Sha256: a699042c4a9e868f11c43598bab28195ac0ab18cc57214416d16c3550c0ce774
Contents?: true
Size: 1.9 KB
Versions: 33
Compression:
Stored size: 1.9 KB
Contents
# ported from https://github.com/pytorch/pytorch/blob/master/torch/optim/asgd.py module Torch module Optim class ASGD < Optimizer def initialize(params, lr: 1e-2, lambd: 1e-4, alpha: 0.75, t0: 1e6, weight_decay: 0) raise ArgumentError, "Invalid learning rate: #{lr}" if lr < 0 raise ArgumentError, "Invalid weight_decay value: #{weight_decay}" if weight_decay < 0 defaults = {lr: lr, lambd: lambd, alpha: alpha, t0: t0, weight_decay: weight_decay} super(params, defaults) end def step(closure = nil) loss = nil if closure loss = closure.call end @param_groups.each do |group| group[:params].each do |p| next unless p.grad grad = p.grad.data if grad.sparse? raise Error, "ASGD does not support sparse gradients" end state = @state[p] # State initialization if state.size == 0 state[:step] = 0 state[:eta] = group[:lr] state[:mu] = 1 state[:ax] = Torch.zeros_like(p.data) end state[:step] += 1 if group[:weight_decay] != 0 grad = grad.add(p.data, alpha: group[:weight_decay]) end # decay term p.data.mul!(1 - group[:lambd] * state[:eta]) # update parameter p.data.add!(grad, alpha: -state[:eta]) # averaging if state[:mu] != 1 state[:ax].add!(p.data.sub(state[:ax]).mul(state[:mu])) else state[:ax].copy!(p.data) end # update eta and mu state[:eta] = (group[:lr] / ((1 + group[:lambd] * group[:lr] * state[:step]) ** group[:alpha])) state[:mu] = 1 / [1, state[:step] - group[:t0]].max end end loss end end end end
Version data entries
33 entries across 33 versions & 1 rubygems