require_relative 'global' module AGL # This class provides easy control of a tile map, i.e., a map consisting of # a grid of equally sized tiles. It also provides viewport control, through # its camera property and methods. class Map # A Vector where x is the tile width and y is the tile height. attr_reader :tile_size # A Vector where x is the horizontal tile count and y the vertical count. attr_reader :size # A Rectangle representing the region of the map that is currently # visible. attr_reader :cam # Creates a new map. # # Parameters: # [t_w] The width of the tiles. # [t_h] The height of the tiles. # [t_x_count] The horizontal count of tiles in the map. # [t_y_count] The vertical count of tiles in the map. # [scr_w] Width of the viewport for the map. # [scr_h] Height of the viewport for the map. # [isometric] Whether to use a isometric map. By default, an ortogonal map # is used. # [limit_cam] Whether the camera should respect the bounds of the map # (i.e., when given coordinates that would imply regions # outside the map to appear in the screen, the camera would # move to the nearest position where only the map shows up # in the screen). def initialize t_w, t_h, t_x_count, t_y_count, scr_w = 800, scr_h = 600, isometric = false, limit_cam = true @tile_size = Vector.new t_w, t_h @size = Vector.new t_x_count, t_y_count @cam = Rectangle.new 0, 0, scr_w, scr_h @limit_cam = limit_cam @isometric = isometric if isometric initialize_isometric elsif limit_cam @max_x = t_x_count * t_w - scr_w @max_y = t_y_count * t_h - scr_h end set_camera 0, 0 end # Returns a Vector with the total size of the map, in pixels (x for the # width and y for the height). def get_absolute_size return Vector.new(@tile_size.x * @size.x, @tile_size.y * @size.y) unless @isometric avg = (@size.x + @size.y) * 0.5 Vector.new (avg * @tile_size.x).to_i, (avg * @tile_size.y).to_i end # Returns a Vector with the coordinates of the center of the map. def get_center abs_size = get_absolute_size Vector.new(abs_size.x * 0.5, abs_size.y * 0.5) end # Returns the position in the screen corresponding to the given tile # indices. # # Parameters: # [map_x] The index of the tile in the horizontal direction. It must be in # the interval 0..t_x_count. # [map_y] The index of the tile in the vertical direction. It must be in # the interval 0..t_y_count. def get_screen_pos map_x, map_y return Vector.new(map_x * @tile_size.x - @cam.x, map_y * @tile_size.y - @cam.y) unless @isometric Vector.new ((map_x - map_y - 1) * @tile_size.x * 0.5) - @cam.x + @x_offset, ((map_x + map_y) * @tile_size.y * 0.5) - @cam.y end # Returns the tile in the map that corresponds to the given position in # the screen, as a Vector, where x is the horizontal index and y the # vertical index. # # Parameters: # [scr_x] The x-coordinate in the screen. # [scr_y] The y-coordinate in the screen. def get_map_pos scr_x, scr_y return Vector.new((scr_x + @cam.x) / @tile_size.x, (scr_y + @cam.y) / @tile_size.y) unless @isometric # Obtém a posição transformada para as coordenadas isométricas v = get_isometric_position scr_x, scr_y # Depois divide pelo tamanho do quadrado para achar a posição da matriz Vector.new((v.x * @inverse_square_size).to_i, (v.y * @inverse_square_size).to_i) end # Verifies whether a tile is inside the map. # # Parameters: # [v] A Vector representing the tile, with x as the horizontal index and # y as the vertical index. def is_in_map v v.x >= 0 && v.y >= 0 && v.x < @size.x && v.y < @size.y end # Sets the top left corner of the viewport to the given position of the # map. Note that this is not the position in the screen. # # Parameters: # [cam_x] The x-coordinate inside the map, in pixels (not a tile index). # [cam_y] The y-coordinate inside the map, in pixels (not a tile index). def set_camera cam_x, cam_y @cam.x = cam_x @cam.y = cam_y set_bounds end # Moves the viewport by the given amount of pixels. # # Parameters: # [x] The amount of pixels to move horizontally. Negative values will # cause the camera to move to the left. # [y] The amount of pixels to move vertically. Negative values will cause # the camera to move up. def move_camera x, y @cam.x += x @cam.y += y set_bounds end # Iterates through the currently visible tiles, providing the horizontal # tile index, the vertical tile index, the x-coordinate (in pixels) and # the y-coordinate (in pixels), of each tile, in that order, to a given # block of code. # # Example: # # map.foreach do |i, j, x, y| # draw_tile tiles[i][j], x, y # end def foreach for j in @min_vis_y..@max_vis_y for i in @min_vis_x..@max_vis_x pos = get_screen_pos i, j yield i, j, pos.x, pos.y end end end private Sqrt2Div2 = Math.sqrt(2) / 2 MinusPiDiv4 = -Math::PI / 4 def set_bounds if @isometric v1 = get_isometric_position(0, 0) v2 = get_isometric_position(@cam.w - 1, 0) v3 = get_isometric_position(@cam.w - 1, @cam.h - 1) v4 = get_isometric_position(0, @cam.h - 1) if @limit_cam if v1.x < -@max_offset offset = -(v1.x + @max_offset) @cam.x += offset * Sqrt2Div2 @cam.y += offset * Sqrt2Div2 / @tile_ratio v1.x = -@max_offset end if v2.y < -@max_offset offset = -(v2.y + @max_offset) @cam.x -= offset * Sqrt2Div2 @cam.y += offset * Sqrt2Div2 / @tile_ratio v2.y = -@max_offset end if v3.x > @iso_abs_size.x + @max_offset offset = v3.x - @iso_abs_size.x - @max_offset @cam.x -= offset * Sqrt2Div2 @cam.y -= offset * Sqrt2Div2 / @tile_ratio v3.x = @iso_abs_size.x + @max_offset end if v4.y > @iso_abs_size.y + @max_offset offset = v4.y - @iso_abs_size.y - @max_offset @cam.x += offset * Sqrt2Div2 @cam.y -= offset * Sqrt2Div2 / @tile_ratio v4.y = @iso_abs_size.y + @max_offset end end @min_vis_x = get_map_pos(0, 0).x @min_vis_y = get_map_pos(@cam.w - 1, 0).y @max_vis_x = get_map_pos(@cam.w - 1, @cam.h - 1).x @max_vis_y = get_map_pos(0, @cam.h - 1).y else if @limit_cam @cam.x = 0 if @cam.x < 0 @cam.x = @max_x if @cam.x > @max_x @cam.y = 0 if @cam.y < 0 @cam.y = @max_y if @cam.y > @max_y end @min_vis_x = @cam.x / @tile_size.x @min_vis_y = @cam.y / @tile_size.y @max_vis_x = (@cam.x + @cam.w - 1) / @tile_size.x @max_vis_y = (@cam.y + @cam.h - 1) / @tile_size.y end @cam.x = @cam.x.round @cam.y = @cam.y.round if @min_vis_y < 0; @min_vis_y = 0 elsif @min_vis_y > @size.y - 1; @min_vis_y = @size.y - 1; end if @max_vis_y < 0; @max_vis_y = 0 elsif @max_vis_y > @size.y - 1; @max_vis_y = @size.y - 1; end if @min_vis_x < 0; @min_vis_x = 0 elsif @min_vis_x > @size.x - 1; @min_vis_x = @size.x - 1; end if @max_vis_x < 0; @max_vis_x = 0 elsif @max_vis_x > @size.x - 1; @max_vis_x = @size.x - 1; end end def initialize_isometric @x_offset = (@size.y * 0.5 * @tile_size.x).round @tile_ratio = @tile_size.x.to_f / @tile_size.y square_size = @tile_size.x * Sqrt2Div2 @inverse_square_size = 1 / square_size @iso_abs_size = Vector.new(square_size * @size.x, square_size * @size.y) a = (@size.x + @size.y) * 0.5 * @tile_size.x @isometric_offset_x = (a - square_size * @size.x) * 0.5 @isometric_offset_y = (a - square_size * @size.y) * 0.5 if @limit_cam actual_cam_h = @cam.h * @tile_ratio @max_offset = actual_cam_h < @cam.w ? actual_cam_h : @cam.w @max_offset *= Sqrt2Div2 end end def get_isometric_position scr_x, scr_y # Escreve a posição em relação a origem (no centro do mapa) center = get_center position = Vector.new scr_x + @cam.x - center.x, scr_y + @cam.y - center.y # Multiplica por tile_ratio para obter tiles quadrados position.y *= @tile_ratio # O centro do mapa também é deslocado center.y *= @tile_ratio # Rotaciona o vetor posição -45° position = rotate position, MinusPiDiv4 # Retorna a referência da posição para o canto da tela position.x += center.x; position.y += center.y # O mapa quadrado está centralizado no centro do losango, precisa retornar ao canto da tela position.x -= @isometric_offset_x; position.y -= @isometric_offset_y position end def rotate v, angle sin = Math.sin angle cos = Math.cos angle Vector.new cos * v.x - sin * v.y, sin * v.x + cos * v.y end end end