Sha256: a93a6c666bcc856a3fde251d29c3c8492be66a4584c26491f5f80cc74a6aeec9
Contents?: true
Size: 1.47 KB
Versions: 7
Compression:
Stored size: 1.47 KB
Contents
# frozen_string_literal: true require 'numo/narray' module Rumale module Base # Module for all regressors in Rumale. module Regressor # An abstract method for fitting a model. def fit raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end # An abstract method for predicting labels. def predict raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}." end # Calculate the coefficient of determination for the given testing data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) Testing data. # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) Target values for testing data. # @return [Float] Coefficient of determination def score(x, y) x = ::Rumale::Validation.check_convert_sample_array(x) y = ::Rumale::Validation.check_convert_target_value_array(y) ::Rumale::Validation.check_sample_size(x, y) predicted = predict(x) n_samples, n_outputs = y.shape numerator = ((y - predicted)**2).sum(axis: 0) yt_mean = y.sum(axis: 0) / n_samples denominator = ((y - yt_mean)**2).sum(axis: 0) if n_outputs.nil? denominator.zero? ? 0.0 : 1.0 - numerator.fdiv(denominator) else scores = 1.0 - numerator / denominator scores[denominator.eq(0)] = 0.0 scores.sum.fdiv(scores.size) end end end end end
Version data entries
7 entries across 7 versions & 1 rubygems