/* * Main authors: * Christian Schulte * Guido Tack * * Copyright: * Guido Tack, 2004 * Christian Schulte, 2005 * * Last modified: * $Date: 2006-08-17 13:00:10 +0200 (Thu, 17 Aug 2006) $ by $Author: tack $ * $Revision: 3545 $ * * This file is part of Gecode, the generic constraint * development environment: * http://www.gecode.org * * See the file "LICENSE" for information on usage and * redistribution of this file, and for a * DISCLAIMER OF ALL WARRANTIES. * */ namespace Gecode { namespace Iter { namespace Ranges { namespace Virt { /** * \brief Range iterator for computing the complement (described by template arguments) * * The complement is computed with respect to a given universe set * provided as template arguments (\a UMIN ... \a UMAX). The universe * must always be a superset! * * Requires \code #include "gecode/iter.hh" \endcode * \ingroup FuncIterRangesVirt */ template class Compl : public MinMax, public Iterator { protected: /// Iterator to compute complement for Iterator* i; /// Initialize void start(void); public: /// \name Constructors and initialization //@{ /// Default constructor Compl(void); /// Initialize with iterator \a i Compl(Iterator* i); /// Destructor ~Compl(void); //@} /// \name Range access //@{ /// Return smallest value of range virtual int min(void) const; /// Return largest value of range virtual int max(void) const; /// Return width of range (distance between minimum and maximum) virtual unsigned int width(void) const; //@} /// \name Iteration control //@{ /// Move iterator to next range (if possible) void operator++(void); /// Test whether iterator is still at a range or done virtual bool operator()(void); //@} }; /** * \brief Range iterator for computing the complement (described by values) * * The complement is computed with respect to a given universe set * provided as arguments upon initialization. The universe * must always be a superset! * * Requires \code #include "gecode/iter.hh" \endcode * \ingroup FuncIterRangesVirt */ class ComplVal : public MinMax, public Iterator { protected: /// Values describing the universe set int UMIN, UMAX; /// Iterator to compute complement for Iterator* i; /// Initialize void start(void); public: /// \name Constructors and initialization //@{ /// Default constructor ComplVal(void); /// Initialize with iterator \a i ComplVal(int umin, int umax, Iterator* i); /// Destructor ~ComplVal(void); //@} /// \name Range access //@{ /// Return smallest value of range virtual int min(void) const; /// Return largest value of range virtual int max(void) const; /// Return width of range (distance between minimum and maximum) virtual unsigned int width(void) const; //@} /// \name Iteration control //@{ /// Move iterator to next range (if possible) void operator++(void); /// Test whether iterator is still at a range or done virtual bool operator()(void); //@} }; template forceinline void Compl::start(void) { if ((*i)()) { assert((i->min() >= UMIN) && (i->max() <= UMAX)); if (i->min() > UMIN) { mi = UMIN; ma = i->min()-1; } else if (i->max() < UMAX) { mi = i->max()+1; ++(*i); ma = (*i)() ? (i->min()-1) : UMAX; } else { finish(); } } else { mi = UMIN; ma = UMAX; } } template forceinline Compl::Compl(void) {} template forceinline Compl::Compl(Iterator* i0) : i(i0) { start(); } template Compl::~Compl(void) { delete i; } template forceinline void Compl::operator++(void) { assert(!(*i)() || (i->max() <= UMAX)); if ((*i)() && (i->max() < UMAX)) { mi = i->max()+1; ++(*i); ma = (*i)() ? (i->min()-1) : UMAX; } else { finish(); } } template forceinline bool Compl::operator()(void) { return MinMax::operator()(); } template forceinline int Compl::min(void) const { return MinMax::min(); } template forceinline int Compl::max(void) const { return MinMax::max(); } template forceinline unsigned int Compl::width(void) const { return MinMax::width(); } forceinline void ComplVal::start(void) { if ((*i)()) { assert((i->min() >= UMIN) && (i->max() <= UMAX)); if (i->min() > UMIN) { mi = UMIN; ma = i->min()-1; } else if (i->max() < UMAX) { mi = i->max()+1; ++(*i); ma = (*i)() ? (i->min()-1) : UMAX; } else { finish(); } } else { mi = UMIN; ma = UMAX; } } forceinline ComplVal::ComplVal(void) {} forceinline ComplVal::ComplVal(int umin, int umax, Iterator* i0) : UMIN(umin), UMAX(umax), i(i0) { start(); } forceinline ComplVal::~ComplVal(void) { delete i; } forceinline void ComplVal::operator++(void) { assert(!(*i)() || (i->max() <= UMAX)); if ((*i)() && (i->max() < UMAX)) { mi = i->max()+1; ++(*i); ma = (*i)() ? (i->min()-1) : UMAX; } else { finish(); } } forceinline bool ComplVal::operator()(void) { return MinMax::operator()(); } forceinline int ComplVal::min(void) const { return MinMax::min(); } forceinline int ComplVal::max(void) const { return MinMax::max(); } forceinline unsigned int ComplVal::width(void) const { return MinMax::width(); } }}}} // STATISTICS: iter-any