# ******************************************************************************* # OpenStudio(R), Copyright (c) 2008-2021, Alliance for Sustainable Energy, LLC. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # (1) Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # (2) Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # (3) Neither the name of the copyright holder nor the names of any contributors # may be used to endorse or promote products derived from this software without # specific prior written permission from the respective party. # # (4) Other than as required in clauses (1) and (2), distributions in any form # of modifications or other derivative works may not use the "OpenStudio" # trademark, "OS", "os", or any other confusingly similar designation without # specific prior written permission from Alliance for Sustainable Energy, LLC. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND ANY CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S), ANY CONTRIBUTORS, THE # UNITED STATES GOVERNMENT, OR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF # THEIR EMPLOYEES, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ******************************************************************************* # Measure distributed under NREL Copyright terms, see LICENSE.md file. # Author: Karl Heine # Date: December 2019 - March 2020 # References: # EnergyPlus InputOutput Reference, Sections: # EnergyPlus Engineering Reference, Sections: # start the measure class AddHpwh < OpenStudio::Measure::ModelMeasure require 'openstudio-standards' # human readable name def name # Measure name should be the title case of the class name. 'Add HPWH for Domestic Hot Water' end # human readable description def description 'This measure adds or replaces existing domestic hot water heater with air source heat pump system and ' \ 'allows for the addition of multiple daily flexible control time windows. The heater/tank system may ' \ 'charge at maximum capacity up to an elevated temperature, or float without any heat addition for a ' \ 'specified timeframe down to a minimum tank temperature.' end # human readable description of modeling approach def modeler_description return 'This measure allows selection between three heat pump water heater modeling approaches in EnergyPlus.' \ 'The user may select between the pumped-condenser or wrapped-condenser objects. They may also elect to ' \ 'use a simplified calculation which does not use the heat pump objects, but instead used an electric ' \ 'resistance heater and approximates the equivalent electrical input that would be required from a heat ' \ "pump. This expedites simulation at the expense of accuracy. \n" \ 'The flexibility of the system is based on user-defined temperatures and times, which are converted into ' \ 'schedule objects. There are four flexibility options. (1) None: normal operation of the DHW system at ' \ 'a fixed tank temperature setpoint. (2) Charge - Heat Pump: the tank is charged to a maximum temperature ' \ 'using only the heat pump. (3) Charge - Electric: the tank is charged using internal electric resistance ' \ 'heaters to a maximum temperature. (4) Float: all heating elements are turned-off for a user-defined time ' \ 'period unless the tank temperature falls below a minimum value. The heat pump will be prioritized in a ' \ "low tank temperature event, with the electric resistance heaters serving as back-up. \n" 'Due to the heat pump interaction with zone conditioning as well as tank heating, users may experience ' \ 'simulation errors if the heat pump is too large and placed in an already conditioned zoned. Try using ' \ 'multiple smaller units, modifying the heat pump location within the model, or adjusting the zone thermo' \ 'stat constraints. Use mulitiple instances of the measure to add multiple heat pump water heaters. ' end ## USER ARGS --------------------------------------------------------------------------------------------------------- # define the arguments that the user will input def arguments(model) args = OpenStudio::Measure::OSArgumentVector.new # create argument for removal of existing water heater tanks on selected loop remove_wh = OpenStudio::Measure::OSArgument.makeBoolArgument('remove_wh', true) remove_wh.setDisplayName('Remove existing water heater?') remove_wh.setDescription('') remove_wh.setDefaultValue(true) args << remove_wh # find available water heaters and get default volume default_vol = 80.0 # gallons wh_names = ['All Water Heaters (Simplified Only)'] if !model.getWaterHeaterMixeds.empty? wheaters = model.getWaterHeaterMixeds wheaters.each do |w| if w.tankVolume.to_f > OpenStudio.convert(39, 'gal', 'm^3').to_f wh_names << w.name.to_s default_vol = [default_vol, (w.tankVolume.to_f / 0.0037854118).round(1)].max end end end wh = OpenStudio::Measure::OSArgument.makeChoiceArgument('wh', wh_names, true) wh.setDisplayName('Select 40+ gallon water heater to replace or augment') wh.setDescription("All can only be used with the 'Simplified' model") wh.setDefaultValue(wh_names[0]) args << wh # create argument for hot water tank volume vol = OpenStudio::Measure::OSArgument.makeDoubleArgument('vol', false) vol.setDisplayName('Set hot water tank volume [gal]') vol.setDescription('Enter 0 to use existing tank volume(s). Values less than 5 are treated as sizing multipliers.') vol.setUnits('gal') vol.setDefaultValue(0) args << vol # create argument for water heater type type = OpenStudio::Measure::OSArgument.makeChoiceArgument('type', ['Simplified', 'PumpedCondenser', 'WrappedCondenser'], true) type.setDisplayName('Select heat pump water heater type') type.setDescription('') type.setDefaultValue('Simplified') args << type # find available spaces for heater location zone_names = [] unless model.getThermalZones.empty? zones = model.getThermalZones zones.each do |zn| zone_names << zn.name.to_s end zone_names.sort! end zone_names << 'Error: No Thermal Zones Found' if zone_names.empty? zone_names = ['N/A - Simplified'] + zone_names # create argument for thermal zone selection (location of water heater) zone = OpenStudio::Measure::OSArgument.makeChoiceArgument('zone', zone_names, true) zone.setDisplayName('Select thermal zone for HP evaporator') zone.setDescription("Does not apply to 'Simplified' cases") zone.setDefaultValue(zone_names[0]) args << zone # create argument for heat pump capacity cap = OpenStudio::Measure::OSArgument.makeDoubleArgument('cap', true) cap.setDisplayName('Set heat pump heating capacity') cap.setDescription('[kW]') cap.setDefaultValue((23.446 * (default_vol / 80.0)).round(1)) args << cap # create argument for heat pump rated cop cop = OpenStudio::Measure::OSArgument.makeDoubleArgument('cop', true) cop.setDisplayName('Set heat pump rated COP (heating)') cop.setDefaultValue(3.2) args << cop # create argument for electric backup capacity bu_cap = OpenStudio::Measure::OSArgument.makeDoubleArgument('bu_cap', true) bu_cap.setDisplayName('Set electric backup heating capacity') bu_cap.setDescription('[kW]') bu_cap.setDefaultValue((23.446 * (default_vol / 80.0)).round(1)) args << bu_cap # create argument for maximum tank temperature max_temp = OpenStudio::Measure::OSArgument.makeDoubleArgument('max_temp', true) max_temp.setDisplayName('Set maximum tank temperature') max_temp.setDescription('[F]') max_temp.setDefaultValue(160) args << max_temp # create argument for minimum float temperature min_temp = OpenStudio::Measure::OSArgument.makeDoubleArgument('min_temp', true) min_temp.setDisplayName('Set minimum tank temperature during float') min_temp.setDescription('[F]') min_temp.setDefaultValue(120) args << min_temp # create argument for deadband temperature difference between heat pump setpoint and electric backup db_temp = OpenStudio::Measure::OSArgument.makeDoubleArgument('db_temp', true) db_temp.setDisplayName('Set deadband temperature difference between heat pump and electric backup') db_temp.setDescription('[F]') db_temp.setDefaultValue(5) args << db_temp # find existing temperature setpoint schedules for water heater all_scheds = model.getSchedules temp_sched_names = [] default_sched = '--Create New @ 140F--' default_ambient = '' all_scheds.each do |sch| next if sch.scheduleTypeLimits.empty? next unless sch.scheduleTypeLimits.get.unitType.to_s == 'Temperature' temp_sched_names << sch.name.to_s if !wheaters.empty? && (sch.name.to_s == wheaters[0].setpointTemperatureSchedule.get.name.to_s) default_sched = sch.name.to_s end end temp_sched_names = [default_sched] + temp_sched_names.sort # create argument for predefined schedule sched = OpenStudio::Measure::OSArgument.makeChoiceArgument('sched', temp_sched_names, true) sched.setDisplayName('Select reference tank setpoint temperature schedule') sched.setDescription('') sched.setDefaultValue(temp_sched_names[0]) args << sched # define possible flex options flex_options = ['None', 'Charge - Heat Pump', 'Charge - Electric', 'Float'] # create choice and string arguments for flex periods 4.times do |n| flex = OpenStudio::Measure::OSArgument.makeChoiceArgument("flex#{n}", flex_options, true) flex.setDisplayName("Daily Flex Period #{n + 1}:") flex.setDescription('Applies every day in the full run period.') flex.setDefaultValue('None') args << flex flex_hrs = OpenStudio::Measure::OSArgument.makeStringArgument("flex_hrs#{n}", false) flex_hrs.setDisplayName('Use 24-Hour Format') flex_hrs.setDefaultValue('HH:MM - HH:MM') args << flex_hrs end args end ## END USER ARGS ----------------------------------------------------------------------------------------------------- ## MEASURE RUN ------------------------------------------------------------------------------------------------------- # Index: # => Argument Validation # => Controls: Heat Pump Heating Shedule # => Controls: Tank Electric Backup Heating Schedule # => Hardware # => Controls Modifications for Tank # => Report Output Variables # define what happens when the measure is run def run(model, runner, user_arguments) super(model, runner, user_arguments) ## ARGUMENT VALIDATION --------------------------------------------------------------------------------------------- # Measure does not immedately return false upon error detection. Errors are accumulated throughout this selection # before exiting gracefully prior to measure execution. # use the built-in error checking unless runner.validateUserArguments(arguments(model), user_arguments) return false end # report initial condition of model tanks_ic = model.getWaterHeaterMixeds.size + model.getWaterHeaterStratifieds.size hpwh_ic = model.getWaterHeaterHeatPumps.size + model.getWaterHeaterHeatPumpWrappedCondensers.size runner.registerInitialCondition("The building started with #{tanks_ic} water heater tank(s) and " \ "#{hpwh_ic} heat pump water heater(s).") # create empty arrays and initialize variables for future use flex = [] flex_type = [] flex_hrs = [] time_check = [] hours = [] minutes = [] flex_times = [] # assign the user inputs to variables remove_wh = runner.getBoolArgumentValue('remove_wh', user_arguments) wh = runner.getStringArgumentValue('wh', user_arguments) vol = runner.getDoubleArgumentValue('vol', user_arguments) type = runner.getStringArgumentValue('type', user_arguments) zone = runner.getStringArgumentValue('zone', user_arguments) cap = runner.getDoubleArgumentValue('cap', user_arguments) cop = runner.getDoubleArgumentValue('cop', user_arguments) bu_cap = runner.getDoubleArgumentValue('bu_cap', user_arguments) max_temp = runner.getDoubleArgumentValue('max_temp', user_arguments) min_temp = runner.getDoubleArgumentValue('min_temp', user_arguments) db_temp = runner.getDoubleArgumentValue('db_temp', user_arguments) sched = runner.getStringArgumentValue('sched', user_arguments) 4.times do |n| flex << runner.getStringArgumentValue("flex#{n}", user_arguments) flex_hrs << runner.getStringArgumentValue("flex_hrs#{n}", user_arguments) end # check for existence of water heaters (if "all" is selected) if model.getWaterHeaterMixeds.empty? runner.registerError('No water heaters found in the model') return false end # Alert user to "simplified" selection if type == 'Simplified' runner.registerInfo('NOTE: The simplified model is used, so heat pump objects are not employed.') end # check capacity, volume, and temps for reasonableness if cap < 5 runner.registerWarning('HPWH heating capacity is less than 5kW ( 17kBtu/hr)') end if bu_cap < 5 runner.registerWarning('Backup heating capaicty is less than 5kW ( 17kBtu/hr).') end if vol == 0 runner.registerInfo('Tank volume was not specified, using existing tank capacity.') elsif vol < 40 runner.registerWarning('Tank has less than 40 gallon capacity; check heat pump sizing if model fails.') end if min_temp < 120 runner.registerWarning('Minimum tank temperature is very low; consider increasing to at least 120F.') runner.registerWarning('Do not store water for long periods at temperatures below 135-140F as those ' \ 'conditions facilitate the growth of Legionella.') end if max_temp > 185 runner.registerWarning('Maximum charging temperature exceeded practical limits; reset to 185F.') max_temp = 185.0 end if max_temp > 170 runner.registerWarning("#{max_temp}F is above or near the limit of the HP performance curves. If the " \ 'simulation fails with cooling capacity less than 0, you have exceeded performance ' \ 'limits. Consider setting max temp to less than 170F.') end # check selected schedule and set flag for later use sched_flag = false # flag for either creating new (false) or modifying existing (true) schedule if sched == '--Create New @ 140F--' runner.registerInfo('No reference water heater temperature setpoint schedule was selected; a new one ' \ 'will be created.') else sched_flag = true runner.registerInfo("#{sched} will be used as the water heater temperature setpoint schedule.") end # parse flex_hrs into hours and minuts arrays idx = 0 flex_hrs.each do |fh| if flex[idx] != 'None' data = fh.split(/[-:]/) data.each { |e| e.delete!(' ') } if data[2] > data[0] flex_type << flex[idx] hours << data[0] hours << data[2] minutes << data[1] minutes << data[3] else flex_type << flex[idx] flex_type << flex[idx] hours << 0 hours << data[2] hours << data[0] hours << 24 minutes << 0 minutes << data[3] minutes << data[1] minutes << 0 end end idx += 1 end # convert hours and minutes into OS:Time objects idx = 0 hours.each do |h| flex_times << OpenStudio::Time.new(0, h.to_i, minutes[idx].to_i, 0) idx += 1 end # flex.delete('None') runner.registerInfo("A total of #{idx / 2} flex periods will be added to the selected water heater setpoint schedule.") # exit gracefully if errors registered above return false unless runner.result.errors.empty? ## END ARGUMENT VALIDATION ----------------------------------------------------------------------------------------- ## CONTROLS: HEAT PUMP HEATING TEMPERATURE SETPOINT SCHEDULE ------------------------------------------------------- # This section creates the heat pump heating temperature setpoint schedule with flex periods # The tank schedule is created here # find or create new reference temperature schedule based on sched_flag value if sched_flag # schedule already exists and must be modified # converts the STRING into a MODEL OBJECT, same variable name sched = model.getScheduleRulesetByName(sched).get.clone.to_ScheduleRuleset.get else # must create new water heater setpoint temperature schedule at 140F sched = OpenStudio::Model::ScheduleRuleset.new(model, 60) end # rename and duplicate for later modification sched.setName('Heat Pump Heating Temperature Setpoint') sched.defaultDaySchedule.setName('Heat Pump Heating Temperature Setpoint Default') # tank_sched = sched.clone.to_ScheduleRuleset.get tank_sched = OpenStudio::Model::ScheduleRuleset.new(model, 60 - (db_temp / 1.8 + 2)) tank_sched.setName('Tank Electric Heater Setpoint') tank_sched.defaultDaySchedule.setName('Tank Electric Heater Setpoint Default') # grab default day and time-value pairs for modification d_day = sched.defaultDaySchedule old_times = d_day.times old_values = d_day.values new_values = Array.new(flex_times.size, 2) # find existing values in reference schedule and grab for use in new-rule creation flex_times.size.times do |i| if i.even? n = 0 old_times.each do |ot| new_values[i] = old_values[n] if flex_times[i] <= ot n += 1 end elsif flex_type[(i / 2).floor] == 'Charge - Heat Pump' new_values[i] = OpenStudio.convert(max_temp, 'F', 'C').get elsif flex_type[(i / 2).floor] == 'Float' || flex_type[(i / 2).floor] == 'Charge - Electric' new_values[i] = OpenStudio.convert(min_temp, 'F', 'C').get end end # create new rules and add to default day based on flex period options above idx = 0 flex_times.each do |ft| d_day.addValue(ft, new_values[idx]) idx += 1 end ## END CONTROLS: HEAT PUMP HEATING TEMPERATURE SETPOINT SCHEDULE --------------------------------------------------- ## CONTROLS: TANK TEMPERATURE SETPOINT SCHEDULE (ELECTRIC BACKUP) -------------------------------------------------- # This section creates the setpoint temperature schedule for the electric backup heating coils in the water tank # grab default day and time-value pairs for modification d_day = tank_sched.defaultDaySchedule old_times = d_day.times old_values = d_day.values new_values = Array.new(flex_times.size, 2) # find existing values in reference schedule and grab for use in new-rule creation flex_times.size.times do |i| if i.even? n = 0 old_times.each do |ot| new_values[i] = old_values[n] if flex_times[i] <= ot n += 1 end elsif flex_type[(i / 2).floor] == 'Charge - Electric' new_values[i] = OpenStudio.convert(max_temp, 'F', 'C').get elsif flex_type[(i / 2).floor] == 'Float' # || flex_type[(i/2).floor] == 'Charge - Heat Pump' new_values[i] = OpenStudio.convert(min_temp - db_temp, 'F', 'C').get elsif flex_type[(i / 2).floor] == 'Charge - Heat Pump' new_values[i] = 60 - (db_temp / 1.8) end end # create new rules and add to default day based on flex period options above idx = 0 flex_times.each do |ft| d_day.addValue(ft, new_values[idx]) idx += 1 end ## END CONTROLS: TANK TEMPERATURE SETPOINT SCHEDULE (ELECTRIC BACKUP) ---------------------------------------------- ## HARDWARE -------------------------------------------------------------------------------------------------------- # This section adds the selected type of heat pump water heater to the supply side of the selected loop. If # selected, measure will remove any existing water heaters on the supply side of the loop. If old heater(s) are left # in place, the new HPWH tank will be placed in front (to the left) of them. # use OS standards build - arbitrary selection, but NZE Ready seems appropriate std = Standard.build('NREL ZNE Ready 2017') ##### # get the selected water heaters whtrs = [] model.getWaterHeaterMixeds.each do |w| case wh when 'All Water Heaters (Simplified Only)' # exclude booster tanks (<10gal): if w.tankVolume.to_f < 0.037854 next else whtrs << w end when w.name.to_s whtrs << w end end whtrs.each do |whtr| # create empty arrays and initialize variables for later use old_heater = [] count = 0 # get the appropriate plant loop loop = '' loops = model.getPlantLoops loops.each do |l| l.supplyComponents.each do |c| if c.name.to_s == whtr.name.to_s loop = l end end end # use existing tank volume unless otherwise specified # values between 0.0 and 5.0 are considered tank sizing multipliers if vol == 0 v = whtr.tankVolume elsif (vol > 0.0) && (vol < 5.0) v = whtr.tankVolume.to_f * vol else v = OpenStudio.convert(vol, 'gal', 'm^3').get end inlet = whtr.supplyInletModelObject.get.to_Node.get outlet = whtr.supplyOutletModelObject.get.to_Node.get # Add heat pump water heater and attach to selected loop # Reference: https://github.com/NREL/openstudio-standards/blob/master/lib/ # => openstudio-standards/prototypes/common/objects/Prototype.ServiceWaterHeating.rb if type != 'Simplified' # convert zone name from STRING into OS model OBJECT zone = model.getThermalZoneByName(zone).get hpwh = std.model_add_heatpump_water_heater(model, # model type: type, # type water_heater_capacity: (cap * 1000 / cop), # water_heater_capacity electric_backup_capacity: (bu_cap * 1000), # electric_backup_capacity water_heater_volume: v, # water_heater_volume service_water_temperature: OpenStudio.convert(140.0, 'F', 'C').get, # service_water_temperature parasitic_fuel_consumption_rate: 3.0, # parasitic_fuel_consumption_rate swh_temp_sch: sched, # swh_temp_sch cop: cop, # cop shr: 0.88, # shr tank_ua: 3.9, # tank_ua set_peak_use_flowrate: false, # set_peak_use_flowrate peak_flowrate: 0.0, # peak_flowrate flowrate_schedule: nil, # flowrate_schedule water_heater_thermal_zone: zone) # water_heater_thermal_zone else # zone = whtr.ambientTemperatureThermalZone.get hpwh = std.model_add_water_heater(model, # model (cap * 1000), # water_heater_capacity v.to_f, # water_heater_volume 'HeatPump', # water_heater_fuel OpenStudio.convert(140.0, 'F', 'C').to_f, # service_water_temperature 3.0, # parasitic_fuel_consumption_rate sched, # swh_temp_sch false, # set_peak_use_flowrate 0.0, # peak_flowrate nil, # flowrate_schedule model.getThermalZones[0], # water_heater_thermal_zone 1) # number_water_heaters # set COP in PLF curve cop_curve = hpwh.partLoadFactorCurve.get cop_curve.setName(cop_curve.name.get.gsub('2.8', cop.to_s)) cop_curve.setCoefficient1Constant(cop) end # add tank to appropriate branch and node (will be placed first in series if old tanks not removed) # modify objects as ncessary if type != 'Simplified' hpwh.tank.addToNode(inlet) hpwh.setDeadBandTemperatureDifference(db_temp / 1.8) runner.registerInfo("#{hpwh.tank.name} was added to the model on #{loop.name}") else hpwh.addToNode(inlet) hpwh.setMaximumTemperatureLimit(OpenStudio.convert(max_temp, 'F', 'C').get) runner.registerInfo("#{hpwh.name} was added to the model on #{loop.name}") end # remove old tank objects if necessary if remove_wh runner.registerInfo("#{whtr.name} was removed from the model.") whtr.remove end # CONTROLS MODIFICATIONS FOR TANK --------------------------------------------------------------------------------- # apply schedule to tank case type when 'PumpedCondenser' hpwh.tank.to_WaterHeaterMixed.get.setSetpointTemperatureSchedule(tank_sched) when 'WrappedCondenser' hpwh.tank.to_WaterHeaterStratified.get.setHeater1SetpointTemperatureSchedule(tank_sched) hpwh.tank.to_WaterHeaterStratified.get.setHeater2SetpointTemperatureSchedule(tank_sched) end # END CONTROLS MODIFICATIONS FOR TANK ----------------------------------------------------------------------------- end ## END HARDWARE ---------------------------------------------------------------------------------------------------- ## ADD REPORTED VARIABLES ------------------------------------------------------------------------------------------ ovar_names = ['Cooling Coil Total Cooling Rate', 'Cooling Coil Total Water Heating Rate', 'Cooling Coil Water Heating Electric Power', 'Cooling Coil Crankcase Heater Electric Power', 'Water Heater Tank Temperature', 'Water Heater Heat Loss Rate', 'Water Heater Heating Rate', 'Water Heater Use Side Heat Transfer Rate', 'Water Heater Source Side Heat Transfer Rate', 'Water Heater Unmet Demand Heat Transfer Rate', 'Water Heater Electricity Rate', 'Water Heater Water Volume Flow Rate', 'Water Use Connections Hot Water Temperature'] # Create new output variable objects ovars = [] ovar_names.each do |nm| ovars << OpenStudio::Model::OutputVariable.new(nm, model) end # add temperate schedule outputs - clean up and put names into array, then loop over setting key values v = OpenStudio::Model::OutputVariable.new('Schedule Value', model) v.setKeyValue(sched.name.to_s) ovars << v v = OpenStudio::Model::OutputVariable.new('Schedule Value', model) v.setKeyValue(tank_sched.name.to_s) ovars << v if type != 'Simplified' v = OpenStudio::Model::OutputVariable.new('Schedule Value', model) v.setKeyValue(tank_sched.name.to_s) ovars << v end # Set variable reporting frequency for newly created output variables ovars.each do |var| var.setReportingFrequency('TimeStep') end # Register info re: output variables: runner.registerInfo("#{ovars.size} output variables were added to the model.") ## END ADD REPORTED VARIABLES -------------------------------------------------------------------------------------- # Register final condition hpwh_fc = model.getWaterHeaterHeatPumps.size + model.getWaterHeaterHeatPumpWrappedCondensers.size tanks_fc = model.getWaterHeaterMixeds.size + model.getWaterHeaterStratifieds.size if type != 'Simplified' runner.registerFinalCondition("The building finshed with #{tanks_fc} water heater tank(s) and " \ "#{hpwh_fc} heat pump water heater(s).") else runner.registerFinalCondition("The building finished with #{tanks_fc - whtrs.size} water heater tank(s) " \ "and #{whtrs.size} heat pump water heater(s).") end true end end # register the measure to be used by the application AddHpwh.new.registerWithApplication