# frozen_string_literal: true # graphics.rb : Implements PDF drawing primitives # # Copyright April 2008, Gregory Brown. All Rights Reserved. # # This is free software. Please see the LICENSE and COPYING files for details. require_relative 'graphics/blend_mode' require_relative 'graphics/color' require_relative 'graphics/dash' require_relative 'graphics/cap_style' require_relative 'graphics/join_style' require_relative 'graphics/transparency' require_relative 'graphics/transformation' require_relative 'graphics/patterns' module Prawn # Implements the drawing facilities for {Prawn::Document}. # Use this to draw the most beautiful imaginable things. module Graphics include BlendMode include Color include Dash include CapStyle include JoinStyle include Transparency include Transformation include Patterns # @group Stable API ####################################################################### # Low level drawing operations must map the point to absolute coords! # ####################################################################### # Moves the drawing position to a given point. The point can be specified as # a tuple or a flattened argument list. # # @example # pdf.move_to [100, 50] # pdf.move_to(100, 50) # # @overload move_to(point) # @param point [Array(Number, Number)] # @return [void] # @overload move_to(x, y) # @param x [Number] # @param y [Number] # @return [void] def move_to(*point) xy = PDF::Core.real_params(map_to_absolute(point)) renderer.add_content("#{xy} m") end # Draws a line from the current drawing position to the specified point. # The destination may be described as a tuple or a flattened list: # # @example # pdf.line_to [50, 50] # pdf.line_to(50, 50) # # @overload line_to(point) # @param point [Array(Number, Number)] # @return [void] # @overload line_to(x, y) # @param x [Number] # @param y [Number] # @return [void] def line_to(*point) xy = PDF::Core.real_params(map_to_absolute(point)) renderer.add_content("#{xy} l") end # Draws a Bezier curve from the current drawing position to the # specified point, bounded by two additional points. # # @example # pdf.curve_to [100, 100], bounds: [[90, 90], [75, 75]] # # @param dest [Array(Number, Number)] # @param options [Hash] # @option options :bounds [Array(Array(Number, Number), Array(Number, Number))] # @return [void] def curve_to(dest, options = {}) options[:bounds] || raise( Prawn::Errors::InvalidGraphicsPath, 'Bounding points for bezier curve must be specified as :bounds => [[x1,y1],[x2,y2]]', ) curve_points = PDF::Core.real_params( (options[:bounds] << dest).flat_map { |e| map_to_absolute(e) }, ) renderer.add_content("#{curve_points} c") end # Draws a rectangle given `point`, `width and `height`. The rectangle is # bounded by its upper-left corner. # # @example # pdf.rectangle [300, 300], 100, 200 # # @param point [Array(Number, Number)] # @param width [Number] # @param height [Number] # @return [void] def rectangle(point, width, height) x, y = map_to_absolute(point) box = PDF::Core.real_params([x, y - height, width, height]) renderer.add_content("#{box} re") end # Draws a rounded rectangle given `point`, `width`, `height`, and `radius` # for the rounded corner. The rectangle is bounded by its upper-left corner. # # @example # pdf.rounded_rectangle [300, 300], 100, 200, 10 # # @param point [Array(Number, Number)] # @param width [Number] # @param height [Number] # @param radius [Number] # @return [void] def rounded_rectangle(point, width, height, radius) x, y = point rounded_polygon( radius, point, [x + width, y], [x + width, y - height], [x, y - height], ) end ########################################################### # Higher level functions: May use relative coords # ########################################################### # Sets line thickness to the `width` specified. # # @param width [Number] # @return [void] def line_width=(width) self.current_line_width = width write_line_width end # When called without an argument, returns the current line thickness. # When called with an argument, sets the line thickness to the specified # value (in PDF points). # # @example # pdf.line_width #=> 1 # pdf.line_width(5) # pdf.line_width #=> 5 # # @overload line_width() # @return [Number] # @overload line_width(width) # @param width [Number] # @return [void] def line_width(width = nil) if width self.line_width = width else current_line_width end end # Draws a line from one point to another. Points may be specified as # tuples or flattened argument list. # # @example # pdf.line [100, 100], [200, 250] # pdf.line(100, 100, 200, 250) # # @overload line(point1, point2) # @param point1 [Array(Number, Number)] # @param point2 [Array(Number, Number)] # @return [void] # @overload line(x1, y1, x2, y2) # @param x1 [Number] # @param y1 [Number] # @param x2 [Number] # @param y2 [Number] # @return [void] def line(*points) x0, y0, x1, y1 = points.flatten move_to(x0, y0) line_to(x1, y1) end # Draws a horizontal line from `x1` to `x2` at the current {Document#y} # position, or the position specified by the `:at` option. # # @example Draw a line from `[25, 75]` to `[100, 75]` # horizontal_line 25, 100, at: 75 # # @param x1 [Number] # @param x2 [Number] # @param options [Hash] # @option options :at [Number] # @return [void] def horizontal_line(x1, x2, options = {}) y1 = options[:at] || (y - bounds.absolute_bottom) line(x1, y1, x2, y1) end # Draws a horizontal line from the left border to the right border of the # bounding box at the current {Document#y} position. # # @return [void] def horizontal_rule horizontal_line(bounds.left, bounds.right) end # Draws a vertical line at the x coordinate given by `:at` from `y1` to # `y2`. # # @example Draw a line from `[25, 100]` to `[25, 300]` # vertical_line 100, 300, at: 25 # # @param y1 [Number] # @param y2 [Number] # @param params [Hash] # @option params :at [Number] # @return [void] def vertical_line(y1, y2, params) line(params[:at], y1, params[:at], y2) end # Draws a Bezier curve between two points, bounded by two additional # points # # @example # pdf.curve [50, 100], [100, 100], bounds: [[90, 90], [75, 75]] # # @param origin [Array(Number, Number)] # @param dest [Array(Number, Number)] # @param options [Hash] # @option options :bounds [Array(Array(Number, Number), Array(Number, Number))] # @return [void] def curve(origin, dest, options = {}) move_to(*origin) curve_to(dest, options) end # This constant is used to approximate a symmetrical arc using a cubic # Bezier curve. KAPPA = 4.0 * ((Math.sqrt(2) - 1.0) / 3.0) # Draws a circle of radius `radius` with the centre-point at # `point` as a complete subpath. The drawing point will be moved to # the centre-point upon completion of the drawing the circle. # # @example # pdf.circle [100, 100], 25 # # @param center [Array(Number, Number)] # @param radius [Number] # @return [void] def circle(center, radius) ellipse(center, radius, radius) end # Draws an ellipse of `x` radius `radius1` and `y` radius `radius2` with the # centre-point at `point` as a complete subpath. The drawing point will be # moved to the centre-point upon completion of the drawing the ellipse. # # @example Draws an ellipse with x-radius 25 and y-radius 50 # pdf.ellipse [100, 100], 25, 50 # # @param point [Array(Number, Number)] # @param radius1 [Number] # @param radius2 [Number] # @return [void] def ellipse(point, radius1, radius2 = radius1) x, y = point l1 = radius1 * KAPPA l2 = radius2 * KAPPA move_to(x + radius1, y) # Upper right hand corner curve_to( [x, y + radius2], bounds: [[x + radius1, y + l2], [x + l1, y + radius2]], ) # Upper left hand corner curve_to( [x - radius1, y], bounds: [[x - l1, y + radius2], [x - radius1, y + l2]], ) # Lower left hand corner curve_to( [x, y - radius2], bounds: [[x - radius1, y - l2], [x - l1, y - radius2]], ) # Lower right hand corner curve_to( [x + radius1, y], bounds: [[x + l1, y - radius2], [x + radius1, y - l2]], ) move_to(x, y) end # Draws a polygon from the specified points. # # @example Draws a snazzy triangle # pdf.polygon [100,100], [100,200], [200,200] # # @param points [Array] # @return [void] def polygon(*points) move_to(points[0]) (points[1..] << points[0]).each do |point| line_to(*point) end # close the path renderer.add_content('h') end # Draws a rounded polygon from specified points using the radius to define # bezier curves. # # @example Draws a rounded filled in polygon # pdf.fill_and_stroke_rounded_polygon( # 10, [100, 250], [200, 300], [300, 250], [300, 150], [200, 100], # [100, 150] # ) # # @param radius [Number] # @param points [Array] # @return [void] def rounded_polygon(radius, *points) move_to(point_on_line(radius, points[1], points[0])) sides = points.size points << points[0] << points[1] sides.times do |i| rounded_vertex(radius, points[i], points[i + 1], points[i + 2]) end # close the path renderer.add_content('h') end # Creates a rounded vertex for a line segment used for building a rounded # polygon requires a radius to define bezier curve and three points. The # first two points define the line segment and the third point helps define # the curve for the vertex. # # @param radius [Number] # @param points [Array(Array(Number, Number), Array(Number, Number), Array(Number, Number))] # @return [void] def rounded_vertex(radius, *points) radial_point1 = point_on_line(radius, points[0], points[1]) bezier_point1 = point_on_line( (radius - (radius * KAPPA)), points[0], points[1], ) radial_point2 = point_on_line(radius, points[2], points[1]) bezier_point2 = point_on_line( (radius - (radius * KAPPA)), points[2], points[1], ) line_to(radial_point1) curve_to(radial_point2, bounds: [bezier_point1, bezier_point2]) end # Strokes the current path. If a block is provided, yields to the block # before closing the path. See {Graphics::Color} for color details. # # @yield # @return [void] def stroke yield if block_given? renderer.add_content('S') end # Closes and strokes the current path. If a block is provided, yields to the # block before closing the path. See {Graphics::Color} for color details. # # @yield # @return [void] def close_and_stroke yield if block_given? renderer.add_content('s') end # Draws and strokes a rectangle represented by the current bounding box. # # @return [void] def stroke_bounds stroke_rectangle(bounds.top_left, bounds.width, bounds.height) end # Draws and strokes X and Y axes rulers beginning at the current bounding # box origin (or at a custom location). # # @param options [Hash] # @option options :at [Array(Number, Number)] ([0, 0], origin of the bounding box) # Origin of the X and Y axes. # @option options :width [Number] (width of the bounding box) # Length of the X axis. # @option options :height [Number] (height of the bounding box) # Length of the Y axis. # @option options :step_length [Number] (100) # Length of the step between markers. # @option options :negative_axes_length [Number] (20) # Length of the negative parts of the axes. # @option options :color [String, Array] # The color of the axes and the text. # @return [void] def stroke_axis(options = {}) options = { at: [0, 0], height: bounds.height - (options[:at] || [0, 0])[1], width: bounds.width - (options[:at] || [0, 0])[0], step_length: 100, negative_axes_length: 20, color: '000000', }.merge(options) Prawn.verify_options( %i[at width height step_length negative_axes_length color], options, ) save_graphics_state do fill_color(options[:color]) stroke_color(options[:color]) dash(1, space: 4) stroke_horizontal_line( options[:at][0] - options[:negative_axes_length], options[:at][0] + options[:width], at: options[:at][1], ) stroke_vertical_line( options[:at][1] - options[:negative_axes_length], options[:at][1] + options[:height], at: options[:at][0], ) undash fill_circle(options[:at], 1) (options[:step_length]..options[:width]) .step(options[:step_length]) do |point| fill_circle([options[:at][0] + point, options[:at][1]], 1) draw_text( point, at: [options[:at][0] + point - 5, options[:at][1] - 10], size: 7, ) end (options[:step_length]..options[:height]) .step(options[:step_length]) do |point| fill_circle([options[:at][0], options[:at][1] + point], 1) draw_text( point, at: [options[:at][0] - 17, options[:at][1] + point - 2], size: 7, ) end end end # Closes and fills the current path. See {Graphics::Color} for color details. # # If the option `fill_rule: :even_odd` is specified, Prawn will use the # even-odd rule to fill the path. Otherwise, the nonzero winding number rule # will be used. See the PDF reference, "Graphics -> Path Construction and # Painting -> Clipping Path Operators" for details on the difference. # # @param options [Hash] # @option options :fill_rule [Symbol] # @yield # @return [void] def fill(options = {}) yield if block_given? renderer.add_content(options[:fill_rule] == :even_odd ? 'f*' : 'f') end # Closes, fills, and strokes the current path. If a block is provided, # yields to the block before closing the path. See {Graphics::Color} for # color details. # # If the option `fill_rule: :even_odd` is specified, Prawn will use the # even-odd rule to fill the path. Otherwise, the nonzero winding number rule # will be used. See the PDF reference, "Graphics -> Path Construction and # Painting -> Clipping Path Operators" for details on the difference. # # @param options [Hash] # @option options :fill_rule [Symbol] # @yield # @return [void] def fill_and_stroke(options = {}) yield if block_given? renderer.add_content(options[:fill_rule] == :even_odd ? 'b*' : 'b') end # Closes the current path. # def close_path renderer.add_content('h') end # @!method fill_rectangle(point, width, height) # Draws and fills a rectangle given `point`, `width`, and `height`. The # rectangle is bounded by its upper-left corner. # # @param point [Array(Number, Number)] # @param width [Number] # @param height [Number] # @return [void] # @!method stroke_rectangle(point, width, height) # Draws and strokes a rectangle given `point`, `width`, and `height`. The # rectangle is bounded by its upper-left corner. # # @param point [Array(Number, Number)] # @param width [Number] # @param height [Number] # @return [void] # @!method fill_and_stroke_rectangle(point, width, height) # Draws, fills, and strokes a rectangle given `point`, `width`, and # `height`. The rectangle is bounded by its upper-left corner. # # @param point [Array(Number, Number)] # @param width [Number] # @param height [Number] # @return [void] # @!method fill_rounded_rectangle(point, width, height, radius) # # Draws and fills a rounded rectangle given `point`, `width` and `height`, # and `radius` for the rounded corner. The rectangle is bounded by its # upper-left corner. # # @param point [Array(Number, Number)] # @param width [Number] # @param height [Number] # @param radius [Number] # @return [void] # @!method stroke_rounded_rectangle(point, width, height, radius) # Draws and strokes a rounded rectangle given `point`, `width` and # `height`, and `radius` for the rounded corner. The rectangle is bounded # by its upper-left corner. # # @param point [Array(Number, Number)] # @param width [Number] # @param height [Number] # @param radius [Number] # @return [void] # @!method fill_and_stroke_rounded_rectangle(point, width, height, radius) # # Draws, fills, and strokes a rounded rectangle given `point`, `width`, # and `height` and `radius` for the rounded corner. The rectangle is # bounded by its upper-left corner. # # @param point [Array(Number, Number)] # @param width [Number] # @param height [Number] # @param radius [Number] # @return [void] # @!method stroke_line(*points) # # Strokes a line from one point to another. Points may be specified as # tuples or flattened argument list. # # @overload line(point1, point2) # @param point1 [Array(Number, Number)] # @param point2 [Array(Number, Number)] # @return [void] # @overload line(x1, y1, x2, y2) # @param x1 [Number] # @param y1 [Number] # @param x2 [Number] # @param y2 [Number] # @return [void] # @!method stroke_horizontal_line(x1, x2, options = {}) # # Strokes a horizontal line from `x1` to `x2` at the current y position, # or the position specified by the :at option. # # @param x1 [Number] # @param x2 [Number] # @param options [Hash] # @option options :at [Number] # @return [void] # @!method stroke_horizontal_rule # # Strokes a horizontal line from the left border to the right border of # the bounding box at the current y position. # # @return [void] # @!method stroke_vertical_line(y1, y2, params) # # Strokes a vertical line at the x coordinate given by `:at` from `y1` to # `y2`. # # @param y1 [Number] # @param y2 [Number] # @param params [Hash] # @option params :at [Number] # @return [void] # @!method stroke_curve(origin, dest, options = {}) # # Strokes a Bezier curve between two points, bounded by two additional # points. # # @param origin [Array(Number, Number)] # @param dest [Array(Number, Number)] # @param options [Hash] # @option options :bounds [Array(Array(Number, Number), Array(Number, Number))] # @return [void] # @!method: stroke_circle(center, radius) # # Draws and strokes a circle of radius `radius` with the centre-point at # `point`. # # @param center [Array(Number, Number)] # @param radius [Number] # @return [void] # @!method fill_circle(center, radius) # # Draws and fills a circle of radius `radius` with the centre-point at # `point`. # # @param center [Array(Number, Number)] # @param radius [Number] # @return [void] # @!method fill_and_stroke_circle(center, radius) # # Draws, strokes, and fills a circle of radius `radius` with the # centre-point at `point`. # # @param center [Array(Number, Number)] # @param radius [Number] # @return [void] # @!method stroke_ellipse(point, radius1, radius2 = radius1) # # Draws and strokes an ellipse of x radius `r1` and y radius `r2` with the # centre-point at `point`. # # @param point [Array(Number, Number)] # @param radius1 [Number] # @param radius2 [Number] # @return [void] # @!method fill_ellipse(point, radius1, radius2 = radius1) # # Draws and fills an ellipse of x radius `r1` and y radius `r2` with the # centre-point at `point`. # # @param point [Array(Number, Number)] # @param radius1 [Number] # @param radius2 [Number] # @return [void] # @!method fill_and_stroke_ellipse(point, radius1, radius2 = radius1) # # Draws, strokes, and fills an ellipse of x radius `r1` and y radius `r2` # with the centre-point at `point`. # # @param point [Array(Number, Number)] # @param radius1 [Number] # @param radius2 [Number] # @return [void] # @!method stroke_polygon(*points) # # Draws and strokes a polygon from the specified points. # # @param points [Array] # @return [void] # @!method fill_polygon(*points) # # Draws and fills a polygon from the specified points. # # @param points [Array] # @return [void] # @!method fill_and_stroke_polygon(*points) # # Draws, strokes, and fills a polygon from the specified points. # # @param points [Array] # @return [void] # @!method stroke_rounded_polygon(radius, *points) # # Draws and strokes a rounded polygon from specified points, using # `radius` to define Bezier curves. # # @param radius [Number] # @param points [Array] # @return [void] # @!method fill_rounded_polygon(radius, *points) # # Draws and fills a rounded polygon from specified points, using `radius` # to define Bezier curves. # # @param radius [Number] # @param points [Array] # @return [void] # @!method fill_and_stroke_rounded_polygon(radius, *points) # # Draws, strokes, and fills a rounded polygon from specified points, using # `radius` to define Bezier curves. # # @param radius [Number] # @param points [Array] # @return [void] ops = %w[fill stroke fill_and_stroke] shapes = %w[ line_to curve_to rectangle rounded_rectangle line horizontal_line horizontal_rule vertical_line curve circle_at circle ellipse_at ellipse polygon rounded_polygon rounded_vertex ] ops.product(shapes).each do |operation, shape| class_eval <<-METHOD, __FILE__, __LINE__ + 1 def #{operation}_#{shape}(*args) # def fill_polygon(*args) #{shape}(*args) # polygon(*args) #{operation} # fill end # end METHOD end private def current_line_width graphic_state.line_width end def current_line_width=(width) graphic_state.line_width = width end def write_line_width renderer.add_content("#{current_line_width} w") end def map_to_absolute(*point) x, y = point.flatten [@bounding_box.absolute_left + x, @bounding_box.absolute_bottom + y] end def map_to_absolute!(point) point.replace(map_to_absolute(point)) end def degree_to_rad(angle) angle * Math::PI / 180 end # Returns the coordinates for a point on a line that is a given distance # away from the second point defining the line segement def point_on_line(distance_from_end, *points) x0, y0, x1, y1 = points.flatten length = Math.sqrt(((x1 - x0)**2) + ((y1 - y0)**2)) p = (length - distance_from_end) / length xr = x0 + (p * (x1 - x0)) yr = y0 + (p * (y1 - y0)) [xr, yr] end end end