// Copyright (C) 2013 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #ifndef DLIB_SVR_LINEAR_TrAINER_Hh_ #define DLIB_SVR_LINEAR_TrAINER_Hh_ #include "svr_linear_trainer_abstract.h" #include "../algs.h" #include "../optimization.h" #include "function.h" #include "kernel.h" #include "sparse_vector.h" #include <iostream> namespace dlib { // ---------------------------------------------------------------------------------------- template < typename matrix_type, typename sample_type > class oca_problem_linear_svr : public oca_problem<matrix_type > { public: /* This class is used as part of the implementation of the svr_linear_trainer defined towards the end of this file. */ typedef typename matrix_type::type scalar_type; oca_problem_linear_svr( const scalar_type C_, const std::vector<sample_type>& samples_, const std::vector<scalar_type>& targets_, const bool be_verbose_, const scalar_type eps_, const scalar_type eps_insensitivity_, const unsigned long max_iter ) : samples(samples_), targets(targets_), C(C_), be_verbose(be_verbose_), eps(eps_), eps_insensitivity(eps_insensitivity_), max_iterations(max_iter) { } virtual scalar_type get_c ( ) const { return C; } virtual long get_num_dimensions ( ) const { // plus one for the bias term return max_index_plus_one(samples) + 1; } virtual bool optimization_status ( scalar_type current_objective_value, scalar_type current_error_gap, scalar_type current_risk_value, scalar_type current_risk_gap, unsigned long num_cutting_planes, unsigned long num_iterations ) const { current_risk_value /= samples.size(); current_risk_gap /= samples.size(); if (be_verbose) { using namespace std; cout << "objective: " << current_objective_value << endl; cout << "objective gap: " << current_error_gap << endl; cout << "risk: " << current_risk_value << endl; cout << "risk gap: " << current_risk_gap << endl; cout << "num planes: " << num_cutting_planes << endl; cout << "iter: " << num_iterations << endl; cout << endl; } if (num_iterations >= max_iterations) return true; if (current_risk_gap < eps*eps_insensitivity) return true; return false; } virtual bool risk_has_lower_bound ( scalar_type& lower_bound ) const { lower_bound = 0; return true; } virtual void get_risk ( matrix_type& w, scalar_type& risk, matrix_type& subgradient ) const { subgradient.set_size(w.size(),1); subgradient = 0; risk = 0; // loop over all the samples and compute the risk and its subgradient at the current solution point w for (unsigned long i = 0; i < samples.size(); ++i) { const long w_size_m1 = w.size()-1; const scalar_type prediction = dot(colm(w,0,w_size_m1), samples[i]) - w(w_size_m1); if (std::abs(prediction - targets[i]) > eps_insensitivity) { if (prediction < targets[i]) { subtract_from(subgradient, samples[i]); subgradient(w_size_m1) += 1; } else { add_to(subgradient, samples[i]); subgradient(w_size_m1) -= 1; } risk += std::abs(prediction - targets[i]) - eps_insensitivity; } } } private: // ----------------------------------------------------- // ----------------------------------------------------- const std::vector<sample_type>& samples; const std::vector<scalar_type>& targets; const scalar_type C; const bool be_verbose; const scalar_type eps; const scalar_type eps_insensitivity; const unsigned long max_iterations; }; // ---------------------------------------------------------------------------------------- template < typename matrix_type, typename sample_type, typename scalar_type > oca_problem_linear_svr<matrix_type, sample_type> make_oca_problem_linear_svr ( const scalar_type C, const std::vector<sample_type>& samples, const std::vector<scalar_type>& targets, const bool be_verbose, const scalar_type eps, const scalar_type eps_insensitivity, const unsigned long max_iterations ) { return oca_problem_linear_svr<matrix_type, sample_type>( C, samples, targets, be_verbose, eps, eps_insensitivity, max_iterations); } // ---------------------------------------------------------------------------------------- template < typename K > class svr_linear_trainer { public: typedef K kernel_type; typedef typename kernel_type::scalar_type scalar_type; typedef typename kernel_type::sample_type sample_type; typedef typename kernel_type::mem_manager_type mem_manager_type; typedef decision_function<kernel_type> trained_function_type; // You are getting a compiler error on this line because you supplied a non-linear kernel // to the svr_linear_trainer object. You have to use one of the linear kernels with this // trainer. COMPILE_TIME_ASSERT((is_same_type<K, linear_kernel<sample_type> >::value || is_same_type<K, sparse_linear_kernel<sample_type> >::value )); svr_linear_trainer ( ) { C = 1; verbose = false; eps = 0.01; max_iterations = 10000; learn_nonnegative_weights = false; last_weight_1 = false; eps_insensitivity = 0.1; } explicit svr_linear_trainer ( const scalar_type& C_ ) { // make sure requires clause is not broken DLIB_ASSERT(C_ > 0, "\t svr_linear_trainer::svr_linear_trainer()" << "\n\t C_ must be greater than 0" << "\n\t C_: " << C_ << "\n\t this: " << this ); C = C_; verbose = false; eps = 0.01; max_iterations = 10000; learn_nonnegative_weights = false; last_weight_1 = false; eps_insensitivity = 0.1; } void set_epsilon ( scalar_type eps_ ) { // make sure requires clause is not broken DLIB_ASSERT(eps_ > 0, "\t void svr_linear_trainer::set_epsilon()" << "\n\t eps_ must be greater than 0" << "\n\t eps_: " << eps_ << "\n\t this: " << this ); eps = eps_; } const scalar_type get_epsilon ( ) const { return eps; } void set_epsilon_insensitivity ( scalar_type eps_ ) { // make sure requires clause is not broken DLIB_ASSERT(eps_ > 0, "\tvoid svr_linear_trainer::set_epsilon_insensitivity(eps_)" << "\n\t invalid inputs were given to this function" << "\n\t eps_: " << eps_ ); eps_insensitivity = eps_; } const scalar_type get_epsilon_insensitivity ( ) const { return eps_insensitivity; } unsigned long get_max_iterations ( ) const { return max_iterations; } void set_max_iterations ( unsigned long max_iter ) { max_iterations = max_iter; } void be_verbose ( ) { verbose = true; } void be_quiet ( ) { verbose = false; } bool forces_last_weight_to_1 ( ) const { return last_weight_1; } void force_last_weight_to_1 ( bool should_last_weight_be_1 ) { last_weight_1 = should_last_weight_be_1; } void set_oca ( const oca& item ) { solver = item; } const oca get_oca ( ) const { return solver; } const kernel_type get_kernel ( ) const { return kernel_type(); } bool learns_nonnegative_weights ( ) const { return learn_nonnegative_weights; } void set_learns_nonnegative_weights ( bool value ) { learn_nonnegative_weights = value; } void set_c ( scalar_type C_ ) { // make sure requires clause is not broken DLIB_ASSERT(C_ > 0, "\t void svr_linear_trainer::set_c()" << "\n\t C_ must be greater than 0" << "\n\t C_: " << C_ << "\n\t this: " << this ); C = C_; } const scalar_type get_c ( ) const { return C; } const decision_function<kernel_type> train ( const std::vector<sample_type>& samples, const std::vector<scalar_type>& targets ) const { // make sure requires clause is not broken DLIB_CASSERT(is_learning_problem(samples, targets) == true, "\t decision_function svr_linear_trainer::train(samples, targets)" << "\n\t invalid inputs were given to this function" << "\n\t samples.size(): " << samples.size() << "\n\t targets.size(): " << targets.size() << "\n\t is_learning_problem(samples,targets): " << is_learning_problem(samples,targets) ); typedef matrix<scalar_type,0,1> w_type; w_type w; const unsigned long num_dims = max_index_plus_one(samples); unsigned long num_nonnegative = 0; if (learn_nonnegative_weights) { num_nonnegative = num_dims; } unsigned long force_weight_1_idx = std::numeric_limits<unsigned long>::max(); if (last_weight_1) { force_weight_1_idx = num_dims-1; } solver( make_oca_problem_linear_svr<w_type>(C, samples, targets, verbose, eps, eps_insensitivity, max_iterations), w, num_nonnegative, force_weight_1_idx); // put the solution into a decision function and then return it decision_function<kernel_type> df; df.b = static_cast<scalar_type>(w(w.size()-1)); df.basis_vectors.set_size(1); // Copy the plane normal into the output basis vector. The output vector might be a // sparse vector container so we need to use this special kind of copy to handle that case. // As an aside, the reason for using max_index_plus_one() and not just w.size()-1 is because // doing it this way avoids an inane warning from gcc that can occur in some cases. const long out_size = max_index_plus_one(samples); assign(df.basis_vectors(0), matrix_cast<scalar_type>(colm(w, 0, out_size))); df.alpha.set_size(1); df.alpha(0) = 1; return df; } private: scalar_type C; oca solver; scalar_type eps; bool verbose; unsigned long max_iterations; bool learn_nonnegative_weights; bool last_weight_1; scalar_type eps_insensitivity; }; // ---------------------------------------------------------------------------------------- } #endif // DLIB_SVR_LINEAR_TrAINER_Hh_