require 'semver' require 'distribution' require 'yaml' require 'logger' require 'awesome_print' require 'deep_dive' require 'queue_ding' =begin rdoc = RubyNEAT -- a Ruby Implementation of the Neural Evolution of Augmenting Topologies. The RubyNEAT system incorporates the basis of the NEAT algorithm. Flexibility is the key here, allowing RubyNEAT to be leverage in a variety of applications. === Requirements We make no effort to support Ruby versions less than 2.0.0. I know this will be a problem to some, but you are strongly urged to upgrade. =end $log = Logger.new(STDOUT) $log.level = Logger::INFO AwesomePrint.defaults = { plain: true } =begin rdoc = NEAT -- Module for RubyNEAT. == Synopsis We have a Population of Critters, and each Critter represents a network of Neurons and a connection list specifying how those Neurons are connected. Each Neuron has an implicit genotype and phenotype component. Neurons, from the Ruby perspective, contain their own code to produce their own phenotypes. There are input Neurons and output Neurons. The input Neurons are special, as they do not contain any input from other nodes, but serve as interfaces from the "real world". Their range of inputs are open, and it shall be up to the input Neuron's phenotype generators to condition those inputs, if need be, to something more suitable for the neural network. == Issues === Multicore / Cloud Computing Some thought needs to be given to how to make this amenable to multiple processes so that we can leverage the power of multicore systems as well as multiple computers in the Cloud, etc. Our initial inclination is to put all of that functionality in the Controller. == Uniquely Generated Named Objects (UGNOs) Every RubyNEAT Object instance is assigned a unique name generated randomly. The name has no other significance other than to uniquely identify the object. We have chosen the names of the letters of various alphabets to be the core of those names. The list may be subject to change until we are out of alpha, then will be set in quick drying concrete. =end module NEAT @rng_count = 0 @rng_names = %w{alpha beta gamma delta epsilon zeta eta theta kappa lambda mu nu xi omicron pi rho sigma tau upsilon phi chi psi omega alef bet gimel dalet he vav zayin het tet yod kaf lamed mem nun samekh ayin pe tsadi qof resh shin tav pop wo sip zotz sek xul yaxkin mol chen yax sak kej mak kankin muwan pax kayab kumku wayeb ki gi ngi ti di ni bi mi yi li wi si hi ku gu ngu tu du pu bu yu lu wu su hu ha jim theh teh beh alif sin zin ra dhal dal kha ain dha ta dad sad shin mim lam kaf qaf feh ghain yeh waw heh nun} def self.random_name_generator (1..3).map { @rng_names[rand @rng_names.size] }.push(@rng_count += 1).join('_').to_sym end # Name of the stimulus method in NEAT::Critter::Phenotype to use # for the singleton method expression of the critter. STIMULUS = :stimulate # Mixin for new innovation numbers. def self.new_innovation; @controller.new_innovation; end # Mixin for the gaussian object. def self.gaussian ; @controller.gaussian; end # PrettyPrint to log.debug def self.dpp ob #$log.ap ob end # Basis of all NEAT objects. # NeatOb has support for NEAT attributes with # special support for hooks and queues. class NeatOb include DeepDive extend QueueDing exclude :controller, :name # Designation of this particular object instance attr_reader :name # Who's your daddy? attr_reader :controller def log ; $log ; end def self.log ; $log; end # Initializer for all NEAT objects. Requires that # the controller object is specified for all classes # with the exception of the Controller itself or the # Controller's NeatSettings. def initialize(controller = nil, name = nil) @name = unless name.nil? name.to_sym else NEAT::random_name_generator end unless controller.nil? @controller = controller else raise NeatException.new "Controller Needed!" unless self.is_a?(Controller) or self.is_a?(Controller::NeatSettings) @controller = self unless self.is_a? Controller::NeatSettings end end def to_s "%s<%s>" % [self.class, self.name] end class << self # Defaultable attributes of neat attributes. # # If hooks: true is given, two hook functions are # created: ## _add() -- add a hook ## _set() -- set a hook, overwriting all other hooks set or added. ## _clear -- clear all hooks ## _none? -- return true if no hooks are defined. ## _one? -- return true if exactly hook is defined. ## _hook() -- for passing unnamed parameters to a singular hook. ## _np_hook() -- for passing unnamed parameters to a singular hook. ## _hook_itself() -- for getting the proc reference to the hook. ## _hooks() -- for passing unnamed parameters. ## _np_hooks() -- for passing a named parameter list. # # For *_hook(), the function returns the single result. # For *_hooks(), the hook function return an array of results # from all the actual registered hooks called. def attr_neat(sym, default: nil, cloneable: nil, hooks: false, queue: false) svar = "@#{sym}" # Guess what clonable should be. # This is meant to cover "90%" of the cases. cloneable = case when default.nil? false when default.kind_of?(Numeric) false else true end if cloneable.nil? # Sanity checks raise NeatException("Both hooks and queue cannot both be set for #{sym}.") if hooks and queue raise NeatException("Defaults cannot be defined for hooks and queues for #{sym}.") if (hooks or queue) and not default.nil? if hooks default = [] cloneable = true hook_setup sym end if queue default = QDing.new cloneable = true queue_setup sym end define_method("#{sym}=") do |v| instance_variable_set(svar, v) end unless hooks or queue # TODO: Enhance this getter method for performance. define_method(sym) do instance_variable_set(svar, instance_variable_get(svar) || ((cloneable) ? default.clone : default)) end end private def hook_setup(sym) define_method("#{sym}_add") do |&hook| send(sym) << hook end define_method("#{sym}_set") do |&hook| send(sym).clear send(sym) << hook end define_method("#{sym}_clear") do send(sym).clear end define_method("#{sym}_none?") do send(sym).empty? end define_method("#{sym}_one?") do send(sym).size == 1 end # hooks with named parameters define_method("#{sym}_np_hooks") do |**hparams| send(sym).map{|funct| funct.(**hparams)} end # hooks with traditional parameters define_method("#{sym}_hooks") do |*params| send(sym).map{|funct| funct.(*params)} end # TODO: DRY up the following functions, which does size checking in exacly the same way. # Single hook with named parameters define_method("#{sym}_np_hook") do |**hparams| sz = send(sym).size raise NeatException.new("#{sym}_np_hook must have exactly one hook (#{sz})") unless sz == 1 send(sym).map{|funct| funct.(**hparams)}.first end # Single hook with traditional parameters define_method("#{sym}_hook") do |*params| sz = send(sym).size raise NeatException.new("#{sym}_hook must have exactly one hook (#{sz})") unless sz == 1 send(sym).map{|funct| funct.(*params)}.first end # Get the singular hook function define_method("#{sym}_hook_itself") do sz = send(sym).size raise NeatException.new("#{sym}_hook_itself must have exactly one hook (#{sz})") unless sz == 1 send(sym).first end end def queue_setup(sym) # Add boilerplate code for queues here. end end end class NeatException < Exception end #= Base class of operators in RubyNEAT, # Such as Evolver, etc. class Operator < NeatOb end #= Traits # A Trait is a group of parameters that can be expressed # as a group more than one time. Traits save a genetic # algorithm from having to search vast parameter landscapes # on every node. Instead, each node can simply point to a trait # and those traits can evolve on their own. (Taken from the C version of NEAT) # # Since we wish to allow for different classes of Neurons, this trait idea is # super, since all we need to do is have a different trait species for the # different node types. class Trait < NeatOb end require 'rubyneat/critter' require 'rubyneat/neuron' require 'rubyneat/population' require 'rubyneat/evolver' require 'rubyneat/expressor' require 'rubyneat/evaluator' #= Controller for all operations of RubyNEAT # This object contains all the specifications and details for # evolving and evaluation of the RubyNEAT system. It is # a type of "World", if you will, for the entire enterprise. # # Your application shall only have one Controller. # # FIXME: The function hooks really should be able to take more # FIXME: than one hook! we don't need that functionality right # FIXME: now. Also, the Controller 'god' object itself will need # FIXME: to undergo some refactorization so that we can have many # FIXME: of them for HyperNEAT, co-evolution, etc. # # FIXME: An alternative approach would be to have demigod objects # FIXME: where the controller would lord it over them all. Attention # FIXME: must also be given to Rubinius and JRuby so that we can # FIXME: run under multiple cores. class Controller < NeatOb # Version of RubyNEAT runing attr_neat :version, default: SemVer.find.format("%M.%m.%p%s") attr_neat :neater, default: '--unspecified--' # global innovation number attr_neat :glob_innov_num, default: 0, cloneable: false # current sequence number being evaluated attr_reader :seq_num # Current generation count attr_reader :generation_num # catalog of neurons classes to use { weight => nclass, ... } attr_accessor :neuron_catalog # Class map of named input and output neurons (each critter will have # instantiations of these) name: InputNeuralClass (usually InputNeuron) attr_accessor :neural_inputs, :neural_outputs, :neural_hidden # Parameters for evolution (NeatParameters) attr_accessor :parms # population object and class specification attr_reader :population, :population_history, :population_class attr_accessor :expressor, :expressor_class attr_accessor :evaluator, :evaluator_class attr_accessor :evolver, :evolver_class # Global verbosity level: ## 1 - normal (the default) ## 2 - really verbose ## 3 - maximally verbose # Use in conjunction with log.debug attr_neat :verbosity, default: 1 # Query function that Critters shall call. attr_neat :query_func, hooks: true # Fitness function that Critters shall be rated on. attr_neat :fitness_func, hooks: true # Recurrence function that Critters will yield to. attr_neat :recurrence_func, hooks: true # Compare function for fitness # Cost function for integrating in the cost to the fitness scalar. attr_neat :compare_func, hooks: true attr_neat :cost_func, hooks: true attr_neat :stop_on_fit_func, hooks: true # End run function to call at the end of each generational run # Also report_hook to dump reports for the user, etc. attr_neat :end_run, hooks: true attr_neat :report, hooks: true # Hook to handle pre_exit functionality attr_neat :pre_exit, hooks: true # Logger object for all of RubyNEAT attr_reader :log # Various parameters affecting evolution. # Based somewhat on the Ken Stanley C version of NEAT. # TODO not all of these parameters are implemented yet!!! class NeatSettings < NeatOb ## RubyNEAT specific # Set to true to returned named parameters as hashes to the fitness function # (the default is to do ordered arrays) attr_accessor :hash_on_fitness ## based on the C version of NEAT attr_accessor :age_significance attr_accessor :babies_stolen # Species compatability threshold attr_accessor :compatibility_threshold # Speciation coffficient attr_accessor :disjoint_coefficient, :excess_coefficient, :weight_coefficient # Max target number of species (will result in the compatability_coeifficient # being adjusted automatically attr_accessor :max_species # Species Peality age for not making progress attr_accessor :dropoff_age # Species smallest population allowed (coalse smaller species into one) attr_accessor :smallest_species # Ratio of mating are actually interspecies attr_accessor :interspecies_mate_rate attr_accessor :linktrait_mutation_sig attr_accessor :mate_multipoint_avg_prob attr_accessor :mate_multipoint_prob attr_accessor :mate_only_prob attr_accessor :mate_singlepoint_prob # Maximum number of generations to run, if given. attr_neat :max_generations, default: 1000 # Maximum number of populations to maintain in the history buffer. attr_neat :max_population_history, default: 10 attr_accessor :mutate_add_gene_prob attr_accessor :mutate_add_neuron_prob attr_accessor :mutate_gene_disable_prob attr_accessor :mutate_gene_reenable_prob attr_accessor :mutate_gene_trait_prob # For gene weights perturbations and changes (complete overwrites) attr_accessor :mutate_perturb_gene_weights_prob, :mutate_perturb_gene_weights_sd, :mutate_change_gene_weights_prob, :mutate_change_gene_weights_sd attr_accessor :mutate_neuron_trait_prob attr_accessor :mutate_only_prob attr_accessor :mutate_random_trait_prob attr_accessor :mutate_toggle_enable_prob attr_accessor :mutdiff_coefficient attr_accessor :newlink_tries attr_accessor :neuron_trait_mut_sig # fitness costs, if given, use in the computation of fitness # AFTER the overall fitness for the applied stimuli have been # calculated. attr_accessor :fitness_cost_per_neuron attr_accessor :fitness_cost_per_gene # If set, will start off at the specified size and # grow to the bigger population size attr_accessor :start_population_size, :population_size attr_neat :start_sequence_at, default: 0 attr_neat :end_sequence_at, default: 100 attr_accessor :print_every attr_accessor :recur_only_prob attr_accessor :recur_prob # factor (0 to 1) of the top percentage of the species that's # allowed to mate. attr_accessor :survival_threshold attr_accessor :survival_mininum_per_species attr_accessor :trait_mutation_power attr_accessor :trait_param_mut_prob attr_accessor :weigh_mut_power # Enable FS-NEAT attr_accessor :feature_selection_switch # Enable HyperNEAT. This will result in the critters # being interpreted as CPPNs for substrate weights. Additional # setup will be necessary. attr_accessor :hyper_switch # Enable Evolved Substrate HyperNEAT. Meaningless unless # hyper_switch is also enabled. attr_accessor :evolved_substrate_switch # Enable RT-NEAT, for gradual evolution suitable for # games and other human-interactive systems. attr_accessor :real_time_switch # If true, allow for recurrent networks. attr_accessor :recurrency_switch # Set up defaults for mandatory entries. def initialize super # Default operators @evaluator = Evaluator.new self @expressor = Expressor.new self @evolver = Evolver.new self end end #- neural_inputs -- array of input classes #- neural_outputs -- array of output classes #- parameters -- NeatParameters object, or a path to a YAML file to create this. def initialize(neural_inputs: nil, neural_outputs: nil, neural_hidden: nil, parameters: NeatSettings.new, &block) super(self) @gaussian = Distribution::Normal.rng @population_history = [] @evolver = Evolver.new self @expressor = Expressor.new self @neuron_catalog = Neuron::neuron_types.clone @neural_inputs = neural_inputs @neural_outputs = neural_outputs @neural_hidden = neural_hidden # Default classes for population and operators, etc. @population_class = NEAT::Population @evaluator_class = NEAT::Evaluator @expressor_class = NEAT::Expressor @evolver_class = NEAT::Evolver # Handle the parameters parameter. :-) @parms = unless parameters.kind_of? String parameters else # load it from a file open(parameters, 'r') { |fd| YAML::load fd.read } end block.(self) unless block.nil? end def new_innovation ; self.glob_innov_num += 1 ; end def gaussian ; @gaussian.() ; end # Run this evolution. def run pre_run_initialize (1..@parms.max_generations).each do |gen_number| @generation_num = gen_number # must be set first @population_history << unless @population.nil? @population else @population = @population_class.new(self) end @population.generation = gen_number @population_history.shift unless @population_history.size <= @parms.max_population_history @population.mutate! @population.express! ## Evaluate population @evaluator.ready_for_evaluation @population (@parms.start_sequence_at .. @parms.end_sequence_at).each do |snum| @seq_num = snum @population.evaluate! end @population.analyze! @population.speciate! $log.debug @population.dump_s unless self.verbosity < 3 new_pop = @population.evolve ## Report hook for evaluation report_hooks(@population.report) ## Exit if fitness criteria is reached #FIXME handle this exit condition better!!!!! exit_neat if stop_on_fit_func_hook(@population.report.last[:fitness], self) unless stop_on_fit_func_none? ## Evolve population @population = new_pop ## Finish up this run end_run_hooks(self) end end private # We must set up the objects we need prior to the run, if not set. def pre_run_initialize @evaluator = @evaluator_class.new(self) if @evaluator.nil? @evolver = @evolver_class.new(self) if @evolver.nil? end # Allow us to hook in pre-exit functionality here # This function shall never return. def exit_neat pre_exit_hook(self) unless pre_exit_none? exit end end @controller = Controller.new def self.controller ; @controller ; end def self.controller=(controller) ; @controller = controller ; end def self.create_controller(*parms); @controller = Controller.new(*parms); end end # We put all the internal requires at the end to avoid conflicts. require_relative 'neuron' require_relative 'population'