Sha256: a6759ce7767a28cea498616b3ab7caef7285c3b72bb4d45b6eb05e56a284cb2e
Contents?: true
Size: 1.02 KB
Versions: 6
Compression:
Stored size: 1.02 KB
Contents
require "dnn" require "dnn/datasets/mnist" # If you use numo/linalg then please uncomment out. # require "numo/linalg/autoloader" include DNN::Models include DNN::Layers include DNN::Optimizers include DNN::Losses MNIST = DNN::MNIST x_train, y_train = MNIST.load_train x_test, y_test = MNIST.load_test x_train = Numo::SFloat.cast(x_train) x_test = Numo::SFloat.cast(x_test) x_train /= 255 x_test /= 255 y_train = DNN::Utils.to_categorical(y_train, 10, Numo::SFloat) y_test = DNN::Utils.to_categorical(y_test, 10, Numo::SFloat) model = Sequential.new model << InputLayer.new([28, 28, 1]) model << Conv2D.new(16, 5) model << BatchNormalization.new model << ReLU.new model << MaxPool2D.new(2) model << Conv2D.new(32, 5) model << BatchNormalization.new model << ReLU.new model << Flatten.new model << Dense.new(256) model << BatchNormalization.new model << ReLU.new model << Dropout.new(0.5) model << Dense.new(10) model.setup(Adam.new, SoftmaxCrossEntropy.new) model.train(x_train, y_train, 10, batch_size: 100, test: [x_test, y_test])
Version data entries
6 entries across 6 versions & 1 rubygems