1f.f.wLHH9uHHHHHX@`@`HH[]DH1H51莤H51{ 豞H[]DHHp(HHHHHxҞDHHLJH@`H5¼H^USHH+HHHaHHHPHp0>HHxHHPH~5Hp(HH0f.wf1f.f.wLHH9uHHwHH舟HX@`@`HH[]DHqH51H51 1H[]DHHp0HHHHHxRDHHLJH@`H5鈠HUSHHHHt]HHHHs0HȞHHs8HHP赞HHxu7HHS@1Hs0HxH1[]HǀHHHs0Hz HHcHHs8HHHHHx(EHH{8HpH芡nDH5ɹDf.HSHHHtBHHHs0HHHxu2HHS@1Hs0Hx̡1[HǀHHHs0Hz HHs믐H5ϞDf.HSHHHtbHHHs8HPHHxt9HHs8HHHHHx(HH{8HpH81[@HǀH5)Df.HAVAUATUSHHHIHIiHH@HPH@L4M9} HHHpHHM~0HH@HP(1fLDAHI9BuH}H HCHQHqHPHHٛHHdHX@`@`H[]A\A]A^HHLJH@`HvH؞HHHpMEHH@Hx(ID$H9HGI90I&LH1H--------HD$@-H$HD$HD$HD$HD$ HD$(HD$0HD$8D$AH51ĄHMHUH5u1詄H5`D1蓄H5`1耄ShHn H5NH1_ID$HP(HtH5B1=H5=1*KHH5C@ KXH5CPH5ЃH{H5ŝ1貃K`H5ѝC蒃S8H5Н1|HHH51Yff.smH{*H51HH=}HH51H{xH51Ƃff.H=} |HD$HdH3%(HP[]A\A]A^H=T}H5L1EzH5 1-DH=} H5p1H5ځ7DH5y躁xDH5ɛ1蝁}USH5H1HHkC8H5PC@H55CHH5dHH5GHu?C`XCXH5!π {HDžH[]CPfUSHH5H1HHvH5C8[C@H5@CHH5o%H5s1Hu8C`XCXH5:XChH []zCPfUSH HHyHSH51HtH{(toH51rHC(HHvtCpH5 IH5+H [][yHC0Ht>HyH=yqC8H5y~lH=y8Df.SH}HHSCHPHS@C(HP@(HS C0@0HP HS8C@@@HP8ShCH@HPhHSxCP@PHPxCX@XC`@`Cp@pHHHHHHHHHH[ÐH3}HwSH}HKHsHCH+HH)xff[H*H*^XfHfdH*H*X\H,AWAVMAUATIUSHLAH8HGHt$HT$$HVHL$ It$IL$H<HHsHKHHH}HHD$H|$p$ID$H<{Ht$pH|$x$HHI|$ID$Lt$(1Lt$x1L$$L@DI@IH9 H9Ht$H<$HL^ LVLN(Lo Lg(,@H9H{IIH9HHL9~mH4ITHALLxI<1II tH\H9uXH|$ptH|$pI6HLHL $LT$,HIMw IO(I4LHHHH9uHT$HH $LT$LL$DsH $1HtqLT$LL$MfDIAH4HHzH>ItI4IHH9u͹H(HL[]A\A]A^A_1=mDIH HHrH1ILHH9I ufIAH4HHzH>ItHH9I4u1yHT$HTrbDf.AWAVAUATUSH(LO(HGHo0Ht$HwLg MHLoHE1HL $HD$"rHIǾ2nMH>HL $LT$,HIMw IO(I4LHHHH9uHT$HH $LT$LL$tqH $1HtqLT$LL$MfDIAH4HHzH>ItI4IHH9u͹H(HL[]A\A]A^A_1mkDIH HHrH1ILHH9I ufIAH4HHzH>ItHH9I4u1yHT$HpbDf.AWAVAUATIUSIH(HGLOLw(HH_ IHD$K1MLE1H!LL $MpLHD$[lH|$HHL $HD$LXL@ Lx(HD$HL4$11IDMI9IL9MHHLkCf.AUATUSHLgL;gHGLHALLJHkHI1M~xLU11fDIMDL9}SLM HfDI<H9+ME IIHMgHB1Lt$E1M\$H$I@K K4OLL9ImI\$ HALJ LIH9M.ImHH<eHI\HIU H@H9HBI9H HHH:HHHL9u1E1HLT$pL\$xL9}:HI+=fI9E1f.KH<L:IHt7H@HHM9rHt$IL9t 'B^ B HMHPH1ILLPHPH HIHIVLHHD$IFHD$(IFHIUHD$@IEHHD$0HK@IT$ E1It$I|$IHD$ HIt$H{@kH|$HD$HMIT$ID$HHLI9u"EIIIHLI9t MI:uIH[]LTHL9|HH9{IHHH9x11HHH9~I II)I9}H1fAWAVAUATUSHHLt$8Hl$XHH|$Ht$ILl$hHL$HT$LD$H|$@Ht$PLd$`HL$pLHIHD$~=LT$1IHIITAIHHIHI9uHD$ff.z%1f.f(^H|$HD$HD$H8IHGAHf(LHD$Ht$HDHH9Ht$H|$HLL$LL$hLt$8IHLL1HD$fIAH9IAƀ:cIEH H9HI< ? f.HILHBH HtH9} I< ?uH|$HHD$HL<8H<IMH 0HI9AI9AFH<IOHL$LɃHH9HGHIDLFLD$I9H|$HH)HHH|$HI4HHLHH5.1$ ZH[]A\A]A^A_fD1fDAAYXHI9uh@1fDDHH9u#Df.HSHHLJLHHHHLAPLPPHAPLAPLAPLAPLs8s@P<HPHH{0HtlH{8HtH{@HtH{HHtH{PHtH{XHtHHtHHtHHtHHtH[fH-H5L1FH5,1- cfDfDUSHHHHLHH0C`QHH{0HHLHHHHAPPLPHLHǃPHPHPHPHC0s8s@p(uHHX[]ATUSHOxHLGXHI@H9HFI9<H2HHHD$ HH8[]A\A]A^A_fDASULUARHAUPLHC0AWLs8s@Hǃp(LD$hHT$xHHPHtH$H5^1XH5K$:fDHE1HD$IGD$(HT$H %.4eadaptive_rho must be either 0 or 1adaptive_rho_interval must be nonnegativeadaptive_rho_fraction must be positiveadaptive_rho_tolerance must be >= 1polish_refine_iter must be nonnegativeat least one of eps_abs and eps_rel must be positivealpha must be strictly between 0 and 2scaled_termination must be either 0 or 1check_termination must be nonnegativewarm_start must be either 0 or 1time_limit must be nonnegativevalidate_settingsvalidate_dataư>.AKH952T52TE-C6?@@?Aꌠ9Y>)F$@ꌠ9Y>)@??ERROR in %s: %s Problem data validation.Solver settings validation.Memory allocation.Linear system solver not available. Tried to obtain it from shared library.Linear system solver initialization.KKT matrix factorization. The problem seems to be non-convex.Solver workspace not initialized.quad_form matrix is not upper triangularquad_form?Solver interruptedFailed rho updatealpha must be between 0 and 2lower bound must be lower than or equal to upper boundupper bound must be greater than or equal to lower boundnew number of elements (%i) greater than elements in P (%i)new KKT matrix is not quasidefinitenew number of elements (%i) greater than elements in A (%i)eps_prim_inf must be nonnegativeeps_dual_inf must be nonnegativewarm_start should be either 0 or 1scaled_termination should be either 0 or 1check_termination should be nonnegativepolish should be either 0 or 1verbose should be either 0 or 1osqp_update_time_limitosqp_update_verboseosqp_update_verboseosqp_update_polish_refine_iterosqp_update_polish_refine_iterosqp_update_polishosqp_update_polishosqp_update_deltaosqp_update_deltaosqp_update_check_terminationosqp_update_check_terminationosqp_update_scaled_terminationosqp_update_scaled_terminationosqp_update_warm_startosqp_update_warm_startosqp_update_alphaosqp_update_alphaosqp_update_eps_dual_infosqp_update_eps_dual_infosqp_update_eps_prim_infosqp_update_eps_prim_infosqp_update_eps_relosqp_update_eps_relosqp_update_eps_absosqp_update_eps_absosqp_update_max_iterosqp_update_max_iterosqp_update_rhoosqp_update_rhoosqp_update_P_Aosqp_update_P_Aosqp_update_Aosqp_update_Aosqp_update_Posqp_update_Posqp_warm_start_yosqp_warm_start_xosqp_warm_startosqp_update_upper_boundosqp_update_upper_boundosqp_update_lower_boundosqp_update_lower_boundosqp_update_boundsosqp_update_boundsosqp_update_lin_costosqp_solveosqp_solveosqp_setup?@?MbP??)@9@@0.6.2iter timeproblem: nnz(P) + nnz(A) = %i settings: linear system solver = %s (%d threads), rho = %.2e (adaptive)sigma = %.2e, alpha = %.2f, max_iter = %i scaling: on, scaling: off, scaled_termination: onscaled_termination: off warm start: on, warm start: off, polish: on, polish: off, time_limit: %.2e sec time_limit: off%4i %12.4e %9.2e %9.2esplsh%4s --------status: %s number of iterations: %i optimal objective: %.4f run time: %.2es optimal rho estimate: %.2e objective pri res dua res rho OSQP v%s - Operator Splitting QP Solver (c) Bartolomeo Stellato, Goran Banjac University of Oxford - Stanford University 2021 variables n = %i, constraints m = %i eps_abs = %.1e, eps_rel = %.1e, eps_prim_inf = %.1e, eps_dual_inf = %.1e, check_termination: on (interval %i), check_termination: off, time_limit: %.2e sec, solution polish: successfulsolution polish: unsuccessfuleAMatrix M not squareUpper triangular matrix extraction failed (out of memory)csc_to_triuiterative_refinement|=qdldlmkl pardisono library name givenError while loading dynamic library %s: %sCannot find symbol %s in dynamic library, error = %s((X0lh_load_symlh_load_lib@May 4, 2016 no rows treated as dense size of AMD integer: %d AMD version %d.%d.%d, %s: approximate minimum degree ordering dense row parameter: %g (rows with more than max (%g * sqrt (n), 16) entries are considered "dense", and placed last in output permutation) aggressive absorption: yes aggressive absorption: no status: OK out of memory invalid matrix OK, but jumbled unknown AMD version %d.%d.%d, %s, results: n, dimension of A: %.20g nz, number of nonzeros in A: %.20g symmetry of A: %.4f number of nonzeros on diagonal: %.20g nonzeros in pattern of A+A' (excl. diagonal): %.20g # dense rows/columns of A+A': %.20g memory used, in bytes: %.20g # of memory compactions: %.20g The following approximate statistics are for a subsequent factorization of A(P,P) + A(P,P)'. They are slight upper bounds if there are no dense rows/columns in A+A', and become looser if dense rows/columns exist. nonzeros in L (excluding diagonal): %.20g nonzeros in L (including diagonal): %.20g # divide operations for LDL' or LU: %.20g # multiply-subtract operations for LDL': %.20g # multiply-subtract operations for LU: %.20g max nz. in any column of L (incl. diagonal): %.20g chol flop count for real A, sqrt counted as 1 flop: %.20g LDL' flop count for real A: %.20g LDL' flop count for complex A: %.20g LU flop count for real A (with no pivoting): %.20g LU flop count for complex A (with no pivoting): %.20g "@ @& .>Error in KKT matrix LDL factorization when computing the elimination tree.Matrix is not perfectly upper triangular.Integer overflow in L nonzero count.Error in KKT matrix LDL factorization when computing the nonzero elements. There are zeros in the diagonal matrixError in KKT matrix LDL factorization when computing the nonzero elements. The problem seems to be non-convexError forming and permuting KKT matrixLDL_factorinit_linsys_solver_qdldlError in forming KKT matrixError during linear system solution: %dError during MKL Pardiso cleanup: %dError during symbolic factorization: %dError during numerical factorization: %dsolve_linsys_pardisoinit_linsys_solver_pardisofree_linsys_solver_pardisoPardiso not loaded correctlylibmkl_rt.soMKL_Set_Interface_LayerMKL_Get_Max_Threadspardiso;lpP0H`00 @@ 0@p 8 @ ` ( p 0 0 H 0` px      `0 ` P h P h P  XP` @8!`),H-/12X3@447P:?XpAApBBpCCD(E@EXFpFGGHpHH II0Ip@M0NNNN0@OHpS`T@UPV PW@`WXWx]^@^^^X0_x0```(PaPaxbceHPjkv8 vP@vh`vvwPw`w x(0x@zp} 0 ТX H` 08 0 ` p г @!p0! p!!""0"@(#pX#0### 8$`$%X%`%&0&P'p 'H'zRx $ FJ w?;*3$"DD:BAA G@  AABE D  EABA XAV9 @ArDBBB B(A0A8| 0A(B BBBI T\`QBB B(A0A8.0A(B BBBH8dZBB B(M0A8 0A(B BBBK M0A(B BBB Mu$<WAAJ0HAA4dAAL V AAJ ZAA$0AG0h AO <BAD J0  AABL l AAB$1AG0 AN ,,<AG 6 CG  AG $\AG0P AG $,TAW H Y G D L LBBB B(A0A8GP 8A0A(B BBBC  4(EbdTBAA G@  FABG i  AABC ~  FABI   FABF DpEAA  ABE  FBA x FBH H $@AD c AG D+K_,dQAE AB_YX_3; ;$<,TDBAI g ABJ knkr(s., QAE AB$,NFF aAB T(l, QAE AB, QAE ABYLFSBB A(E0(A BBBG04dEDD  ABG jABL-BBD A(J@ (A ABBK  (A ABBA ,BAA  ABA , AAJ  AAA ,L BAA AB4| ` AAH  AAH {EA 8 d kBBB B(D0A8Mp 8C0A(B BBBA T 8A0A(B BBBF l4 KBB B(A0A8DpR 8D0A(B BBBJ Qp4 H\AAD B DAC FDA4 pJAD m CAH hD HKAA  ABE x FBH mD\ xJAD  DAF { FAF GD xJAD  DAF { FAF G4 !JAG a CAI p$$ !JM I p$L "Jq E Plt #KBB A(A0 (A BBBH N (F BBBF |Q0l x%KBB A(A0 (A BBBH N (F BBBF |Q0T 'BBB B(A0A8D` 8F0A(B BBBH  8D0A(B BBBK r 8F0A(B BBBG  8M0A(B BBBE , 0,NG 2 AH s-yrr4H.yrrL.yrrd/yrr|/yrr$/Dk A @ H PP0yrr0yrr 1yrr1yrr1Br4h2yrrL2yrrd83YsN|3C3`4\<H4NBBE A(D0n(G BBBLX4pBBE B(A0A8G`< 8A0A(B BBBA Tx7AtH8sAq88#8KK{D8-BBB A(D0D5 0A(A BBBD ,$<AAP  AAD ,T=AAW  FAH ,H>AAO  FAH (?A@ @}Eu V L `@BBE B(D0A8Pp 8A0A(B BBBF \EttF9@F6DhF]BBE B(F0A8P@p8A0A(B BBBFBFqd FBBE B(D0A8T@ 8A0A(B BBBG g 8C0A(B BBBE tHGD,GPFAR mAAD $GAAO hDA$GaAAJ RAA, @H<BAD _ ABG L<PHBBB B(A0A8D` 8G0A(B BBBL LIBBB B(A0A8D` 8G0A(B BBBL LPKBBB B(D0A8G` 8D0A(B BBBO L,O[BBA A(D0 (D ABBA { (C ABBA L|PG BBE B(A0A8D  8A0A(B BBBA ZZZ Z$,ZzAGk AA T8[NGA A th[,`[AAD ^ DAG [DIL[eBBE B(H0A8Q 8A0A(B BBBH t$^BBJ B(D0A8JJGDDDDGGBk8A0A(B BBBDt``BBB B(A0A8JBhH 8A0A(B BBBA @ 8A0A(B BBBE Lz BBB B(D0A8Jp 8A0A(B BBBD 4dX~FAAD0 MAM t AAJ p84 AAGP nUF D AAJ pBBE B(D0A8P 8A0A(B BBBA |BAFYbUAQBDL\tL _BBB B(A0A8DP 8A0A(B BBBH \0EBB B(A0A8 0A(B BBBA T0A(B BBB,<ЍZDjALl,D r J P H b F f E MDAAL0 DAK  DAI T DAG #IP,$DG0L AA lID0 A  (*J<8AAJ ](F0F8F@FHCPFXD`QEAL}BAA (F0F8F@FHCPFXD`Q E ABI Tؕ# BBE B(D0A8OyHHBNFFFFCFARi 8C0A(B BBBG O 8F0A(B BBBJ GSHI 8F0A(B BBBF L 8C0A(B BBBH < *T8*LlPBBB B(A0A8JP8 8C0A(B BBBH ,'JC AH \\BBB B(A0A89 0A(B BBBD U0H(B BBBLp]dVL|+BBE B(D0A8P@ 8G0J(B BBBL 1BBI B(H0A8X@SHJPAXL`HhHpHxCCGP@ 8A0A(B BBBF B 8F0A(B BBBG D\JzH A(I0I8I@IHJPCXA`I N HDجAAJ b(A0H8Z@HHHPHXG`ChCpPAAL`BAA  (A0H8Z@HHHPHXG`ChCpI H ABC < ; BBE B(D0A8OpxHBBTp:xZABGAGCCCSpr 8A0A(B BBBG BxAHBIAIFCNZp xDHHO C 8F0A(B BBBF \$!BBB B(A0A8DPc 8A0A(B BBBE q8F0A(B BBB!8DJ!@DL$!HDx D I G !@CC    " 9 ,J`!h!oX d ! ,)0 o(oo$'o x!9999::&:6:F:V:f:v:::::::::;;&;6;F;V;f;v;;;;;;;;;<<&<6<F<V<f<v<<<<<<<<<==&=6=F=V=f=v=========>>&>6>F>V>f>v>>>>>>>>>??&?6?F?V?f?v?????????@@&@6@F@V@f@v@@@@@@@@@AA&A6AFAVAfAvAAAAAAAAABB&B6BFB`!1PJPPPPfP8Q^^GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.12) 5.4.0 20160609X$'(), 9 9 PB pB ,J@Jkpp`!h!p!x!x!!`! ! p! pB B. CD !Sh!z @C`!xO`OQ HY 8Y (Y *Y8XJXXXjXxPXpX@X XXWWWWWW"W4WB@WT`WbWt WVVVV@V`VV VUU"U4UB@UT`UbUt UTTTT@T`T T^ %.^<FN `[$!hv_ _ %:LPi^@i px0jpjPj8!j0!(!@!%`3p!?`!Lx!Ukh!t! -* p1 `;   d  `?; %7 `N i~ ` 0K B M t  ` 0I  L  ^ Z$ И' @ : ]E PaW P`r 9 @6 x 0eJ  = y  "# )  9  0-L !S   ^  }-l  <u  l_  @R$  qD  G@  E9  @-  J  ,J    Q     0lY)  W<  `}E  x]  y|  `\    DX  py  #   P[     py  r-  P 7  `^(B  06]O !0b  Pp  0#   p[  y  81  w   y  0F   pI!  PF0  @  y^  o    k_  N   6V      0m;    l3'  pC/  D  `t.M  o\  G i  j+u   @    uN  d  @  q    P  z; `H IY Pm \  G y \ P p K дp S a zY  t y* 0H: ТH!Mh N j y @*  pn;! p y : 8I @V `i y P{F <!8 u !} ,* @T1  K y) 5 0sF |N b pp Y 6+1   @0'  0D @k py  `s x `! 0 `! ; U<P  Zl vw 0 PI" 9 p @QW _ M pC:$ 6 HU ZTd @] r!crtstuff.c__JCR_LIST__deregister_tm_clones__do_global_dtors_auxcompleted.7594__do_global_dtors_aux_fini_array_entryframe_dummy__frame_dummy_init_array_entryauxil.c__FUNCTION__.5413__FUNCTION__.5429error.clin_alg.c__FUNCTION__.5171osqp.c__func__.5634__func__.5644__FUNCTION__.5647__func__.5658__FUNCTION__.5667__func__.5666__FUNCTION__.5678__func__.5677__FUNCTION__.5689__func__.5688__func__.5698__func__.5703__func__.5708__FUNCTION__.5719__func__.5718__FUNCTION__.5736__func__.5735__FUNCTION__.5757__func__.5756__FUNCTION__.5777__func__.5776__FUNCTION__.5786__func__.5785__FUNCTION__.5792__func__.5791__FUNCTION__.5798__func__.5797__FUNCTION__.5804__func__.5803__FUNCTION__.5810__func__.5809__FUNCTION__.5816__func__.5815__FUNCTION__.5822__func__.5821__FUNCTION__.5828__func__.5827__FUNCTION__.5834__func__.5833__FUNCTION__.5840__func__.5839__FUNCTION__.5846__func__.5845__FUNCTION__.5852__func__.5851__FUNCTION__.5858__func__.5857__func__.5863proj.cscaling.cutil.ckkt.ccs.c__FUNCTION__.5033polish.c__func__.5224lin_sys.cctrlc.chandle_ctrlcint_detectedlib_handler.c__FUNCTION__.5833__FUNCTION__.5873amd_1.camd_2.camd_aat.camd_control.camd_defaults.camd_info.camd_order.camd_post_tree.camd_postorder.camd_preprocess.camd_valid.cSuiteSparse_config.cqdldl_interface.c__FUNCTION__.5187__FUNCTION__.5143qdldl.cpardiso_interface.c__FUNCTION__.5025__FUNCTION__.4991__FUNCTION__.5010pardiso_loader.cfunc_pardisofunc_mkl_set_interface_layerfunc_mkl_get_max_threadsPardiso_handle__FRAME_END____JCR_END____dso_handle_DYNAMIC__GNU_EH_FRAME_HDR__TMC_END___GLOBAL_OFFSET_TABLE_permutet_x__ctype_toupper_loc@@GLIBC_2.3QDLDL_factorfree_linsys_solver_pardisoosqp_versiontriplet_to_cscvalidate_settingsinit_linsys_solver_pardisofree@@GLIBC_2.2.5SuiteSparse_divcomplexmat_inf_norm_cols_sym_triuputchar@@GLIBC_2.2.5lh_load_libupdate_xcsc_spfreeupdate_zvec_ew_prodosqp_update_Posqp_set_default_settingsosqp_warm_start_ITM_deregisterTMCloneTablehas_solutionosqp_update_boundsinit_linsys_solvercsc_matrixprea_copy_csc_matcsc_pinvputs@@GLIBC_2.2.5sigaction@@GLIBC_2.2.5update_KKT_Aupdate_KKT_param2osqp_update_upper_boundlh_load_symupdate_linsys_solver_rho_vec_pardisoosqp_update_scaled_terminationinit_linsys_solver_qdldlamd_l_post_treesolve_linsys_qdldl_edataamd_l_infomat_tpose_veccsc_donevec_norm_inf_diffcompute_pri_tolcold_startset_rho_vecprint_setup_headerlh_unload_pardiso_finiosqp_solvecompute_pri_rescsc_symperm__stack_chk_fail@@GLIBC_2.4vec_norm_infis_dual_infeasibleosqp_tocosqp_update_lower_boundosqp_update_polish_refine_iterosqp_cleanupSuiteSparse_hypotadapt_rhoosqp_update_max_iterc_strcpymat_inf_norm_rowscsc_to_triuosqp_update_alphaosqp_update_polishosqp_update_eps_dual_infprea_vec_copyquad_formreset_infoQDLDL_LsolveSuiteSparse_configcopy_settingsSuiteSparse_freememset@@GLIBC_2.2.5SuiteSparse_tocosqp_update_verbosesolve_linsys_pardisovec_ew_max_vecosqp_update_eps_absamd_l_controlfmod@@GLIBC_2.2.5lh_load_pardisoupdate_rho_vecosqp_update_P_Aosqp_update_check_terminationamd_l_preprocessSuiteSparse_versionvec_scaled_norm_infosqp_end_interrupt_listenercalloc@@GLIBC_2.2.5QDLDL_Ltsolveosqp_update_lin_costtriplet_to_csrint_vec_set_scalarmat_inf_norm_colsvec_meanprojectunload_linsys_solvervec_prodvec_add_scalarswap_vectors_osqp_errorsigemptyset@@GLIBC_2.2.5print_footeramd_l1vec_ew_sqrtvalidate_linsys_solver__gmon_start__osqp_warm_start_yprea_int_vec_copymemcpy@@GLIBC_2.14form_KKTosqp_ticosqp_start_interrupt_listenerprint_polishSuiteSparse_timeosqp_is_interruptedupdate_infolimit_scalingupdate_yupdate_linsys_solver_matrices_qdldldlopen@@GLIBC_2.2.5compute_dua_resmalloc@@GLIBC_2.2.5validate_datamat_premult_diagupdate_KKT_Posqp_update_deltaupdate_xz_tildeosqp_update_A_endclock_gettime@@GLIBC_2.2.5compute_inf_norm_cols_KKTvec_add_scaledosqp_update_warm_startdlclose@@GLIBC_2.2.5free_linsys_solver_qdldlrealloc@@GLIBC_2.2.5__bss_startvec_mult_scalarosqp_update_eps_prim_inf__printf_chk@@GLIBC_2.3.4amd_l_defaultsunscale_dataproject_normalconeosqp_update_rhomat_postmult_diagupdate_linsys_solver_matrices_pardisoOSQP_ERROR_MESSAGEvec_ew_maxupdate_linsys_solver_rho_vec_qdldlpermute_xcompute_dua_tolprint_headermat_mult_scalaramd_l_validunscale_solutionmat_vec_Jv_RegisterClassesprint_summaryosqp_update_time_limitQDLDL_solveQDLDL_etreeamd_l_ordercsc_cumsumosqp_setuposqp_update_eps_rellh_unload_libvec_ew_reciprvec_ew_min_vecoactcsc_spallocSuiteSparse_tic_ITM_registerTMCloneTableis_primal_infeasibleamd_l_aatsqrt@@GLIBC_2.2.5vec_ew_minSuiteSparse_reallocdlsym@@GLIBC_2.2.5__cxa_finalize@@GLIBC_2.2.5_initamd_l2compute_obj_valamd_l_postorderSuiteSparse_malloccompute_rho_estimatedlerror@@GLIBC_2.2.5osqp_warm_start_x__ctype_tolower_loc@@GLIBC_2.3store_solutionupdate_statusLINSYS_SOLVER_NAME.symtab.strtab.shstrtab.note.gnu.build-id.gnu.hash.dynsym.dynstr.gnu.version.gnu.version_r.rela.dyn.rela.plt.init.plt.got.text.fini.rodata.eh_frame_hdr.eh_frame.init_array.fini_array.jcr.dynamic.got.plt.data.bss.comment$.oh8 XXh@d Ho$'$'Uo((d))0nB,, x99s99~PBPB pBpB,J,J @J@J kklpppp!`!`h!hp!px!xx!x!``!`  ! 05%HX