require 'svmkit/base/base_estimator' require 'svmkit/base/transformer' module SVMKit # Module for kernel approximation algorithms. module KernelApproximation # Class for RBF kernel feature mapping. # # transformer = SVMKit::KernelApproximation::RBF.new(gamma: 1.0, n_coponents: 128, random_seed: 1) # new_training_samples = transformer.fit_transform(training_samples) # new_testing_samples = transformer.transform(testing_samples) # # * *Refernce*: # - A. Rahimi and B. Recht, "Random Features for Large-Scale Kernel Machines," Proc. NIPS'07, pp.1177--1184, 2007. class RBF include Base::BaseEstimator include Base::Transformer DEFAULT_PARAMS = { # :nodoc: gamma: 1.0, n_components: 128, random_seed: nil }.freeze # The random matrix for transformation. attr_reader :random_mat # :nodoc: # The random vector for transformation. attr_reader :random_vec # :nodoc: # The random generator for transformation. attr_reader :rng # :nodoc: # Creates a new transformer for mapping to RBF kernel feature space. # # call-seq: # new(gamma: 1.0, n_components: 128, random_seed: 1) -> RBF # # * *Arguments* : # - +:gamma+ (Float) (defaults to: 1.0) -- The parameter of RBF kernel: exp(-gamma * x^2) # - +:n_components+ (Integer) (defaults to: 128) -- The number of dimensions of the RBF kernel feature space. # - +:random_seed+ (Integer) (defaults to: nil) -- The seed value using to initialize the random generator. def initialize(params = {}) self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }]) self.params[:random_seed] ||= srand @rng = Random.new(self.params[:random_seed]) @random_mat = nil @random_vec = nil end # Fit the model with given training data. # # call-seq: # fit(x) -> RBF # # * *Arguments* : # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The training data to be used for fitting the model. This method uses only the number of features of the data. # * *Returns* : # - The learned transformer itself. def fit(x, _y = nil) n_features = x.shape[1] params[:n_components] = 2 * n_features if params[:n_components] <= 0 @random_mat = rand_normal([n_features, params[:n_components]]) * (2.0 * params[:gamma])**0.5 n_half_components = params[:n_components] / 2 @random_vec = NMatrix.zeros([1, params[:n_components] - n_half_components]).hconcat( NMatrix.ones([1, n_half_components]) * (0.5 * Math::PI) ) #@random_vec = rand_uniform([1, self.params[:n_components]]) * (2.0 * Math::PI) self end # Fit the model with training data, and then transform them with the learned model. # # call-seq: # fit_transform(x) -> NMatrix # # * *Arguments* : # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The training data to be used for fitting the model. # * *Returns* : # - The transformed data (NMatrix, shape: [n_samples, n_components]). def fit_transform(x, _y = nil) fit(x).transform(x) end # Transform the given data with the learned model. # # call-seq: # transform(x) -> NMatrix # # * *Arguments* : # - +x+ (NMatrix, shape: [n_samples, n_features]) -- The data to be transformed with the learned model. # * *Returns* : # - The transformed data (NMatrix, shape: [n_samples, n_components]). def transform(x) n_samples, = x.shape projection = x.dot(@random_mat) + @random_vec.repeat(n_samples, 0) projection.sin * ((2.0 / params[:n_components])**0.5) end # Serializes object through Marshal#dump. def marshal_dump # :nodoc: { params: params, random_mat: Utils.dump_nmatrix(@random_mat), random_vec: Utils.dump_nmatrix(@random_vec), rng: @rng } end # Deserialize object through Marshal#load. def marshal_load(obj) # :nodoc: self.params = obj[:params] @random_mat = Utils.restore_nmatrix(obj[:random_mat]) @random_vec = Utils.restore_nmatrix(obj[:random_vec]) @rng = obj[:rng] nil end protected # Generate the uniform random matrix with the given shape. def rand_uniform(shape) # :nodoc: rnd_vals = Array.new(NMatrix.size(shape)) { @rng.rand } NMatrix.new(shape, rnd_vals, dtype: :float64, stype: :dense) end # Generate the normal random matrix with the given shape, mean, and standard deviation. def rand_normal(shape, mu = 0.0, sigma = 1.0) # :nodoc: a = rand_uniform(shape) b = rand_uniform(shape) ((a.log * -2.0).sqrt * (b * 2.0 * Math::PI).sin) * sigma + mu end end end end