(function (global, factory) { if (typeof define === "function" && define.amd) { define(["exports", "three", "../libs/fflate.module.js", "../curves/NURBSCurve.js"], factory); } else if (typeof exports !== "undefined") { factory(exports, require("three"), require("../libs/fflate.module.js"), require("../curves/NURBSCurve.js")); } else { var mod = { exports: {} }; factory(mod.exports, global.three, global.fflateModule, global.NURBSCurve); global.FBXLoader = mod.exports; } })(typeof globalThis !== "undefined" ? globalThis : typeof self !== "undefined" ? self : this, function (_exports, _three, fflate, _NURBSCurve) { "use strict"; Object.defineProperty(_exports, "__esModule", { value: true }); _exports.FBXLoader = void 0; fflate = _interopRequireWildcard(fflate); function _getRequireWildcardCache(nodeInterop) { if (typeof WeakMap !== "function") return null; var cacheBabelInterop = new WeakMap(); var cacheNodeInterop = new WeakMap(); return (_getRequireWildcardCache = function _getRequireWildcardCache(nodeInterop) { return nodeInterop ? cacheNodeInterop : cacheBabelInterop; })(nodeInterop); } function _interopRequireWildcard(obj, nodeInterop) { if (!nodeInterop && obj && obj.__esModule) { return obj; } if (obj === null || typeof obj !== "object" && typeof obj !== "function") { return { default: obj }; } var cache = _getRequireWildcardCache(nodeInterop); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (key !== "default" && Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } newObj.default = obj; if (cache) { cache.set(obj, newObj); } return newObj; } function _classCallCheck(instance, Constructor) { if (!(instance instanceof Constructor)) { throw new TypeError("Cannot call a class as a function"); } } function _defineProperties(target, props) { for (var i = 0; i < props.length; i++) { var descriptor = props[i]; descriptor.enumerable = descriptor.enumerable || false; descriptor.configurable = true; if ("value" in descriptor) descriptor.writable = true; Object.defineProperty(target, descriptor.key, descriptor); } } function _createClass(Constructor, protoProps, staticProps) { if (protoProps) _defineProperties(Constructor.prototype, protoProps); if (staticProps) _defineProperties(Constructor, staticProps); Object.defineProperty(Constructor, "prototype", { writable: false }); return Constructor; } function _inherits(subClass, superClass) { if (typeof superClass !== "function" && superClass !== null) { throw new TypeError("Super expression must either be null or a function"); } Object.defineProperty(subClass, "prototype", { value: Object.create(superClass && superClass.prototype, { constructor: { value: subClass, writable: true, configurable: true } }), writable: false }); if (superClass) _setPrototypeOf(subClass, superClass); } function _setPrototypeOf(o, p) { _setPrototypeOf = Object.setPrototypeOf || function _setPrototypeOf(o, p) { o.__proto__ = p; return o; }; return _setPrototypeOf(o, p); } function _createSuper(Derived) { var hasNativeReflectConstruct = _isNativeReflectConstruct(); return function _createSuperInternal() { var Super = _getPrototypeOf(Derived), result; if (hasNativeReflectConstruct) { var NewTarget = _getPrototypeOf(this).constructor; result = Reflect.construct(Super, arguments, NewTarget); } else { result = Super.apply(this, arguments); } return _possibleConstructorReturn(this, result); }; } function _possibleConstructorReturn(self, call) { if (call && (typeof call === "object" || typeof call === "function")) { return call; } else if (call !== void 0) { throw new TypeError("Derived constructors may only return object or undefined"); } return _assertThisInitialized(self); } function _assertThisInitialized(self) { if (self === void 0) { throw new ReferenceError("this hasn't been initialised - super() hasn't been called"); } return self; } function _isNativeReflectConstruct() { if (typeof Reflect === "undefined" || !Reflect.construct) return false; if (Reflect.construct.sham) return false; if (typeof Proxy === "function") return true; try { Boolean.prototype.valueOf.call(Reflect.construct(Boolean, [], function () {})); return true; } catch (e) { return false; } } function _getPrototypeOf(o) { _getPrototypeOf = Object.setPrototypeOf ? Object.getPrototypeOf : function _getPrototypeOf(o) { return o.__proto__ || Object.getPrototypeOf(o); }; return _getPrototypeOf(o); } /** * Loader loads FBX file and generates Group representing FBX scene. * Requires FBX file to be >= 7.0 and in ASCII or >= 6400 in Binary format * Versions lower than this may load but will probably have errors * * Needs Support: * Morph normals / blend shape normals * * FBX format references: * https://wiki.blender.org/index.php/User:Mont29/Foundation/FBX_File_Structure * http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_index_html (C++ SDK reference) * * Binary format specification: * https://code.blender.org/2013/08/fbx-binary-file-format-specification/ */ var fbxTree; var connections; var sceneGraph; var FBXLoader = /*#__PURE__*/function (_Loader) { _inherits(FBXLoader, _Loader); var _super = _createSuper(FBXLoader); function FBXLoader(manager) { _classCallCheck(this, FBXLoader); return _super.call(this, manager); } _createClass(FBXLoader, [{ key: "load", value: function load(url, onLoad, onProgress, onError) { var scope = this; var path = scope.path === '' ? _three.LoaderUtils.extractUrlBase(url) : scope.path; var loader = new _three.FileLoader(this.manager); loader.setPath(scope.path); loader.setResponseType('arraybuffer'); loader.setRequestHeader(scope.requestHeader); loader.setWithCredentials(scope.withCredentials); loader.load(url, function (buffer) { try { onLoad(scope.parse(buffer, path)); } catch (e) { if (onError) { onError(e); } else { console.error(e); } scope.manager.itemError(url); } }, onProgress, onError); } }, { key: "parse", value: function parse(FBXBuffer, path) { if (isFbxFormatBinary(FBXBuffer)) { fbxTree = new BinaryParser().parse(FBXBuffer); } else { var FBXText = convertArrayBufferToString(FBXBuffer); if (!isFbxFormatASCII(FBXText)) { throw new Error('THREE.FBXLoader: Unknown format.'); } if (getFbxVersion(FBXText) < 7000) { throw new Error('THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion(FBXText)); } fbxTree = new TextParser().parse(FBXText); } // console.log( fbxTree ); var textureLoader = new _three.TextureLoader(this.manager).setPath(this.resourcePath || path).setCrossOrigin(this.crossOrigin); return new FBXTreeParser(textureLoader, this.manager).parse(fbxTree); } }]); return FBXLoader; }(_three.Loader); // Parse the FBXTree object returned by the BinaryParser or TextParser and return a Group _exports.FBXLoader = FBXLoader; var FBXTreeParser = /*#__PURE__*/function () { function FBXTreeParser(textureLoader, manager) { _classCallCheck(this, FBXTreeParser); this.textureLoader = textureLoader; this.manager = manager; } _createClass(FBXTreeParser, [{ key: "parse", value: function parse() { connections = this.parseConnections(); var images = this.parseImages(); var textures = this.parseTextures(images); var materials = this.parseMaterials(textures); var deformers = this.parseDeformers(); var geometryMap = new GeometryParser().parse(deformers); this.parseScene(deformers, geometryMap, materials); return sceneGraph; } // Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry ) // and details the connection type }, { key: "parseConnections", value: function parseConnections() { var connectionMap = new Map(); if ('Connections' in fbxTree) { var rawConnections = fbxTree.Connections.connections; rawConnections.forEach(function (rawConnection) { var fromID = rawConnection[0]; var toID = rawConnection[1]; var relationship = rawConnection[2]; if (!connectionMap.has(fromID)) { connectionMap.set(fromID, { parents: [], children: [] }); } var parentRelationship = { ID: toID, relationship: relationship }; connectionMap.get(fromID).parents.push(parentRelationship); if (!connectionMap.has(toID)) { connectionMap.set(toID, { parents: [], children: [] }); } var childRelationship = { ID: fromID, relationship: relationship }; connectionMap.get(toID).children.push(childRelationship); }); } return connectionMap; } // Parse FBXTree.Objects.Video for embedded image data // These images are connected to textures in FBXTree.Objects.Textures // via FBXTree.Connections. }, { key: "parseImages", value: function parseImages() { var images = {}; var blobs = {}; if ('Video' in fbxTree.Objects) { var videoNodes = fbxTree.Objects.Video; for (var nodeID in videoNodes) { var videoNode = videoNodes[nodeID]; var id = parseInt(nodeID); images[id] = videoNode.RelativeFilename || videoNode.Filename; // raw image data is in videoNode.Content if ('Content' in videoNode) { var arrayBufferContent = videoNode.Content instanceof ArrayBuffer && videoNode.Content.byteLength > 0; var base64Content = typeof videoNode.Content === 'string' && videoNode.Content !== ''; if (arrayBufferContent || base64Content) { var image = this.parseImage(videoNodes[nodeID]); blobs[videoNode.RelativeFilename || videoNode.Filename] = image; } } } } for (var _id in images) { var filename = images[_id]; if (blobs[filename] !== undefined) images[_id] = blobs[filename];else images[_id] = images[_id].split('\\').pop(); } return images; } // Parse embedded image data in FBXTree.Video.Content }, { key: "parseImage", value: function parseImage(videoNode) { var content = videoNode.Content; var fileName = videoNode.RelativeFilename || videoNode.Filename; var extension = fileName.slice(fileName.lastIndexOf('.') + 1).toLowerCase(); var type; switch (extension) { case 'bmp': type = 'image/bmp'; break; case 'jpg': case 'jpeg': type = 'image/jpeg'; break; case 'png': type = 'image/png'; break; case 'tif': type = 'image/tiff'; break; case 'tga': if (this.manager.getHandler('.tga') === null) { console.warn('FBXLoader: TGA loader not found, skipping ', fileName); } type = 'image/tga'; break; default: console.warn('FBXLoader: Image type "' + extension + '" is not supported.'); return; } if (typeof content === 'string') { // ASCII format return 'data:' + type + ';base64,' + content; } else { // Binary Format var array = new Uint8Array(content); return window.URL.createObjectURL(new Blob([array], { type: type })); } } // Parse nodes in FBXTree.Objects.Texture // These contain details such as UV scaling, cropping, rotation etc and are connected // to images in FBXTree.Objects.Video }, { key: "parseTextures", value: function parseTextures(images) { var textureMap = new Map(); if ('Texture' in fbxTree.Objects) { var textureNodes = fbxTree.Objects.Texture; for (var nodeID in textureNodes) { var texture = this.parseTexture(textureNodes[nodeID], images); textureMap.set(parseInt(nodeID), texture); } } return textureMap; } // Parse individual node in FBXTree.Objects.Texture }, { key: "parseTexture", value: function parseTexture(textureNode, images) { var texture = this.loadTexture(textureNode, images); texture.ID = textureNode.id; texture.name = textureNode.attrName; var wrapModeU = textureNode.WrapModeU; var wrapModeV = textureNode.WrapModeV; var valueU = wrapModeU !== undefined ? wrapModeU.value : 0; var valueV = wrapModeV !== undefined ? wrapModeV.value : 0; // http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a // 0: repeat(default), 1: clamp texture.wrapS = valueU === 0 ? _three.RepeatWrapping : _three.ClampToEdgeWrapping; texture.wrapT = valueV === 0 ? _three.RepeatWrapping : _three.ClampToEdgeWrapping; if ('Scaling' in textureNode) { var values = textureNode.Scaling.value; texture.repeat.x = values[0]; texture.repeat.y = values[1]; } return texture; } // load a texture specified as a blob or data URI, or via an external URL using TextureLoader }, { key: "loadTexture", value: function loadTexture(textureNode, images) { var fileName; var currentPath = this.textureLoader.path; var children = connections.get(textureNode.id).children; if (children !== undefined && children.length > 0 && images[children[0].ID] !== undefined) { fileName = images[children[0].ID]; if (fileName.indexOf('blob:') === 0 || fileName.indexOf('data:') === 0) { this.textureLoader.setPath(undefined); } } var texture; var extension = textureNode.FileName.slice(-3).toLowerCase(); if (extension === 'tga') { var loader = this.manager.getHandler('.tga'); if (loader === null) { console.warn('FBXLoader: TGA loader not found, creating placeholder texture for', textureNode.RelativeFilename); texture = new _three.Texture(); } else { loader.setPath(this.textureLoader.path); texture = loader.load(fileName); } } else if (extension === 'psd') { console.warn('FBXLoader: PSD textures are not supported, creating placeholder texture for', textureNode.RelativeFilename); texture = new _three.Texture(); } else { texture = this.textureLoader.load(fileName); } this.textureLoader.setPath(currentPath); return texture; } // Parse nodes in FBXTree.Objects.Material }, { key: "parseMaterials", value: function parseMaterials(textureMap) { var materialMap = new Map(); if ('Material' in fbxTree.Objects) { var materialNodes = fbxTree.Objects.Material; for (var nodeID in materialNodes) { var material = this.parseMaterial(materialNodes[nodeID], textureMap); if (material !== null) materialMap.set(parseInt(nodeID), material); } } return materialMap; } // Parse single node in FBXTree.Objects.Material // Materials are connected to texture maps in FBXTree.Objects.Textures // FBX format currently only supports Lambert and Phong shading models }, { key: "parseMaterial", value: function parseMaterial(materialNode, textureMap) { var ID = materialNode.id; var name = materialNode.attrName; var type = materialNode.ShadingModel; // Case where FBX wraps shading model in property object. if (typeof type === 'object') { type = type.value; } // Ignore unused materials which don't have any connections. if (!connections.has(ID)) return null; var parameters = this.parseParameters(materialNode, textureMap, ID); var material; switch (type.toLowerCase()) { case 'phong': material = new _three.MeshPhongMaterial(); break; case 'lambert': material = new _three.MeshLambertMaterial(); break; default: console.warn('THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type); material = new _three.MeshPhongMaterial(); break; } material.setValues(parameters); material.name = name; return material; } // Parse FBX material and return parameters suitable for a three.js material // Also parse the texture map and return any textures associated with the material }, { key: "parseParameters", value: function parseParameters(materialNode, textureMap, ID) { var parameters = {}; if (materialNode.BumpFactor) { parameters.bumpScale = materialNode.BumpFactor.value; } if (materialNode.Diffuse) { parameters.color = new _three.Color().fromArray(materialNode.Diffuse.value); } else if (materialNode.DiffuseColor && (materialNode.DiffuseColor.type === 'Color' || materialNode.DiffuseColor.type === 'ColorRGB')) { // The blender exporter exports diffuse here instead of in materialNode.Diffuse parameters.color = new _three.Color().fromArray(materialNode.DiffuseColor.value); } if (materialNode.DisplacementFactor) { parameters.displacementScale = materialNode.DisplacementFactor.value; } if (materialNode.Emissive) { parameters.emissive = new _three.Color().fromArray(materialNode.Emissive.value); } else if (materialNode.EmissiveColor && (materialNode.EmissiveColor.type === 'Color' || materialNode.EmissiveColor.type === 'ColorRGB')) { // The blender exporter exports emissive color here instead of in materialNode.Emissive parameters.emissive = new _three.Color().fromArray(materialNode.EmissiveColor.value); } if (materialNode.EmissiveFactor) { parameters.emissiveIntensity = parseFloat(materialNode.EmissiveFactor.value); } if (materialNode.Opacity) { parameters.opacity = parseFloat(materialNode.Opacity.value); } if (parameters.opacity < 1.0) { parameters.transparent = true; } if (materialNode.ReflectionFactor) { parameters.reflectivity = materialNode.ReflectionFactor.value; } if (materialNode.Shininess) { parameters.shininess = materialNode.Shininess.value; } if (materialNode.Specular) { parameters.specular = new _three.Color().fromArray(materialNode.Specular.value); } else if (materialNode.SpecularColor && materialNode.SpecularColor.type === 'Color') { // The blender exporter exports specular color here instead of in materialNode.Specular parameters.specular = new _three.Color().fromArray(materialNode.SpecularColor.value); } var scope = this; connections.get(ID).children.forEach(function (child) { var type = child.relationship; switch (type) { case 'Bump': parameters.bumpMap = scope.getTexture(textureMap, child.ID); break; case 'Maya|TEX_ao_map': parameters.aoMap = scope.getTexture(textureMap, child.ID); break; case 'DiffuseColor': case 'Maya|TEX_color_map': parameters.map = scope.getTexture(textureMap, child.ID); if (parameters.map !== undefined) { parameters.map.encoding = _three.sRGBEncoding; } break; case 'DisplacementColor': parameters.displacementMap = scope.getTexture(textureMap, child.ID); break; case 'EmissiveColor': parameters.emissiveMap = scope.getTexture(textureMap, child.ID); if (parameters.emissiveMap !== undefined) { parameters.emissiveMap.encoding = _three.sRGBEncoding; } break; case 'NormalMap': case 'Maya|TEX_normal_map': parameters.normalMap = scope.getTexture(textureMap, child.ID); break; case 'ReflectionColor': parameters.envMap = scope.getTexture(textureMap, child.ID); if (parameters.envMap !== undefined) { parameters.envMap.mapping = _three.EquirectangularReflectionMapping; parameters.envMap.encoding = _three.sRGBEncoding; } break; case 'SpecularColor': parameters.specularMap = scope.getTexture(textureMap, child.ID); if (parameters.specularMap !== undefined) { parameters.specularMap.encoding = _three.sRGBEncoding; } break; case 'TransparentColor': case 'TransparencyFactor': parameters.alphaMap = scope.getTexture(textureMap, child.ID); parameters.transparent = true; break; case 'AmbientColor': case 'ShininessExponent': // AKA glossiness map case 'SpecularFactor': // AKA specularLevel case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor default: console.warn('THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type); break; } }); return parameters; } // get a texture from the textureMap for use by a material. }, { key: "getTexture", value: function getTexture(textureMap, id) { // if the texture is a layered texture, just use the first layer and issue a warning if ('LayeredTexture' in fbxTree.Objects && id in fbxTree.Objects.LayeredTexture) { console.warn('THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.'); id = connections.get(id).children[0].ID; } return textureMap.get(id); } // Parse nodes in FBXTree.Objects.Deformer // Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here // Generates map of Skeleton-like objects for use later when generating and binding skeletons. }, { key: "parseDeformers", value: function parseDeformers() { var skeletons = {}; var morphTargets = {}; if ('Deformer' in fbxTree.Objects) { var DeformerNodes = fbxTree.Objects.Deformer; for (var nodeID in DeformerNodes) { var deformerNode = DeformerNodes[nodeID]; var relationships = connections.get(parseInt(nodeID)); if (deformerNode.attrType === 'Skin') { var skeleton = this.parseSkeleton(relationships, DeformerNodes); skeleton.ID = nodeID; if (relationships.parents.length > 1) console.warn('THREE.FBXLoader: skeleton attached to more than one geometry is not supported.'); skeleton.geometryID = relationships.parents[0].ID; skeletons[nodeID] = skeleton; } else if (deformerNode.attrType === 'BlendShape') { var morphTarget = { id: nodeID }; morphTarget.rawTargets = this.parseMorphTargets(relationships, DeformerNodes); morphTarget.id = nodeID; if (relationships.parents.length > 1) console.warn('THREE.FBXLoader: morph target attached to more than one geometry is not supported.'); morphTargets[nodeID] = morphTarget; } } } return { skeletons: skeletons, morphTargets: morphTargets }; } // Parse single nodes in FBXTree.Objects.Deformer // The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster' // Each skin node represents a skeleton and each cluster node represents a bone }, { key: "parseSkeleton", value: function parseSkeleton(relationships, deformerNodes) { var rawBones = []; relationships.children.forEach(function (child) { var boneNode = deformerNodes[child.ID]; if (boneNode.attrType !== 'Cluster') return; var rawBone = { ID: child.ID, indices: [], weights: [], transformLink: new _three.Matrix4().fromArray(boneNode.TransformLink.a) // transform: new Matrix4().fromArray( boneNode.Transform.a ), // linkMode: boneNode.Mode, }; if ('Indexes' in boneNode) { rawBone.indices = boneNode.Indexes.a; rawBone.weights = boneNode.Weights.a; } rawBones.push(rawBone); }); return { rawBones: rawBones, bones: [] }; } // The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel" }, { key: "parseMorphTargets", value: function parseMorphTargets(relationships, deformerNodes) { var rawMorphTargets = []; for (var i = 0; i < relationships.children.length; i++) { var child = relationships.children[i]; var morphTargetNode = deformerNodes[child.ID]; var rawMorphTarget = { name: morphTargetNode.attrName, initialWeight: morphTargetNode.DeformPercent, id: morphTargetNode.id, fullWeights: morphTargetNode.FullWeights.a }; if (morphTargetNode.attrType !== 'BlendShapeChannel') return; rawMorphTarget.geoID = connections.get(parseInt(child.ID)).children.filter(function (child) { return child.relationship === undefined; })[0].ID; rawMorphTargets.push(rawMorphTarget); } return rawMorphTargets; } // create the main Group() to be returned by the loader }, { key: "parseScene", value: function parseScene(deformers, geometryMap, materialMap) { sceneGraph = new _three.Group(); var modelMap = this.parseModels(deformers.skeletons, geometryMap, materialMap); var modelNodes = fbxTree.Objects.Model; var scope = this; modelMap.forEach(function (model) { var modelNode = modelNodes[model.ID]; scope.setLookAtProperties(model, modelNode); var parentConnections = connections.get(model.ID).parents; parentConnections.forEach(function (connection) { var parent = modelMap.get(connection.ID); if (parent !== undefined) parent.add(model); }); if (model.parent === null) { sceneGraph.add(model); } }); this.bindSkeleton(deformers.skeletons, geometryMap, modelMap); this.createAmbientLight(); sceneGraph.traverse(function (node) { if (node.userData.transformData) { if (node.parent) { node.userData.transformData.parentMatrix = node.parent.matrix; node.userData.transformData.parentMatrixWorld = node.parent.matrixWorld; } var transform = generateTransform(node.userData.transformData); node.applyMatrix4(transform); node.updateWorldMatrix(); } }); var animations = new AnimationParser().parse(); // if all the models where already combined in a single group, just return that if (sceneGraph.children.length === 1 && sceneGraph.children[0].isGroup) { sceneGraph.children[0].animations = animations; sceneGraph = sceneGraph.children[0]; } sceneGraph.animations = animations; } // parse nodes in FBXTree.Objects.Model }, { key: "parseModels", value: function parseModels(skeletons, geometryMap, materialMap) { var modelMap = new Map(); var modelNodes = fbxTree.Objects.Model; for (var nodeID in modelNodes) { var id = parseInt(nodeID); var node = modelNodes[nodeID]; var relationships = connections.get(id); var model = this.buildSkeleton(relationships, skeletons, id, node.attrName); if (!model) { switch (node.attrType) { case 'Camera': model = this.createCamera(relationships); break; case 'Light': model = this.createLight(relationships); break; case 'Mesh': model = this.createMesh(relationships, geometryMap, materialMap); break; case 'NurbsCurve': model = this.createCurve(relationships, geometryMap); break; case 'LimbNode': case 'Root': model = new _three.Bone(); break; case 'Null': default: model = new _three.Group(); break; } model.name = node.attrName ? _three.PropertyBinding.sanitizeNodeName(node.attrName) : ''; model.ID = id; } this.getTransformData(model, node); modelMap.set(id, model); } return modelMap; } }, { key: "buildSkeleton", value: function buildSkeleton(relationships, skeletons, id, name) { var bone = null; relationships.parents.forEach(function (parent) { var _loop = function _loop(ID) { var skeleton = skeletons[ID]; skeleton.rawBones.forEach(function (rawBone, i) { if (rawBone.ID === parent.ID) { var subBone = bone; bone = new _three.Bone(); bone.matrixWorld.copy(rawBone.transformLink); // set name and id here - otherwise in cases where "subBone" is created it will not have a name / id bone.name = name ? _three.PropertyBinding.sanitizeNodeName(name) : ''; bone.ID = id; skeleton.bones[i] = bone; // In cases where a bone is shared between multiple meshes // duplicate the bone here and and it as a child of the first bone if (subBone !== null) { bone.add(subBone); } } }); }; for (var ID in skeletons) { _loop(ID); } }); return bone; } // create a PerspectiveCamera or OrthographicCamera }, { key: "createCamera", value: function createCamera(relationships) { var model; var cameraAttribute; relationships.children.forEach(function (child) { var attr = fbxTree.Objects.NodeAttribute[child.ID]; if (attr !== undefined) { cameraAttribute = attr; } }); if (cameraAttribute === undefined) { model = new _three.Object3D(); } else { var type = 0; if (cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1) { type = 1; } var nearClippingPlane = 1; if (cameraAttribute.NearPlane !== undefined) { nearClippingPlane = cameraAttribute.NearPlane.value / 1000; } var farClippingPlane = 1000; if (cameraAttribute.FarPlane !== undefined) { farClippingPlane = cameraAttribute.FarPlane.value / 1000; } var width = window.innerWidth; var height = window.innerHeight; if (cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined) { width = cameraAttribute.AspectWidth.value; height = cameraAttribute.AspectHeight.value; } var aspect = width / height; var fov = 45; if (cameraAttribute.FieldOfView !== undefined) { fov = cameraAttribute.FieldOfView.value; } var focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null; switch (type) { case 0: // Perspective model = new _three.PerspectiveCamera(fov, aspect, nearClippingPlane, farClippingPlane); if (focalLength !== null) model.setFocalLength(focalLength); break; case 1: // Orthographic model = new _three.OrthographicCamera(-width / 2, width / 2, height / 2, -height / 2, nearClippingPlane, farClippingPlane); break; default: console.warn('THREE.FBXLoader: Unknown camera type ' + type + '.'); model = new _three.Object3D(); break; } } return model; } // Create a DirectionalLight, PointLight or SpotLight }, { key: "createLight", value: function createLight(relationships) { var model; var lightAttribute; relationships.children.forEach(function (child) { var attr = fbxTree.Objects.NodeAttribute[child.ID]; if (attr !== undefined) { lightAttribute = attr; } }); if (lightAttribute === undefined) { model = new _three.Object3D(); } else { var type; // LightType can be undefined for Point lights if (lightAttribute.LightType === undefined) { type = 0; } else { type = lightAttribute.LightType.value; } var color = 0xffffff; if (lightAttribute.Color !== undefined) { color = new _three.Color().fromArray(lightAttribute.Color.value); } var intensity = lightAttribute.Intensity === undefined ? 1 : lightAttribute.Intensity.value / 100; // light disabled if (lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0) { intensity = 0; } var distance = 0; if (lightAttribute.FarAttenuationEnd !== undefined) { if (lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0) { distance = 0; } else { distance = lightAttribute.FarAttenuationEnd.value; } } // TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd? var decay = 1; switch (type) { case 0: // Point model = new _three.PointLight(color, intensity, distance, decay); break; case 1: // Directional model = new _three.DirectionalLight(color, intensity); break; case 2: // Spot var angle = Math.PI / 3; if (lightAttribute.InnerAngle !== undefined) { angle = _three.MathUtils.degToRad(lightAttribute.InnerAngle.value); } var penumbra = 0; if (lightAttribute.OuterAngle !== undefined) { // TODO: this is not correct - FBX calculates outer and inner angle in degrees // with OuterAngle > InnerAngle && OuterAngle <= Math.PI // while three.js uses a penumbra between (0, 1) to attenuate the inner angle penumbra = _three.MathUtils.degToRad(lightAttribute.OuterAngle.value); penumbra = Math.max(penumbra, 1); } model = new _three.SpotLight(color, intensity, distance, angle, penumbra, decay); break; default: console.warn('THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a PointLight.'); model = new _three.PointLight(color, intensity); break; } if (lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1) { model.castShadow = true; } } return model; } }, { key: "createMesh", value: function createMesh(relationships, geometryMap, materialMap) { var model; var geometry = null; var material = null; var materials = []; // get geometry and materials(s) from connections relationships.children.forEach(function (child) { if (geometryMap.has(child.ID)) { geometry = geometryMap.get(child.ID); } if (materialMap.has(child.ID)) { materials.push(materialMap.get(child.ID)); } }); if (materials.length > 1) { material = materials; } else if (materials.length > 0) { material = materials[0]; } else { material = new _three.MeshPhongMaterial({ color: 0xcccccc }); materials.push(material); } if ('color' in geometry.attributes) { materials.forEach(function (material) { material.vertexColors = true; }); } if (geometry.FBX_Deformer) { model = new _three.SkinnedMesh(geometry, material); model.normalizeSkinWeights(); } else { model = new _three.Mesh(geometry, material); } return model; } }, { key: "createCurve", value: function createCurve(relationships, geometryMap) { var geometry = relationships.children.reduce(function (geo, child) { if (geometryMap.has(child.ID)) geo = geometryMap.get(child.ID); return geo; }, null); // FBX does not list materials for Nurbs lines, so we'll just put our own in here. var material = new _three.LineBasicMaterial({ color: 0x3300ff, linewidth: 1 }); return new _three.Line(geometry, material); } // parse the model node for transform data }, { key: "getTransformData", value: function getTransformData(model, modelNode) { var transformData = {}; if ('InheritType' in modelNode) transformData.inheritType = parseInt(modelNode.InheritType.value); if ('RotationOrder' in modelNode) transformData.eulerOrder = getEulerOrder(modelNode.RotationOrder.value);else transformData.eulerOrder = 'ZYX'; if ('Lcl_Translation' in modelNode) transformData.translation = modelNode.Lcl_Translation.value; if ('PreRotation' in modelNode) transformData.preRotation = modelNode.PreRotation.value; if ('Lcl_Rotation' in modelNode) transformData.rotation = modelNode.Lcl_Rotation.value; if ('PostRotation' in modelNode) transformData.postRotation = modelNode.PostRotation.value; if ('Lcl_Scaling' in modelNode) transformData.scale = modelNode.Lcl_Scaling.value; if ('ScalingOffset' in modelNode) transformData.scalingOffset = modelNode.ScalingOffset.value; if ('ScalingPivot' in modelNode) transformData.scalingPivot = modelNode.ScalingPivot.value; if ('RotationOffset' in modelNode) transformData.rotationOffset = modelNode.RotationOffset.value; if ('RotationPivot' in modelNode) transformData.rotationPivot = modelNode.RotationPivot.value; model.userData.transformData = transformData; } }, { key: "setLookAtProperties", value: function setLookAtProperties(model, modelNode) { if ('LookAtProperty' in modelNode) { var children = connections.get(model.ID).children; children.forEach(function (child) { if (child.relationship === 'LookAtProperty') { var lookAtTarget = fbxTree.Objects.Model[child.ID]; if ('Lcl_Translation' in lookAtTarget) { var pos = lookAtTarget.Lcl_Translation.value; // DirectionalLight, SpotLight if (model.target !== undefined) { model.target.position.fromArray(pos); sceneGraph.add(model.target); } else { // Cameras and other Object3Ds model.lookAt(new _three.Vector3().fromArray(pos)); } } } }); } } }, { key: "bindSkeleton", value: function bindSkeleton(skeletons, geometryMap, modelMap) { var bindMatrices = this.parsePoseNodes(); var _loop2 = function _loop2(ID) { var skeleton = skeletons[ID]; var parents = connections.get(parseInt(skeleton.ID)).parents; parents.forEach(function (parent) { if (geometryMap.has(parent.ID)) { var geoID = parent.ID; var geoRelationships = connections.get(geoID); geoRelationships.parents.forEach(function (geoConnParent) { if (modelMap.has(geoConnParent.ID)) { var model = modelMap.get(geoConnParent.ID); model.bind(new _three.Skeleton(skeleton.bones), bindMatrices[geoConnParent.ID]); } }); } }); }; for (var ID in skeletons) { _loop2(ID); } } }, { key: "parsePoseNodes", value: function parsePoseNodes() { var bindMatrices = {}; if ('Pose' in fbxTree.Objects) { var BindPoseNode = fbxTree.Objects.Pose; for (var nodeID in BindPoseNode) { if (BindPoseNode[nodeID].attrType === 'BindPose' && BindPoseNode[nodeID].NbPoseNodes > 0) { var poseNodes = BindPoseNode[nodeID].PoseNode; if (Array.isArray(poseNodes)) { poseNodes.forEach(function (poseNode) { bindMatrices[poseNode.Node] = new _three.Matrix4().fromArray(poseNode.Matrix.a); }); } else { bindMatrices[poseNodes.Node] = new _three.Matrix4().fromArray(poseNodes.Matrix.a); } } } } return bindMatrices; } // Parse ambient color in FBXTree.GlobalSettings - if it's not set to black (default), create an ambient light }, { key: "createAmbientLight", value: function createAmbientLight() { if ('GlobalSettings' in fbxTree && 'AmbientColor' in fbxTree.GlobalSettings) { var ambientColor = fbxTree.GlobalSettings.AmbientColor.value; var r = ambientColor[0]; var g = ambientColor[1]; var b = ambientColor[2]; if (r !== 0 || g !== 0 || b !== 0) { var color = new _three.Color(r, g, b); sceneGraph.add(new _three.AmbientLight(color, 1)); } } } }]); return FBXTreeParser; }(); // parse Geometry data from FBXTree and return map of BufferGeometries var GeometryParser = /*#__PURE__*/function () { function GeometryParser() { _classCallCheck(this, GeometryParser); } _createClass(GeometryParser, [{ key: "parse", value: // Parse nodes in FBXTree.Objects.Geometry function parse(deformers) { var geometryMap = new Map(); if ('Geometry' in fbxTree.Objects) { var geoNodes = fbxTree.Objects.Geometry; for (var nodeID in geoNodes) { var relationships = connections.get(parseInt(nodeID)); var geo = this.parseGeometry(relationships, geoNodes[nodeID], deformers); geometryMap.set(parseInt(nodeID), geo); } } return geometryMap; } // Parse single node in FBXTree.Objects.Geometry }, { key: "parseGeometry", value: function parseGeometry(relationships, geoNode, deformers) { switch (geoNode.attrType) { case 'Mesh': return this.parseMeshGeometry(relationships, geoNode, deformers); break; case 'NurbsCurve': return this.parseNurbsGeometry(geoNode); break; } } // Parse single node mesh geometry in FBXTree.Objects.Geometry }, { key: "parseMeshGeometry", value: function parseMeshGeometry(relationships, geoNode, deformers) { var skeletons = deformers.skeletons; var morphTargets = []; var modelNodes = relationships.parents.map(function (parent) { return fbxTree.Objects.Model[parent.ID]; }); // don't create geometry if it is not associated with any models if (modelNodes.length === 0) return; var skeleton = relationships.children.reduce(function (skeleton, child) { if (skeletons[child.ID] !== undefined) skeleton = skeletons[child.ID]; return skeleton; }, null); relationships.children.forEach(function (child) { if (deformers.morphTargets[child.ID] !== undefined) { morphTargets.push(deformers.morphTargets[child.ID]); } }); // Assume one model and get the preRotation from that // if there is more than one model associated with the geometry this may cause problems var modelNode = modelNodes[0]; var transformData = {}; if ('RotationOrder' in modelNode) transformData.eulerOrder = getEulerOrder(modelNode.RotationOrder.value); if ('InheritType' in modelNode) transformData.inheritType = parseInt(modelNode.InheritType.value); if ('GeometricTranslation' in modelNode) transformData.translation = modelNode.GeometricTranslation.value; if ('GeometricRotation' in modelNode) transformData.rotation = modelNode.GeometricRotation.value; if ('GeometricScaling' in modelNode) transformData.scale = modelNode.GeometricScaling.value; var transform = generateTransform(transformData); return this.genGeometry(geoNode, skeleton, morphTargets, transform); } // Generate a BufferGeometry from a node in FBXTree.Objects.Geometry }, { key: "genGeometry", value: function genGeometry(geoNode, skeleton, morphTargets, preTransform) { var geo = new _three.BufferGeometry(); if (geoNode.attrName) geo.name = geoNode.attrName; var geoInfo = this.parseGeoNode(geoNode, skeleton); var buffers = this.genBuffers(geoInfo); var positionAttribute = new _three.Float32BufferAttribute(buffers.vertex, 3); positionAttribute.applyMatrix4(preTransform); geo.setAttribute('position', positionAttribute); if (buffers.colors.length > 0) { geo.setAttribute('color', new _three.Float32BufferAttribute(buffers.colors, 3)); } if (skeleton) { geo.setAttribute('skinIndex', new _three.Uint16BufferAttribute(buffers.weightsIndices, 4)); geo.setAttribute('skinWeight', new _three.Float32BufferAttribute(buffers.vertexWeights, 4)); // used later to bind the skeleton to the model geo.FBX_Deformer = skeleton; } if (buffers.normal.length > 0) { var normalMatrix = new _three.Matrix3().getNormalMatrix(preTransform); var normalAttribute = new _three.Float32BufferAttribute(buffers.normal, 3); normalAttribute.applyNormalMatrix(normalMatrix); geo.setAttribute('normal', normalAttribute); } buffers.uvs.forEach(function (uvBuffer, i) { // subsequent uv buffers are called 'uv1', 'uv2', ... var name = 'uv' + (i + 1).toString(); // the first uv buffer is just called 'uv' if (i === 0) { name = 'uv'; } geo.setAttribute(name, new _three.Float32BufferAttribute(buffers.uvs[i], 2)); }); if (geoInfo.material && geoInfo.material.mappingType !== 'AllSame') { // Convert the material indices of each vertex into rendering groups on the geometry. var prevMaterialIndex = buffers.materialIndex[0]; var startIndex = 0; buffers.materialIndex.forEach(function (currentIndex, i) { if (currentIndex !== prevMaterialIndex) { geo.addGroup(startIndex, i - startIndex, prevMaterialIndex); prevMaterialIndex = currentIndex; startIndex = i; } }); // the loop above doesn't add the last group, do that here. if (geo.groups.length > 0) { var lastGroup = geo.groups[geo.groups.length - 1]; var lastIndex = lastGroup.start + lastGroup.count; if (lastIndex !== buffers.materialIndex.length) { geo.addGroup(lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex); } } // case where there are multiple materials but the whole geometry is only // using one of them if (geo.groups.length === 0) { geo.addGroup(0, buffers.materialIndex.length, buffers.materialIndex[0]); } } this.addMorphTargets(geo, geoNode, morphTargets, preTransform); return geo; } }, { key: "parseGeoNode", value: function parseGeoNode(geoNode, skeleton) { var geoInfo = {}; geoInfo.vertexPositions = geoNode.Vertices !== undefined ? geoNode.Vertices.a : []; geoInfo.vertexIndices = geoNode.PolygonVertexIndex !== undefined ? geoNode.PolygonVertexIndex.a : []; if (geoNode.LayerElementColor) { geoInfo.color = this.parseVertexColors(geoNode.LayerElementColor[0]); } if (geoNode.LayerElementMaterial) { geoInfo.material = this.parseMaterialIndices(geoNode.LayerElementMaterial[0]); } if (geoNode.LayerElementNormal) { geoInfo.normal = this.parseNormals(geoNode.LayerElementNormal[0]); } if (geoNode.LayerElementUV) { geoInfo.uv = []; var i = 0; while (geoNode.LayerElementUV[i]) { if (geoNode.LayerElementUV[i].UV) { geoInfo.uv.push(this.parseUVs(geoNode.LayerElementUV[i])); } i++; } } geoInfo.weightTable = {}; if (skeleton !== null) { geoInfo.skeleton = skeleton; skeleton.rawBones.forEach(function (rawBone, i) { // loop over the bone's vertex indices and weights rawBone.indices.forEach(function (index, j) { if (geoInfo.weightTable[index] === undefined) geoInfo.weightTable[index] = []; geoInfo.weightTable[index].push({ id: i, weight: rawBone.weights[j] }); }); }); } return geoInfo; } }, { key: "genBuffers", value: function genBuffers(geoInfo) { var buffers = { vertex: [], normal: [], colors: [], uvs: [], materialIndex: [], vertexWeights: [], weightsIndices: [] }; var polygonIndex = 0; var faceLength = 0; var displayedWeightsWarning = false; // these will hold data for a single face var facePositionIndexes = []; var faceNormals = []; var faceColors = []; var faceUVs = []; var faceWeights = []; var faceWeightIndices = []; var scope = this; geoInfo.vertexIndices.forEach(function (vertexIndex, polygonVertexIndex) { var materialIndex; var endOfFace = false; // Face index and vertex index arrays are combined in a single array // A cube with quad faces looks like this: // PolygonVertexIndex: *24 { // a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5 // } // Negative numbers mark the end of a face - first face here is 0, 1, 3, -3 // to find index of last vertex bit shift the index: ^ - 1 if (vertexIndex < 0) { vertexIndex = vertexIndex ^ -1; // equivalent to ( x * -1 ) - 1 endOfFace = true; } var weightIndices = []; var weights = []; facePositionIndexes.push(vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2); if (geoInfo.color) { var data = getData(polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color); faceColors.push(data[0], data[1], data[2]); } if (geoInfo.skeleton) { if (geoInfo.weightTable[vertexIndex] !== undefined) { geoInfo.weightTable[vertexIndex].forEach(function (wt) { weights.push(wt.weight); weightIndices.push(wt.id); }); } if (weights.length > 4) { if (!displayedWeightsWarning) { console.warn('THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.'); displayedWeightsWarning = true; } var wIndex = [0, 0, 0, 0]; var Weight = [0, 0, 0, 0]; weights.forEach(function (weight, weightIndex) { var currentWeight = weight; var currentIndex = weightIndices[weightIndex]; Weight.forEach(function (comparedWeight, comparedWeightIndex, comparedWeightArray) { if (currentWeight > comparedWeight) { comparedWeightArray[comparedWeightIndex] = currentWeight; currentWeight = comparedWeight; var tmp = wIndex[comparedWeightIndex]; wIndex[comparedWeightIndex] = currentIndex; currentIndex = tmp; } }); }); weightIndices = wIndex; weights = Weight; } // if the weight array is shorter than 4 pad with 0s while (weights.length < 4) { weights.push(0); weightIndices.push(0); } for (var i = 0; i < 4; ++i) { faceWeights.push(weights[i]); faceWeightIndices.push(weightIndices[i]); } } if (geoInfo.normal) { var _data = getData(polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal); faceNormals.push(_data[0], _data[1], _data[2]); } if (geoInfo.material && geoInfo.material.mappingType !== 'AllSame') { materialIndex = getData(polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material)[0]; } if (geoInfo.uv) { geoInfo.uv.forEach(function (uv, i) { var data = getData(polygonVertexIndex, polygonIndex, vertexIndex, uv); if (faceUVs[i] === undefined) { faceUVs[i] = []; } faceUVs[i].push(data[0]); faceUVs[i].push(data[1]); }); } faceLength++; if (endOfFace) { scope.genFace(buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength); polygonIndex++; faceLength = 0; // reset arrays for the next face facePositionIndexes = []; faceNormals = []; faceColors = []; faceUVs = []; faceWeights = []; faceWeightIndices = []; } }); return buffers; } // Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris }, { key: "genFace", value: function genFace(buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength) { var _loop3 = function _loop3(i) { buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[0]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[1]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[2]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[(i - 1) * 3]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[(i - 1) * 3 + 1]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[(i - 1) * 3 + 2]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i * 3]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i * 3 + 1]]); buffers.vertex.push(geoInfo.vertexPositions[facePositionIndexes[i * 3 + 2]]); if (geoInfo.skeleton) { buffers.vertexWeights.push(faceWeights[0]); buffers.vertexWeights.push(faceWeights[1]); buffers.vertexWeights.push(faceWeights[2]); buffers.vertexWeights.push(faceWeights[3]); buffers.vertexWeights.push(faceWeights[(i - 1) * 4]); buffers.vertexWeights.push(faceWeights[(i - 1) * 4 + 1]); buffers.vertexWeights.push(faceWeights[(i - 1) * 4 + 2]); buffers.vertexWeights.push(faceWeights[(i - 1) * 4 + 3]); buffers.vertexWeights.push(faceWeights[i * 4]); buffers.vertexWeights.push(faceWeights[i * 4 + 1]); buffers.vertexWeights.push(faceWeights[i * 4 + 2]); buffers.vertexWeights.push(faceWeights[i * 4 + 3]); buffers.weightsIndices.push(faceWeightIndices[0]); buffers.weightsIndices.push(faceWeightIndices[1]); buffers.weightsIndices.push(faceWeightIndices[2]); buffers.weightsIndices.push(faceWeightIndices[3]); buffers.weightsIndices.push(faceWeightIndices[(i - 1) * 4]); buffers.weightsIndices.push(faceWeightIndices[(i - 1) * 4 + 1]); buffers.weightsIndices.push(faceWeightIndices[(i - 1) * 4 + 2]); buffers.weightsIndices.push(faceWeightIndices[(i - 1) * 4 + 3]); buffers.weightsIndices.push(faceWeightIndices[i * 4]); buffers.weightsIndices.push(faceWeightIndices[i * 4 + 1]); buffers.weightsIndices.push(faceWeightIndices[i * 4 + 2]); buffers.weightsIndices.push(faceWeightIndices[i * 4 + 3]); } if (geoInfo.color) { buffers.colors.push(faceColors[0]); buffers.colors.push(faceColors[1]); buffers.colors.push(faceColors[2]); buffers.colors.push(faceColors[(i - 1) * 3]); buffers.colors.push(faceColors[(i - 1) * 3 + 1]); buffers.colors.push(faceColors[(i - 1) * 3 + 2]); buffers.colors.push(faceColors[i * 3]); buffers.colors.push(faceColors[i * 3 + 1]); buffers.colors.push(faceColors[i * 3 + 2]); } if (geoInfo.material && geoInfo.material.mappingType !== 'AllSame') { buffers.materialIndex.push(materialIndex); buffers.materialIndex.push(materialIndex); buffers.materialIndex.push(materialIndex); } if (geoInfo.normal) { buffers.normal.push(faceNormals[0]); buffers.normal.push(faceNormals[1]); buffers.normal.push(faceNormals[2]); buffers.normal.push(faceNormals[(i - 1) * 3]); buffers.normal.push(faceNormals[(i - 1) * 3 + 1]); buffers.normal.push(faceNormals[(i - 1) * 3 + 2]); buffers.normal.push(faceNormals[i * 3]); buffers.normal.push(faceNormals[i * 3 + 1]); buffers.normal.push(faceNormals[i * 3 + 2]); } if (geoInfo.uv) { geoInfo.uv.forEach(function (uv, j) { if (buffers.uvs[j] === undefined) buffers.uvs[j] = []; buffers.uvs[j].push(faceUVs[j][0]); buffers.uvs[j].push(faceUVs[j][1]); buffers.uvs[j].push(faceUVs[j][(i - 1) * 2]); buffers.uvs[j].push(faceUVs[j][(i - 1) * 2 + 1]); buffers.uvs[j].push(faceUVs[j][i * 2]); buffers.uvs[j].push(faceUVs[j][i * 2 + 1]); }); } }; for (var i = 2; i < faceLength; i++) { _loop3(i); } } }, { key: "addMorphTargets", value: function addMorphTargets(parentGeo, parentGeoNode, morphTargets, preTransform) { if (morphTargets.length === 0) return; parentGeo.morphTargetsRelative = true; parentGeo.morphAttributes.position = []; // parentGeo.morphAttributes.normal = []; // not implemented var scope = this; morphTargets.forEach(function (morphTarget) { morphTarget.rawTargets.forEach(function (rawTarget) { var morphGeoNode = fbxTree.Objects.Geometry[rawTarget.geoID]; if (morphGeoNode !== undefined) { scope.genMorphGeometry(parentGeo, parentGeoNode, morphGeoNode, preTransform, rawTarget.name); } }); }); } // a morph geometry node is similar to a standard node, and the node is also contained // in FBXTree.Objects.Geometry, however it can only have attributes for position, normal // and a special attribute Index defining which vertices of the original geometry are affected // Normal and position attributes only have data for the vertices that are affected by the morph }, { key: "genMorphGeometry", value: function genMorphGeometry(parentGeo, parentGeoNode, morphGeoNode, preTransform, name) { var vertexIndices = parentGeoNode.PolygonVertexIndex !== undefined ? parentGeoNode.PolygonVertexIndex.a : []; var morphPositionsSparse = morphGeoNode.Vertices !== undefined ? morphGeoNode.Vertices.a : []; var indices = morphGeoNode.Indexes !== undefined ? morphGeoNode.Indexes.a : []; var length = parentGeo.attributes.position.count * 3; var morphPositions = new Float32Array(length); for (var i = 0; i < indices.length; i++) { var morphIndex = indices[i] * 3; morphPositions[morphIndex] = morphPositionsSparse[i * 3]; morphPositions[morphIndex + 1] = morphPositionsSparse[i * 3 + 1]; morphPositions[morphIndex + 2] = morphPositionsSparse[i * 3 + 2]; } // TODO: add morph normal support var morphGeoInfo = { vertexIndices: vertexIndices, vertexPositions: morphPositions }; var morphBuffers = this.genBuffers(morphGeoInfo); var positionAttribute = new _three.Float32BufferAttribute(morphBuffers.vertex, 3); positionAttribute.name = name || morphGeoNode.attrName; positionAttribute.applyMatrix4(preTransform); parentGeo.morphAttributes.position.push(positionAttribute); } // Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists }, { key: "parseNormals", value: function parseNormals(NormalNode) { var mappingType = NormalNode.MappingInformationType; var referenceType = NormalNode.ReferenceInformationType; var buffer = NormalNode.Normals.a; var indexBuffer = []; if (referenceType === 'IndexToDirect') { if ('NormalIndex' in NormalNode) { indexBuffer = NormalNode.NormalIndex.a; } else if ('NormalsIndex' in NormalNode) { indexBuffer = NormalNode.NormalsIndex.a; } } return { dataSize: 3, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists }, { key: "parseUVs", value: function parseUVs(UVNode) { var mappingType = UVNode.MappingInformationType; var referenceType = UVNode.ReferenceInformationType; var buffer = UVNode.UV.a; var indexBuffer = []; if (referenceType === 'IndexToDirect') { indexBuffer = UVNode.UVIndex.a; } return { dataSize: 2, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists }, { key: "parseVertexColors", value: function parseVertexColors(ColorNode) { var mappingType = ColorNode.MappingInformationType; var referenceType = ColorNode.ReferenceInformationType; var buffer = ColorNode.Colors.a; var indexBuffer = []; if (referenceType === 'IndexToDirect') { indexBuffer = ColorNode.ColorIndex.a; } return { dataSize: 4, buffer: buffer, indices: indexBuffer, mappingType: mappingType, referenceType: referenceType }; } // Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists }, { key: "parseMaterialIndices", value: function parseMaterialIndices(MaterialNode) { var mappingType = MaterialNode.MappingInformationType; var referenceType = MaterialNode.ReferenceInformationType; if (mappingType === 'NoMappingInformation') { return { dataSize: 1, buffer: [0], indices: [0], mappingType: 'AllSame', referenceType: referenceType }; } var materialIndexBuffer = MaterialNode.Materials.a; // Since materials are stored as indices, there's a bit of a mismatch between FBX and what // we expect.So we create an intermediate buffer that points to the index in the buffer, // for conforming with the other functions we've written for other data. var materialIndices = []; for (var i = 0; i < materialIndexBuffer.length; ++i) { materialIndices.push(i); } return { dataSize: 1, buffer: materialIndexBuffer, indices: materialIndices, mappingType: mappingType, referenceType: referenceType }; } // Generate a NurbGeometry from a node in FBXTree.Objects.Geometry }, { key: "parseNurbsGeometry", value: function parseNurbsGeometry(geoNode) { if (_NURBSCurve.NURBSCurve === undefined) { console.error('THREE.FBXLoader: The loader relies on NURBSCurve for any nurbs present in the model. Nurbs will show up as empty geometry.'); return new _three.BufferGeometry(); } var order = parseInt(geoNode.Order); if (isNaN(order)) { console.error('THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geoNode.Order, geoNode.id); return new _three.BufferGeometry(); } var degree = order - 1; var knots = geoNode.KnotVector.a; var controlPoints = []; var pointsValues = geoNode.Points.a; for (var i = 0, l = pointsValues.length; i < l; i += 4) { controlPoints.push(new _three.Vector4().fromArray(pointsValues, i)); } var startKnot, endKnot; if (geoNode.Form === 'Closed') { controlPoints.push(controlPoints[0]); } else if (geoNode.Form === 'Periodic') { startKnot = degree; endKnot = knots.length - 1 - startKnot; for (var _i = 0; _i < degree; ++_i) { controlPoints.push(controlPoints[_i]); } } var curve = new _NURBSCurve.NURBSCurve(degree, knots, controlPoints, startKnot, endKnot); var points = curve.getPoints(controlPoints.length * 12); return new _three.BufferGeometry().setFromPoints(points); } }]); return GeometryParser; }(); // parse animation data from FBXTree var AnimationParser = /*#__PURE__*/function () { function AnimationParser() { _classCallCheck(this, AnimationParser); } _createClass(AnimationParser, [{ key: "parse", value: // take raw animation clips and turn them into three.js animation clips function parse() { var animationClips = []; var rawClips = this.parseClips(); if (rawClips !== undefined) { for (var key in rawClips) { var rawClip = rawClips[key]; var clip = this.addClip(rawClip); animationClips.push(clip); } } return animationClips; } }, { key: "parseClips", value: function parseClips() { // since the actual transformation data is stored in FBXTree.Objects.AnimationCurve, // if this is undefined we can safely assume there are no animations if (fbxTree.Objects.AnimationCurve === undefined) return undefined; var curveNodesMap = this.parseAnimationCurveNodes(); this.parseAnimationCurves(curveNodesMap); var layersMap = this.parseAnimationLayers(curveNodesMap); var rawClips = this.parseAnimStacks(layersMap); return rawClips; } // parse nodes in FBXTree.Objects.AnimationCurveNode // each AnimationCurveNode holds data for an animation transform for a model (e.g. left arm rotation ) // and is referenced by an AnimationLayer }, { key: "parseAnimationCurveNodes", value: function parseAnimationCurveNodes() { var rawCurveNodes = fbxTree.Objects.AnimationCurveNode; var curveNodesMap = new Map(); for (var nodeID in rawCurveNodes) { var rawCurveNode = rawCurveNodes[nodeID]; if (rawCurveNode.attrName.match(/S|R|T|DeformPercent/) !== null) { var curveNode = { id: rawCurveNode.id, attr: rawCurveNode.attrName, curves: {} }; curveNodesMap.set(curveNode.id, curveNode); } } return curveNodesMap; } // parse nodes in FBXTree.Objects.AnimationCurve and connect them up to // previously parsed AnimationCurveNodes. Each AnimationCurve holds data for a single animated // axis ( e.g. times and values of x rotation) }, { key: "parseAnimationCurves", value: function parseAnimationCurves(curveNodesMap) { var rawCurves = fbxTree.Objects.AnimationCurve; // TODO: Many values are identical up to roundoff error, but won't be optimised // e.g. position times: [0, 0.4, 0. 8] // position values: [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.235384487103147e-7, 93.67520904541016, -0.9982695579528809] // clearly, this should be optimised to // times: [0], positions [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809] // this shows up in nearly every FBX file, and generally time array is length > 100 for (var nodeID in rawCurves) { var animationCurve = { id: rawCurves[nodeID].id, times: rawCurves[nodeID].KeyTime.a.map(convertFBXTimeToSeconds), values: rawCurves[nodeID].KeyValueFloat.a }; var relationships = connections.get(animationCurve.id); if (relationships !== undefined) { var animationCurveID = relationships.parents[0].ID; var animationCurveRelationship = relationships.parents[0].relationship; if (animationCurveRelationship.match(/X/)) { curveNodesMap.get(animationCurveID).curves['x'] = animationCurve; } else if (animationCurveRelationship.match(/Y/)) { curveNodesMap.get(animationCurveID).curves['y'] = animationCurve; } else if (animationCurveRelationship.match(/Z/)) { curveNodesMap.get(animationCurveID).curves['z'] = animationCurve; } else if (animationCurveRelationship.match(/d|DeformPercent/) && curveNodesMap.has(animationCurveID)) { curveNodesMap.get(animationCurveID).curves['morph'] = animationCurve; } } } } // parse nodes in FBXTree.Objects.AnimationLayer. Each layers holds references // to various AnimationCurveNodes and is referenced by an AnimationStack node // note: theoretically a stack can have multiple layers, however in practice there always seems to be one per stack }, { key: "parseAnimationLayers", value: function parseAnimationLayers(curveNodesMap) { var rawLayers = fbxTree.Objects.AnimationLayer; var layersMap = new Map(); var _loop4 = function _loop4(nodeID) { var layerCurveNodes = []; var connection = connections.get(parseInt(nodeID)); if (connection !== undefined) { // all the animationCurveNodes used in the layer var children = connection.children; children.forEach(function (child, i) { if (curveNodesMap.has(child.ID)) { var curveNode = curveNodesMap.get(child.ID); // check that the curves are defined for at least one axis, otherwise ignore the curveNode if (curveNode.curves.x !== undefined || curveNode.curves.y !== undefined || curveNode.curves.z !== undefined) { if (layerCurveNodes[i] === undefined) { var modelID = connections.get(child.ID).parents.filter(function (parent) { return parent.relationship !== undefined; })[0].ID; if (modelID !== undefined) { var rawModel = fbxTree.Objects.Model[modelID.toString()]; if (rawModel === undefined) { console.warn('THREE.FBXLoader: Encountered a unused curve.', child); return; } var node = { modelName: rawModel.attrName ? _three.PropertyBinding.sanitizeNodeName(rawModel.attrName) : '', ID: rawModel.id, initialPosition: [0, 0, 0], initialRotation: [0, 0, 0], initialScale: [1, 1, 1] }; sceneGraph.traverse(function (child) { if (child.ID === rawModel.id) { node.transform = child.matrix; if (child.userData.transformData) node.eulerOrder = child.userData.transformData.eulerOrder; } }); if (!node.transform) node.transform = new _three.Matrix4(); // if the animated model is pre rotated, we'll have to apply the pre rotations to every // animation value as well if ('PreRotation' in rawModel) node.preRotation = rawModel.PreRotation.value; if ('PostRotation' in rawModel) node.postRotation = rawModel.PostRotation.value; layerCurveNodes[i] = node; } } if (layerCurveNodes[i]) layerCurveNodes[i][curveNode.attr] = curveNode; } else if (curveNode.curves.morph !== undefined) { if (layerCurveNodes[i] === undefined) { var deformerID = connections.get(child.ID).parents.filter(function (parent) { return parent.relationship !== undefined; })[0].ID; var morpherID = connections.get(deformerID).parents[0].ID; var geoID = connections.get(morpherID).parents[0].ID; // assuming geometry is not used in more than one model var _modelID = connections.get(geoID).parents[0].ID; var _rawModel = fbxTree.Objects.Model[_modelID]; var _node = { modelName: _rawModel.attrName ? _three.PropertyBinding.sanitizeNodeName(_rawModel.attrName) : '', morphName: fbxTree.Objects.Deformer[deformerID].attrName }; layerCurveNodes[i] = _node; } layerCurveNodes[i][curveNode.attr] = curveNode; } } }); layersMap.set(parseInt(nodeID), layerCurveNodes); } }; for (var nodeID in rawLayers) { _loop4(nodeID); } return layersMap; } // parse nodes in FBXTree.Objects.AnimationStack. These are the top level node in the animation // hierarchy. Each Stack node will be used to create a AnimationClip }, { key: "parseAnimStacks", value: function parseAnimStacks(layersMap) { var rawStacks = fbxTree.Objects.AnimationStack; // connect the stacks (clips) up to the layers var rawClips = {}; for (var nodeID in rawStacks) { var children = connections.get(parseInt(nodeID)).children; if (children.length > 1) { // it seems like stacks will always be associated with a single layer. But just in case there are files // where there are multiple layers per stack, we'll display a warning console.warn('THREE.FBXLoader: Encountered an animation stack with multiple layers, this is currently not supported. Ignoring subsequent layers.'); } var layer = layersMap.get(children[0].ID); rawClips[nodeID] = { name: rawStacks[nodeID].attrName, layer: layer }; } return rawClips; } }, { key: "addClip", value: function addClip(rawClip) { var tracks = []; var scope = this; rawClip.layer.forEach(function (rawTracks) { tracks = tracks.concat(scope.generateTracks(rawTracks)); }); return new _three.AnimationClip(rawClip.name, -1, tracks); } }, { key: "generateTracks", value: function generateTracks(rawTracks) { var tracks = []; var initialPosition = new _three.Vector3(); var initialRotation = new _three.Quaternion(); var initialScale = new _three.Vector3(); if (rawTracks.transform) rawTracks.transform.decompose(initialPosition, initialRotation, initialScale); initialPosition = initialPosition.toArray(); initialRotation = new _three.Euler().setFromQuaternion(initialRotation, rawTracks.eulerOrder).toArray(); initialScale = initialScale.toArray(); if (rawTracks.T !== undefined && Object.keys(rawTracks.T.curves).length > 0) { var positionTrack = this.generateVectorTrack(rawTracks.modelName, rawTracks.T.curves, initialPosition, 'position'); if (positionTrack !== undefined) tracks.push(positionTrack); } if (rawTracks.R !== undefined && Object.keys(rawTracks.R.curves).length > 0) { var rotationTrack = this.generateRotationTrack(rawTracks.modelName, rawTracks.R.curves, initialRotation, rawTracks.preRotation, rawTracks.postRotation, rawTracks.eulerOrder); if (rotationTrack !== undefined) tracks.push(rotationTrack); } if (rawTracks.S !== undefined && Object.keys(rawTracks.S.curves).length > 0) { var scaleTrack = this.generateVectorTrack(rawTracks.modelName, rawTracks.S.curves, initialScale, 'scale'); if (scaleTrack !== undefined) tracks.push(scaleTrack); } if (rawTracks.DeformPercent !== undefined) { var morphTrack = this.generateMorphTrack(rawTracks); if (morphTrack !== undefined) tracks.push(morphTrack); } return tracks; } }, { key: "generateVectorTrack", value: function generateVectorTrack(modelName, curves, initialValue, type) { var times = this.getTimesForAllAxes(curves); var values = this.getKeyframeTrackValues(times, curves, initialValue); return new _three.VectorKeyframeTrack(modelName + '.' + type, times, values); } }, { key: "generateRotationTrack", value: function generateRotationTrack(modelName, curves, initialValue, preRotation, postRotation, eulerOrder) { if (curves.x !== undefined) { this.interpolateRotations(curves.x); curves.x.values = curves.x.values.map(_three.MathUtils.degToRad); } if (curves.y !== undefined) { this.interpolateRotations(curves.y); curves.y.values = curves.y.values.map(_three.MathUtils.degToRad); } if (curves.z !== undefined) { this.interpolateRotations(curves.z); curves.z.values = curves.z.values.map(_three.MathUtils.degToRad); } var times = this.getTimesForAllAxes(curves); var values = this.getKeyframeTrackValues(times, curves, initialValue); if (preRotation !== undefined) { preRotation = preRotation.map(_three.MathUtils.degToRad); preRotation.push(eulerOrder); preRotation = new _three.Euler().fromArray(preRotation); preRotation = new _three.Quaternion().setFromEuler(preRotation); } if (postRotation !== undefined) { postRotation = postRotation.map(_three.MathUtils.degToRad); postRotation.push(eulerOrder); postRotation = new _three.Euler().fromArray(postRotation); postRotation = new _three.Quaternion().setFromEuler(postRotation).invert(); } var quaternion = new _three.Quaternion(); var euler = new _three.Euler(); var quaternionValues = []; for (var i = 0; i < values.length; i += 3) { euler.set(values[i], values[i + 1], values[i + 2], eulerOrder); quaternion.setFromEuler(euler); if (preRotation !== undefined) quaternion.premultiply(preRotation); if (postRotation !== undefined) quaternion.multiply(postRotation); quaternion.toArray(quaternionValues, i / 3 * 4); } return new _three.QuaternionKeyframeTrack(modelName + '.quaternion', times, quaternionValues); } }, { key: "generateMorphTrack", value: function generateMorphTrack(rawTracks) { var curves = rawTracks.DeformPercent.curves.morph; var values = curves.values.map(function (val) { return val / 100; }); var morphNum = sceneGraph.getObjectByName(rawTracks.modelName).morphTargetDictionary[rawTracks.morphName]; return new _three.NumberKeyframeTrack(rawTracks.modelName + '.morphTargetInfluences[' + morphNum + ']', curves.times, values); } // For all animated objects, times are defined separately for each axis // Here we'll combine the times into one sorted array without duplicates }, { key: "getTimesForAllAxes", value: function getTimesForAllAxes(curves) { var times = []; // first join together the times for each axis, if defined if (curves.x !== undefined) times = times.concat(curves.x.times); if (curves.y !== undefined) times = times.concat(curves.y.times); if (curves.z !== undefined) times = times.concat(curves.z.times); // then sort them times = times.sort(function (a, b) { return a - b; }); // and remove duplicates if (times.length > 1) { var targetIndex = 1; var lastValue = times[0]; for (var i = 1; i < times.length; i++) { var currentValue = times[i]; if (currentValue !== lastValue) { times[targetIndex] = currentValue; lastValue = currentValue; targetIndex++; } } times = times.slice(0, targetIndex); } return times; } }, { key: "getKeyframeTrackValues", value: function getKeyframeTrackValues(times, curves, initialValue) { var prevValue = initialValue; var values = []; var xIndex = -1; var yIndex = -1; var zIndex = -1; times.forEach(function (time) { if (curves.x) xIndex = curves.x.times.indexOf(time); if (curves.y) yIndex = curves.y.times.indexOf(time); if (curves.z) zIndex = curves.z.times.indexOf(time); // if there is an x value defined for this frame, use that if (xIndex !== -1) { var xValue = curves.x.values[xIndex]; values.push(xValue); prevValue[0] = xValue; } else { // otherwise use the x value from the previous frame values.push(prevValue[0]); } if (yIndex !== -1) { var yValue = curves.y.values[yIndex]; values.push(yValue); prevValue[1] = yValue; } else { values.push(prevValue[1]); } if (zIndex !== -1) { var zValue = curves.z.values[zIndex]; values.push(zValue); prevValue[2] = zValue; } else { values.push(prevValue[2]); } }); return values; } // Rotations are defined as Euler angles which can have values of any size // These will be converted to quaternions which don't support values greater than // PI, so we'll interpolate large rotations }, { key: "interpolateRotations", value: function interpolateRotations(curve) { for (var i = 1; i < curve.values.length; i++) { var initialValue = curve.values[i - 1]; var valuesSpan = curve.values[i] - initialValue; var absoluteSpan = Math.abs(valuesSpan); if (absoluteSpan >= 180) { var numSubIntervals = absoluteSpan / 180; var step = valuesSpan / numSubIntervals; var nextValue = initialValue + step; var initialTime = curve.times[i - 1]; var timeSpan = curve.times[i] - initialTime; var interval = timeSpan / numSubIntervals; var nextTime = initialTime + interval; var interpolatedTimes = []; var interpolatedValues = []; while (nextTime < curve.times[i]) { interpolatedTimes.push(nextTime); nextTime += interval; interpolatedValues.push(nextValue); nextValue += step; } curve.times = inject(curve.times, i, interpolatedTimes); curve.values = inject(curve.values, i, interpolatedValues); } } } }]); return AnimationParser; }(); // parse an FBX file in ASCII format var TextParser = /*#__PURE__*/function () { function TextParser() { _classCallCheck(this, TextParser); } _createClass(TextParser, [{ key: "getPrevNode", value: function getPrevNode() { return this.nodeStack[this.currentIndent - 2]; } }, { key: "getCurrentNode", value: function getCurrentNode() { return this.nodeStack[this.currentIndent - 1]; } }, { key: "getCurrentProp", value: function getCurrentProp() { return this.currentProp; } }, { key: "pushStack", value: function pushStack(node) { this.nodeStack.push(node); this.currentIndent += 1; } }, { key: "popStack", value: function popStack() { this.nodeStack.pop(); this.currentIndent -= 1; } }, { key: "setCurrentProp", value: function setCurrentProp(val, name) { this.currentProp = val; this.currentPropName = name; } }, { key: "parse", value: function parse(text) { this.currentIndent = 0; this.allNodes = new FBXTree(); this.nodeStack = []; this.currentProp = []; this.currentPropName = ''; var scope = this; var split = text.split(/[\r\n]+/); split.forEach(function (line, i) { var matchComment = line.match(/^[\s\t]*;/); var matchEmpty = line.match(/^[\s\t]*$/); if (matchComment || matchEmpty) return; var matchBeginning = line.match('^\\t{' + scope.currentIndent + '}(\\w+):(.*){', ''); var matchProperty = line.match('^\\t{' + scope.currentIndent + '}(\\w+):[\\s\\t\\r\\n](.*)'); var matchEnd = line.match('^\\t{' + (scope.currentIndent - 1) + '}}'); if (matchBeginning) { scope.parseNodeBegin(line, matchBeginning); } else if (matchProperty) { scope.parseNodeProperty(line, matchProperty, split[++i]); } else if (matchEnd) { scope.popStack(); } else if (line.match(/^[^\s\t}]/)) { // large arrays are split over multiple lines terminated with a ',' character // if this is encountered the line needs to be joined to the previous line scope.parseNodePropertyContinued(line); } }); return this.allNodes; } }, { key: "parseNodeBegin", value: function parseNodeBegin(line, property) { var nodeName = property[1].trim().replace(/^"/, '').replace(/"$/, ''); var nodeAttrs = property[2].split(',').map(function (attr) { return attr.trim().replace(/^"/, '').replace(/"$/, ''); }); var node = { name: nodeName }; var attrs = this.parseNodeAttr(nodeAttrs); var currentNode = this.getCurrentNode(); // a top node if (this.currentIndent === 0) { this.allNodes.add(nodeName, node); } else { // a subnode // if the subnode already exists, append it if (nodeName in currentNode) { // special case Pose needs PoseNodes as an array if (nodeName === 'PoseNode') { currentNode.PoseNode.push(node); } else if (currentNode[nodeName].id !== undefined) { currentNode[nodeName] = {}; currentNode[nodeName][currentNode[nodeName].id] = currentNode[nodeName]; } if (attrs.id !== '') currentNode[nodeName][attrs.id] = node; } else if (typeof attrs.id === 'number') { currentNode[nodeName] = {}; currentNode[nodeName][attrs.id] = node; } else if (nodeName !== 'Properties70') { if (nodeName === 'PoseNode') currentNode[nodeName] = [node];else currentNode[nodeName] = node; } } if (typeof attrs.id === 'number') node.id = attrs.id; if (attrs.name !== '') node.attrName = attrs.name; if (attrs.type !== '') node.attrType = attrs.type; this.pushStack(node); } }, { key: "parseNodeAttr", value: function parseNodeAttr(attrs) { var id = attrs[0]; if (attrs[0] !== '') { id = parseInt(attrs[0]); if (isNaN(id)) { id = attrs[0]; } } var name = '', type = ''; if (attrs.length > 1) { name = attrs[1].replace(/^(\w+)::/, ''); type = attrs[2]; } return { id: id, name: name, type: type }; } }, { key: "parseNodeProperty", value: function parseNodeProperty(line, property, contentLine) { var propName = property[1].replace(/^"/, '').replace(/"$/, '').trim(); var propValue = property[2].replace(/^"/, '').replace(/"$/, '').trim(); // for special case: base64 image data follows "Content: ," line // Content: , // "/9j/4RDaRXhpZgAATU0A..." if (propName === 'Content' && propValue === ',') { propValue = contentLine.replace(/"/g, '').replace(/,$/, '').trim(); } var currentNode = this.getCurrentNode(); var parentName = currentNode.name; if (parentName === 'Properties70') { this.parseNodeSpecialProperty(line, propName, propValue); return; } // Connections if (propName === 'C') { var connProps = propValue.split(',').slice(1); var from = parseInt(connProps[0]); var to = parseInt(connProps[1]); var rest = propValue.split(',').slice(3); rest = rest.map(function (elem) { return elem.trim().replace(/^"/, ''); }); propName = 'connections'; propValue = [from, to]; append(propValue, rest); if (currentNode[propName] === undefined) { currentNode[propName] = []; } } // Node if (propName === 'Node') currentNode.id = propValue; // connections if (propName in currentNode && Array.isArray(currentNode[propName])) { currentNode[propName].push(propValue); } else { if (propName !== 'a') currentNode[propName] = propValue;else currentNode.a = propValue; } this.setCurrentProp(currentNode, propName); // convert string to array, unless it ends in ',' in which case more will be added to it if (propName === 'a' && propValue.slice(-1) !== ',') { currentNode.a = parseNumberArray(propValue); } } }, { key: "parseNodePropertyContinued", value: function parseNodePropertyContinued(line) { var currentNode = this.getCurrentNode(); currentNode.a += line; // if the line doesn't end in ',' we have reached the end of the property value // so convert the string to an array if (line.slice(-1) !== ',') { currentNode.a = parseNumberArray(currentNode.a); } } // parse "Property70" }, { key: "parseNodeSpecialProperty", value: function parseNodeSpecialProperty(line, propName, propValue) { // split this // P: "Lcl Scaling", "Lcl Scaling", "", "A",1,1,1 // into array like below // ["Lcl Scaling", "Lcl Scaling", "", "A", "1,1,1" ] var props = propValue.split('",').map(function (prop) { return prop.trim().replace(/^\"/, '').replace(/\s/, '_'); }); var innerPropName = props[0]; var innerPropType1 = props[1]; var innerPropType2 = props[2]; var innerPropFlag = props[3]; var innerPropValue = props[4]; // cast values where needed, otherwise leave as strings switch (innerPropType1) { case 'int': case 'enum': case 'bool': case 'ULongLong': case 'double': case 'Number': case 'FieldOfView': innerPropValue = parseFloat(innerPropValue); break; case 'Color': case 'ColorRGB': case 'Vector3D': case 'Lcl_Translation': case 'Lcl_Rotation': case 'Lcl_Scaling': innerPropValue = parseNumberArray(innerPropValue); break; } // CAUTION: these props must append to parent's parent this.getPrevNode()[innerPropName] = { 'type': innerPropType1, 'type2': innerPropType2, 'flag': innerPropFlag, 'value': innerPropValue }; this.setCurrentProp(this.getPrevNode(), innerPropName); } }]); return TextParser; }(); // Parse an FBX file in Binary format var BinaryParser = /*#__PURE__*/function () { function BinaryParser() { _classCallCheck(this, BinaryParser); } _createClass(BinaryParser, [{ key: "parse", value: function parse(buffer) { var reader = new BinaryReader(buffer); reader.skip(23); // skip magic 23 bytes var version = reader.getUint32(); if (version < 6400) { throw new Error('THREE.FBXLoader: FBX version not supported, FileVersion: ' + version); } var allNodes = new FBXTree(); while (!this.endOfContent(reader)) { var node = this.parseNode(reader, version); if (node !== null) allNodes.add(node.name, node); } return allNodes; } // Check if reader has reached the end of content. }, { key: "endOfContent", value: function endOfContent(reader) { // footer size: 160bytes + 16-byte alignment padding // - 16bytes: magic // - padding til 16-byte alignment (at least 1byte?) // (seems like some exporters embed fixed 15 or 16bytes?) // - 4bytes: magic // - 4bytes: version // - 120bytes: zero // - 16bytes: magic if (reader.size() % 16 === 0) { return (reader.getOffset() + 160 + 16 & ~0xf) >= reader.size(); } else { return reader.getOffset() + 160 + 16 >= reader.size(); } } // recursively parse nodes until the end of the file is reached }, { key: "parseNode", value: function parseNode(reader, version) { var node = {}; // The first three data sizes depends on version. var endOffset = version >= 7500 ? reader.getUint64() : reader.getUint32(); var numProperties = version >= 7500 ? reader.getUint64() : reader.getUint32(); version >= 7500 ? reader.getUint64() : reader.getUint32(); // the returned propertyListLen is not used var nameLen = reader.getUint8(); var name = reader.getString(nameLen); // Regards this node as NULL-record if endOffset is zero if (endOffset === 0) return null; var propertyList = []; for (var i = 0; i < numProperties; i++) { propertyList.push(this.parseProperty(reader)); } // Regards the first three elements in propertyList as id, attrName, and attrType var id = propertyList.length > 0 ? propertyList[0] : ''; var attrName = propertyList.length > 1 ? propertyList[1] : ''; var attrType = propertyList.length > 2 ? propertyList[2] : ''; // check if this node represents just a single property // like (name, 0) set or (name2, [0, 1, 2]) set of {name: 0, name2: [0, 1, 2]} node.singleProperty = numProperties === 1 && reader.getOffset() === endOffset ? true : false; while (endOffset > reader.getOffset()) { var subNode = this.parseNode(reader, version); if (subNode !== null) this.parseSubNode(name, node, subNode); } node.propertyList = propertyList; // raw property list used by parent if (typeof id === 'number') node.id = id; if (attrName !== '') node.attrName = attrName; if (attrType !== '') node.attrType = attrType; if (name !== '') node.name = name; return node; } }, { key: "parseSubNode", value: function parseSubNode(name, node, subNode) { // special case: child node is single property if (subNode.singleProperty === true) { var value = subNode.propertyList[0]; if (Array.isArray(value)) { node[subNode.name] = subNode; subNode.a = value; } else { node[subNode.name] = value; } } else if (name === 'Connections' && subNode.name === 'C') { var array = []; subNode.propertyList.forEach(function (property, i) { // first Connection is FBX type (OO, OP, etc.). We'll discard these if (i !== 0) array.push(property); }); if (node.connections === undefined) { node.connections = []; } node.connections.push(array); } else if (subNode.name === 'Properties70') { var keys = Object.keys(subNode); keys.forEach(function (key) { node[key] = subNode[key]; }); } else if (name === 'Properties70' && subNode.name === 'P') { var innerPropName = subNode.propertyList[0]; var innerPropType1 = subNode.propertyList[1]; var innerPropType2 = subNode.propertyList[2]; var innerPropFlag = subNode.propertyList[3]; var innerPropValue; if (innerPropName.indexOf('Lcl ') === 0) innerPropName = innerPropName.replace('Lcl ', 'Lcl_'); if (innerPropType1.indexOf('Lcl ') === 0) innerPropType1 = innerPropType1.replace('Lcl ', 'Lcl_'); if (innerPropType1 === 'Color' || innerPropType1 === 'ColorRGB' || innerPropType1 === 'Vector' || innerPropType1 === 'Vector3D' || innerPropType1.indexOf('Lcl_') === 0) { innerPropValue = [subNode.propertyList[4], subNode.propertyList[5], subNode.propertyList[6]]; } else { innerPropValue = subNode.propertyList[4]; } // this will be copied to parent, see above node[innerPropName] = { 'type': innerPropType1, 'type2': innerPropType2, 'flag': innerPropFlag, 'value': innerPropValue }; } else if (node[subNode.name] === undefined) { if (typeof subNode.id === 'number') { node[subNode.name] = {}; node[subNode.name][subNode.id] = subNode; } else { node[subNode.name] = subNode; } } else { if (subNode.name === 'PoseNode') { if (!Array.isArray(node[subNode.name])) { node[subNode.name] = [node[subNode.name]]; } node[subNode.name].push(subNode); } else if (node[subNode.name][subNode.id] === undefined) { node[subNode.name][subNode.id] = subNode; } } } }, { key: "parseProperty", value: function parseProperty(reader) { var type = reader.getString(1); var length; switch (type) { case 'C': return reader.getBoolean(); case 'D': return reader.getFloat64(); case 'F': return reader.getFloat32(); case 'I': return reader.getInt32(); case 'L': return reader.getInt64(); case 'R': length = reader.getUint32(); return reader.getArrayBuffer(length); case 'S': length = reader.getUint32(); return reader.getString(length); case 'Y': return reader.getInt16(); case 'b': case 'c': case 'd': case 'f': case 'i': case 'l': var arrayLength = reader.getUint32(); var encoding = reader.getUint32(); // 0: non-compressed, 1: compressed var compressedLength = reader.getUint32(); if (encoding === 0) { switch (type) { case 'b': case 'c': return reader.getBooleanArray(arrayLength); case 'd': return reader.getFloat64Array(arrayLength); case 'f': return reader.getFloat32Array(arrayLength); case 'i': return reader.getInt32Array(arrayLength); case 'l': return reader.getInt64Array(arrayLength); } } if (typeof fflate === 'undefined') { console.error('THREE.FBXLoader: External library fflate.min.js required.'); } var data = fflate.unzlibSync(new Uint8Array(reader.getArrayBuffer(compressedLength))); // eslint-disable-line no-undef var reader2 = new BinaryReader(data.buffer); switch (type) { case 'b': case 'c': return reader2.getBooleanArray(arrayLength); case 'd': return reader2.getFloat64Array(arrayLength); case 'f': return reader2.getFloat32Array(arrayLength); case 'i': return reader2.getInt32Array(arrayLength); case 'l': return reader2.getInt64Array(arrayLength); } default: throw new Error('THREE.FBXLoader: Unknown property type ' + type); } } }]); return BinaryParser; }(); var BinaryReader = /*#__PURE__*/function () { function BinaryReader(buffer, littleEndian) { _classCallCheck(this, BinaryReader); this.dv = new DataView(buffer); this.offset = 0; this.littleEndian = littleEndian !== undefined ? littleEndian : true; } _createClass(BinaryReader, [{ key: "getOffset", value: function getOffset() { return this.offset; } }, { key: "size", value: function size() { return this.dv.buffer.byteLength; } }, { key: "skip", value: function skip(length) { this.offset += length; } // seems like true/false representation depends on exporter. // true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54) // then sees LSB. }, { key: "getBoolean", value: function getBoolean() { return (this.getUint8() & 1) === 1; } }, { key: "getBooleanArray", value: function getBooleanArray(size) { var a = []; for (var i = 0; i < size; i++) { a.push(this.getBoolean()); } return a; } }, { key: "getUint8", value: function getUint8() { var value = this.dv.getUint8(this.offset); this.offset += 1; return value; } }, { key: "getInt16", value: function getInt16() { var value = this.dv.getInt16(this.offset, this.littleEndian); this.offset += 2; return value; } }, { key: "getInt32", value: function getInt32() { var value = this.dv.getInt32(this.offset, this.littleEndian); this.offset += 4; return value; } }, { key: "getInt32Array", value: function getInt32Array(size) { var a = []; for (var i = 0; i < size; i++) { a.push(this.getInt32()); } return a; } }, { key: "getUint32", value: function getUint32() { var value = this.dv.getUint32(this.offset, this.littleEndian); this.offset += 4; return value; } // JavaScript doesn't support 64-bit integer so calculate this here // 1 << 32 will return 1 so using multiply operation instead here. // There's a possibility that this method returns wrong value if the value // is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER. // TODO: safely handle 64-bit integer }, { key: "getInt64", value: function getInt64() { var low, high; if (this.littleEndian) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } // calculate negative value if (high & 0x80000000) { high = ~high & 0xFFFFFFFF; low = ~low & 0xFFFFFFFF; if (low === 0xFFFFFFFF) high = high + 1 & 0xFFFFFFFF; low = low + 1 & 0xFFFFFFFF; return -(high * 0x100000000 + low); } return high * 0x100000000 + low; } }, { key: "getInt64Array", value: function getInt64Array(size) { var a = []; for (var i = 0; i < size; i++) { a.push(this.getInt64()); } return a; } // Note: see getInt64() comment }, { key: "getUint64", value: function getUint64() { var low, high; if (this.littleEndian) { low = this.getUint32(); high = this.getUint32(); } else { high = this.getUint32(); low = this.getUint32(); } return high * 0x100000000 + low; } }, { key: "getFloat32", value: function getFloat32() { var value = this.dv.getFloat32(this.offset, this.littleEndian); this.offset += 4; return value; } }, { key: "getFloat32Array", value: function getFloat32Array(size) { var a = []; for (var i = 0; i < size; i++) { a.push(this.getFloat32()); } return a; } }, { key: "getFloat64", value: function getFloat64() { var value = this.dv.getFloat64(this.offset, this.littleEndian); this.offset += 8; return value; } }, { key: "getFloat64Array", value: function getFloat64Array(size) { var a = []; for (var i = 0; i < size; i++) { a.push(this.getFloat64()); } return a; } }, { key: "getArrayBuffer", value: function getArrayBuffer(size) { var value = this.dv.buffer.slice(this.offset, this.offset + size); this.offset += size; return value; } }, { key: "getString", value: function getString(size) { // note: safari 9 doesn't support Uint8Array.indexOf; create intermediate array instead var a = []; for (var i = 0; i < size; i++) { a[i] = this.getUint8(); } var nullByte = a.indexOf(0); if (nullByte >= 0) a = a.slice(0, nullByte); return _three.LoaderUtils.decodeText(new Uint8Array(a)); } }]); return BinaryReader; }(); // FBXTree holds a representation of the FBX data, returned by the TextParser ( FBX ASCII format) // and BinaryParser( FBX Binary format) var FBXTree = /*#__PURE__*/function () { function FBXTree() { _classCallCheck(this, FBXTree); } _createClass(FBXTree, [{ key: "add", value: function add(key, val) { this[key] = val; } }]); return FBXTree; }(); // ************** UTILITY FUNCTIONS ************** function isFbxFormatBinary(buffer) { var CORRECT = "Kaydara FBX Binary \0"; return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString(buffer, 0, CORRECT.length); } function isFbxFormatASCII(text) { var CORRECT = ['K', 'a', 'y', 'd', 'a', 'r', 'a', '\\', 'F', 'B', 'X', '\\', 'B', 'i', 'n', 'a', 'r', 'y', '\\', '\\']; var cursor = 0; function read(offset) { var result = text[offset - 1]; text = text.slice(cursor + offset); cursor++; return result; } for (var i = 0; i < CORRECT.length; ++i) { var num = read(1); if (num === CORRECT[i]) { return false; } } return true; } function getFbxVersion(text) { var versionRegExp = /FBXVersion: (\d+)/; var match = text.match(versionRegExp); if (match) { var version = parseInt(match[1]); return version; } throw new Error('THREE.FBXLoader: Cannot find the version number for the file given.'); } // Converts FBX ticks into real time seconds. function convertFBXTimeToSeconds(time) { return time / 46186158000; } var dataArray = []; // extracts the data from the correct position in the FBX array based on indexing type function getData(polygonVertexIndex, polygonIndex, vertexIndex, infoObject) { var index; switch (infoObject.mappingType) { case 'ByPolygonVertex': index = polygonVertexIndex; break; case 'ByPolygon': index = polygonIndex; break; case 'ByVertice': index = vertexIndex; break; case 'AllSame': index = infoObject.indices[0]; break; default: console.warn('THREE.FBXLoader: unknown attribute mapping type ' + infoObject.mappingType); } if (infoObject.referenceType === 'IndexToDirect') index = infoObject.indices[index]; var from = index * infoObject.dataSize; var to = from + infoObject.dataSize; return slice(dataArray, infoObject.buffer, from, to); } var tempEuler = new _three.Euler(); var tempVec = new _three.Vector3(); // generate transformation from FBX transform data // ref: https://help.autodesk.com/view/FBX/2017/ENU/?guid=__files_GUID_10CDD63C_79C1_4F2D_BB28_AD2BE65A02ED_htm // ref: http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=cpp_ref/_transformations_2main_8cxx-example.html,topicNumber=cpp_ref__transformations_2main_8cxx_example_htmlfc10a1e1-b18d-4e72-9dc0-70d0f1959f5e function generateTransform(transformData) { var lTranslationM = new _three.Matrix4(); var lPreRotationM = new _three.Matrix4(); var lRotationM = new _three.Matrix4(); var lPostRotationM = new _three.Matrix4(); var lScalingM = new _three.Matrix4(); var lScalingPivotM = new _three.Matrix4(); var lScalingOffsetM = new _three.Matrix4(); var lRotationOffsetM = new _three.Matrix4(); var lRotationPivotM = new _three.Matrix4(); var lParentGX = new _three.Matrix4(); var lParentLX = new _three.Matrix4(); var lGlobalT = new _three.Matrix4(); var inheritType = transformData.inheritType ? transformData.inheritType : 0; if (transformData.translation) lTranslationM.setPosition(tempVec.fromArray(transformData.translation)); if (transformData.preRotation) { var array = transformData.preRotation.map(_three.MathUtils.degToRad); array.push(transformData.eulerOrder); lPreRotationM.makeRotationFromEuler(tempEuler.fromArray(array)); } if (transformData.rotation) { var _array = transformData.rotation.map(_three.MathUtils.degToRad); _array.push(transformData.eulerOrder); lRotationM.makeRotationFromEuler(tempEuler.fromArray(_array)); } if (transformData.postRotation) { var _array2 = transformData.postRotation.map(_three.MathUtils.degToRad); _array2.push(transformData.eulerOrder); lPostRotationM.makeRotationFromEuler(tempEuler.fromArray(_array2)); lPostRotationM.invert(); } if (transformData.scale) lScalingM.scale(tempVec.fromArray(transformData.scale)); // Pivots and offsets if (transformData.scalingOffset) lScalingOffsetM.setPosition(tempVec.fromArray(transformData.scalingOffset)); if (transformData.scalingPivot) lScalingPivotM.setPosition(tempVec.fromArray(transformData.scalingPivot)); if (transformData.rotationOffset) lRotationOffsetM.setPosition(tempVec.fromArray(transformData.rotationOffset)); if (transformData.rotationPivot) lRotationPivotM.setPosition(tempVec.fromArray(transformData.rotationPivot)); // parent transform if (transformData.parentMatrixWorld) { lParentLX.copy(transformData.parentMatrix); lParentGX.copy(transformData.parentMatrixWorld); } var lLRM = lPreRotationM.clone().multiply(lRotationM).multiply(lPostRotationM); // Global Rotation var lParentGRM = new _three.Matrix4(); lParentGRM.extractRotation(lParentGX); // Global Shear*Scaling var lParentTM = new _three.Matrix4(); lParentTM.copyPosition(lParentGX); var lParentGRSM = lParentTM.clone().invert().multiply(lParentGX); var lParentGSM = lParentGRM.clone().invert().multiply(lParentGRSM); var lLSM = lScalingM; var lGlobalRS = new _three.Matrix4(); if (inheritType === 0) { lGlobalRS.copy(lParentGRM).multiply(lLRM).multiply(lParentGSM).multiply(lLSM); } else if (inheritType === 1) { lGlobalRS.copy(lParentGRM).multiply(lParentGSM).multiply(lLRM).multiply(lLSM); } else { var lParentLSM = new _three.Matrix4().scale(new _three.Vector3().setFromMatrixScale(lParentLX)); var lParentLSM_inv = lParentLSM.clone().invert(); var lParentGSM_noLocal = lParentGSM.clone().multiply(lParentLSM_inv); lGlobalRS.copy(lParentGRM).multiply(lLRM).multiply(lParentGSM_noLocal).multiply(lLSM); } var lRotationPivotM_inv = lRotationPivotM.clone().invert(); var lScalingPivotM_inv = lScalingPivotM.clone().invert(); // Calculate the local transform matrix var lTransform = lTranslationM.clone().multiply(lRotationOffsetM).multiply(lRotationPivotM).multiply(lPreRotationM).multiply(lRotationM).multiply(lPostRotationM).multiply(lRotationPivotM_inv).multiply(lScalingOffsetM).multiply(lScalingPivotM).multiply(lScalingM).multiply(lScalingPivotM_inv); var lLocalTWithAllPivotAndOffsetInfo = new _three.Matrix4().copyPosition(lTransform); var lGlobalTranslation = lParentGX.clone().multiply(lLocalTWithAllPivotAndOffsetInfo); lGlobalT.copyPosition(lGlobalTranslation); lTransform = lGlobalT.clone().multiply(lGlobalRS); // from global to local lTransform.premultiply(lParentGX.invert()); return lTransform; } // Returns the three.js intrinsic Euler order corresponding to FBX extrinsic Euler order // ref: http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_euler_html function getEulerOrder(order) { order = order || 0; var enums = ['ZYX', // -> XYZ extrinsic 'YZX', // -> XZY extrinsic 'XZY', // -> YZX extrinsic 'ZXY', // -> YXZ extrinsic 'YXZ', // -> ZXY extrinsic 'XYZ' // -> ZYX extrinsic //'SphericXYZ', // not possible to support ]; if (order === 6) { console.warn('THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect.'); return enums[0]; } return enums[order]; } // Parses comma separated list of numbers and returns them an array. // Used internally by the TextParser function parseNumberArray(value) { var array = value.split(',').map(function (val) { return parseFloat(val); }); return array; } function convertArrayBufferToString(buffer, from, to) { if (from === undefined) from = 0; if (to === undefined) to = buffer.byteLength; return _three.LoaderUtils.decodeText(new Uint8Array(buffer, from, to)); } function append(a, b) { for (var i = 0, j = a.length, l = b.length; i < l; i++, j++) { a[j] = b[i]; } } function slice(a, b, from, to) { for (var i = from, j = 0; i < to; i++, j++) { a[j] = b[i]; } return a; } // inject array a2 into array a1 at index function inject(a1, index, a2) { return a1.slice(0, index).concat(a2).concat(a1.slice(index)); } });