Sha256: adb3018525d2f7ca20ade82905936c7abd3c56db402b0cc0a814792b06c5f2c3
Contents?: true
Size: 1.86 KB
Versions: 27
Compression:
Stored size: 1.86 KB
Contents
\part{Equations} \section{Convention} \begin{align*} n &= \text{sample size}\\ N &= \text{population size}\\ p &= \text{proportion inside a sample}\\ P &= \text{proportion inside a population} \end{align*} \section{Ruby::Regression::Multiple} To compute the standard error of coefficients, you obtain the estimated variance-covariance matrix of error. Let \mathbf{X} be matrix of predictors data, including a constant column; \mathbf{MSE} as mean square error; SSE as Sum of squares of errors; n the number of cases; p as number of predictors \begin{equation} \mathbf{MSE}=\frac{SSE}{n-p-1} \end{equation} \begin{equation} \mathbf{E}=(\mathbf{X'}\mathbf{X})^-1\mathbf{MSE} \end{equation} The root squares of diagonal should be standard errors \section{Ruby::SRS} Finite Poblation correction is used on standard error calculation on poblation below 10.000. Function \begin{verbatim} fpc_var(sam,pop) \end{verbatim} calculate FPC for variance with \begin{equation} fpc_{var} = \frac{N-n} {N-1} \end{equation} with n as sam and N as pop Function \begin{verbatim} fpc = fpc(sam,pop) \end{verbatim} calculate FPC for standard deviation with \begin{equation} fpc_{sd} = \sqrt{\frac{N-n} {N-1}} \label{fpc} \end{equation} with n as sample size and N as population size. \subsection{Sample Size estimation for proportions} On infinite poblations, you should use method \begin{verbatim} estimation_n0(d,prop,margin=0.95) \end{verbatim} which uses \begin{equation} n = \frac{t^2(pq)}{d^2} \label{n_i} \end{equation} where \begin{align*} t &= \text{t value for given level of confidence ( 1.96 for 95\% )}\\ d &= \text{margin of error} \end{align*} On finite poblations, you should use \begin{verbatim} estimation_n(d,prop,n_pobl, margin=0.95) \end{verbatim} which uses \begin{equation} n = \frac{n_i}{1+(\frac{n_i-1}{N})} \end{equation} Where $n_i$ is n on \ref{n_i} and N is population size
Version data entries
27 entries across 27 versions & 2 rubygems