# ******************************************************************************* # OpenStudio(R), Copyright (c) 2008-2019, Alliance for Sustainable Energy, LLC. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # (1) Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # (2) Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # (3) Neither the name of the copyright holder nor the names of any contributors # may be used to endorse or promote products derived from this software without # specific prior written permission from the respective party. # # (4) Other than as required in clauses (1) and (2), distributions in any form # of modifications or other derivative works may not use the "OpenStudio" # trademark, "OS", "os", or any other confusingly similar designation without # specific prior written permission from Alliance for Sustainable Energy, LLC. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND ANY CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S), ANY CONTRIBUTORS, THE # UNITED STATES GOVERNMENT, OR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF # THEIR EMPLOYEES, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ******************************************************************************* module OsLib_Geometry # lower z value of vertices with starting value above x to new value of y def self.lowerSurfaceZvalue(surfaceArray, zValueTarget) counter = 0 # loop over all surfaces surfaceArray.each do |surface| # create a new set of vertices newVertices = OpenStudio::Point3dVector.new # get the existing vertices for this interior partition vertices = surface.vertices flag = false vertices.each do |vertex| # initialize new vertex to old vertex x = vertex.x y = vertex.y z = vertex.z # if this z vertex is not on the z = 0 plane if z > zValueTarget z = zValueTarget flag = true end # add point to new vertices newVertices << OpenStudio::Point3d.new(x, y, z) end # set vertices to new vertices surface.setVertices(newVertices) # todo check if this was made, and issue warning if it was not. Could happen if resulting surface not planer. if flag then counter += 1 end end result = counter return result end # return an array of z values for surfaces passed in. The values will be relative to the parent origin. This was intended for spaces. def self.getSurfaceZValues(surfaceArray) zValueArray = [] # loop over all surfaces surfaceArray.each do |surface| # get the existing vertices vertices = surface.vertices vertices.each do |vertex| # push z value to array zValueArray << vertex.z end end result = zValueArray return result end def self.createPointAtCenterOfFloor(model, space, zOffset) # find floors floors = [] space.surfaces.each do |surface| next if surface.surfaceType != 'Floor' floors << surface end # this method only works for flat (non-inclined) floors boundingBox = OpenStudio::BoundingBox.new floors.each do |floor| boundingBox.addPoints(floor.vertices) end xmin = boundingBox.minX.get ymin = boundingBox.minY.get zmin = boundingBox.minZ.get xmax = boundingBox.maxX.get ymax = boundingBox.maxY.get x_pos = (xmin + xmax) / 2 y_pos = (ymin + ymax) / 2 z_pos = zmin + zOffset floorSurfacesInSpace = [] space.surfaces.each do |surface| if surface.surfaceType == 'Floor' floorSurfacesInSpace << surface end end pointIsOnFloor = OsLib_Geometry.checkIfPointIsOnSurfaceInArray(OpenStudio::Point3d.new(x_pos, y_pos, zmin), floorSurfacesInSpace) if pointIsOnFloor new_point = OpenStudio::Point3d.new(x_pos, y_pos, z_pos) else # don't make point, it doesn't appear to be inside of the space new_point = nil end result = new_point return result end def self.createPointInFromSubSurfaceAtSpecifiedHeight(model, subSurface, referenceFloor, distanceInFromWindow, heightAboveBottomOfSubSurface) window_outward_normal = subSurface.outwardNormal window_centroid = OpenStudio.getCentroid(subSurface.vertices).get window_outward_normal.setLength(distanceInFromWindow) vertex = window_centroid + window_outward_normal.reverseVector vertex_on_floorplane = referenceFloor.plane.project(vertex) floor_outward_normal = referenceFloor.outwardNormal floor_outward_normal.setLength(heightAboveBottomOfSubSurface) floorSurfacesInSpace = [] subSurface.space.get.surfaces.each do |surface| if surface.surfaceType == 'Floor' floorSurfacesInSpace << surface end end pointIsOnFloor = OsLib_Geometry.checkIfPointIsOnSurfaceInArray(vertex_on_floorplane, floorSurfacesInSpace) if pointIsOnFloor new_point = vertex_on_floorplane + floor_outward_normal.reverseVector else # don't make point, it doesn't appear to be inside of the space new_point = vertex_on_floorplane + floor_outward_normal.reverseVector # nil end result = new_point return result end def self.checkIfPointIsOnSurfaceInArray(point, surfaceArray) onSurfacesFlag = false surfaceArray.each do |surface| # Check if sensor is on floor plane (I need to loop through all floors) plane = surface.plane point_on_plane = plane.project(point) faceTransform = OpenStudio::Transformation.alignFace(surface.vertices) faceVertices = faceTransform * surface.vertices facePointOnPlane = faceTransform * point_on_plane if OpenStudio.pointInPolygon(facePointOnPlane, faceVertices.reverse, 0.01) # initial_sensor location lands in this surface's polygon onSurfacesFlag = true end end if onSurfacesFlag result = true else result = false end return result end def self.getExteriorWindowToWallRatio(spaceArray) # counters total_gross_ext_wall_area = 0 total_ext_window_area = 0 spaceArray.each do |space| # get surface area adjusting for zone multiplier zone = space.thermalZone if !zone.empty? zone_multiplier = zone.get.multiplier if zone_multiplier > 1 end else zone_multiplier = 1 # space is not in a thermal zone end space.surfaces.each do |s| next if s.surfaceType != 'Wall' next if s.outsideBoundaryCondition != 'Outdoors' surface_gross_area = s.grossArea * zone_multiplier # loop through sub surfaces and add area including multiplier ext_window_area = 0 s.subSurfaces.each do |subSurface| ext_window_area += subSurface.grossArea * subSurface.multiplier * zone_multiplier end total_gross_ext_wall_area += surface_gross_area total_ext_window_area += ext_window_area end end if total_gross_ext_wall_area > 0 result = total_ext_window_area / total_gross_ext_wall_area else result = 0.0 # TODO: - this should not happen if the building has geometry end return result end # create core and perimeter polygons from length width and origin def self.make_core_and_perimeter_polygons(runner, length, width, footprint_origin = OpenStudio::Point3d.new(0, 0, 0), perimeter_zone_depth = OpenStudio.convert(15, 'ft', 'm').get) hash_of_point_vectors = {} # key is name, value is a hash, one item of which is polygon. Another could be space type # determine if core and perimeter zoning can be used if !(length > perimeter_zone_depth * 2.5 && width > perimeter_zone_depth * 2.5) perimeter_zone_depth = 0 # if any size is to small then just model floor as single zone, issue warning runner.registerWarning('Due to the size of the building modeling each floor as a single zone.') end x_delta = footprint_origin.x - length / 2.0 y_delta = footprint_origin.y - width / 2.0 z = 0 nw_point = OpenStudio::Point3d.new(x_delta, y_delta + width, z) ne_point = OpenStudio::Point3d.new(x_delta + length, y_delta + width, z) se_point = OpenStudio::Point3d.new(x_delta + length, y_delta, z) sw_point = OpenStudio::Point3d.new(x_delta, y_delta, z) # Define polygons for a rectangular building if perimeter_zone_depth > 0 perimeter_nw_point = nw_point + OpenStudio::Vector3d.new(perimeter_zone_depth, -perimeter_zone_depth, 0) perimeter_ne_point = ne_point + OpenStudio::Vector3d.new(-perimeter_zone_depth, -perimeter_zone_depth, 0) perimeter_se_point = se_point + OpenStudio::Vector3d.new(-perimeter_zone_depth, perimeter_zone_depth, 0) perimeter_sw_point = sw_point + OpenStudio::Vector3d.new(perimeter_zone_depth, perimeter_zone_depth, 0) west_polygon = OpenStudio::Point3dVector.new west_polygon << sw_point west_polygon << nw_point west_polygon << perimeter_nw_point west_polygon << perimeter_sw_point hash_of_point_vectors['West Perimeter Space'] = {} hash_of_point_vectors['West Perimeter Space'][:space_type] = nil # other methods being used by makeSpacesFromPolygons may have space types associated with each polygon but this doesn't. hash_of_point_vectors['West Perimeter Space'][:polygon] = west_polygon north_polygon = OpenStudio::Point3dVector.new north_polygon << nw_point north_polygon << ne_point north_polygon << perimeter_ne_point north_polygon << perimeter_nw_point hash_of_point_vectors['North Perimeter Space'] = {} hash_of_point_vectors['North Perimeter Space'][:space_type] = nil hash_of_point_vectors['North Perimeter Space'][:polygon] = north_polygon east_polygon = OpenStudio::Point3dVector.new east_polygon << ne_point east_polygon << se_point east_polygon << perimeter_se_point east_polygon << perimeter_ne_point hash_of_point_vectors['East Perimeter Space'] = {} hash_of_point_vectors['East Perimeter Space'][:space_type] = nil hash_of_point_vectors['East Perimeter Space'][:polygon] = east_polygon south_polygon = OpenStudio::Point3dVector.new south_polygon << se_point south_polygon << sw_point south_polygon << perimeter_sw_point south_polygon << perimeter_se_point hash_of_point_vectors['South Perimeter Space'] = {} hash_of_point_vectors['South Perimeter Space'][:space_type] = nil hash_of_point_vectors['South Perimeter Space'][:polygon] = south_polygon core_polygon = OpenStudio::Point3dVector.new core_polygon << perimeter_sw_point core_polygon << perimeter_nw_point core_polygon << perimeter_ne_point core_polygon << perimeter_se_point hash_of_point_vectors['Core Space'] = {} hash_of_point_vectors['Core Space'][:space_type] = nil hash_of_point_vectors['Core Space'][:polygon] = core_polygon # Minimal zones else whole_story_polygon = OpenStudio::Point3dVector.new whole_story_polygon << sw_point whole_story_polygon << nw_point whole_story_polygon << ne_point whole_story_polygon << se_point hash_of_point_vectors['Whole Story Space'] = {} hash_of_point_vectors['Whole Story Space'][:space_type] = nil hash_of_point_vectors['Whole Story Space'][:polygon] = whole_story_polygon end return hash_of_point_vectors end # sliced bar multi creates and array of multiple sliced bar simple hashes def self.make_sliced_bar_multi_polygons(runner, space_types, length, width, footprint_origin = OpenStudio::Point3d.new(0, 0, 0), story_hash) # total building floor area to calculate ratios from space type floor areas total_floor_area = 0.0 target_per_space_type = {} space_types.each do |space_type, space_type_hash| total_floor_area += space_type_hash[:floor_area] target_per_space_type[space_type] = space_type_hash[:floor_area] end # sort array by floor area, this hash will be altered to reduce floor area for each space type to 0 space_types_running_count = space_types.sort_by { |k, v| v[:floor_area] } # array entry for each story footprints = [] # variables for sliver check valid_bar_width_min = OpenStudio.convert(3, 'ft', 'm').get # re-evaluate what this should be bar_length = width # building width valid_bar_area_min = valid_bar_width_min * bar_length # loop through stories to populate footprints story_hash.each_with_index do |(k, v), i| # update the length and width for partial floors if i + 1 == story_hash.size area_multiplier = v[:partial_story_multiplier] edge_multiplier = Math.sqrt(area_multiplier) length *= edge_multiplier width *= edge_multiplier end # this will be populated for each building story target_footprint_area = v[:multiplier] * length * width current_footprint_area = 0.0 space_types_local_count = {} space_types_running_count.each do |space_type, space_type_hash| # next if floor area is full or space type is empty next if current_footprint_area >= target_footprint_area next if space_type_hash[:floor_area] <= 0.0 # special test for when total floor area is smaller than valid_bar_area_min, just make bar smaller that valid min and warn user if target_per_space_type[space_type] < valid_bar_area_min sliver_override = true runner.registerWarning("Floor area of #{space_type.name} results in a bar with smaller than target minimum width.") else sliver_override = false end # add entry for space type if it doesn't have one yet if !space_types_local_count.key?(space_type) space_types_local_count[space_type] = { floor_area: 0.0 } end # if there is enough of this space type to fill rest of floor area remaining_in_footprint = target_footprint_area - current_footprint_area if space_type_hash[:floor_area] > remaining_in_footprint # add to local count for story and remove from running count from space type raw_footprint_area_used = remaining_in_footprint else # if not then use up the rest of the floor area and move on to next space type raw_footprint_area_used = space_type_hash[:floor_area] end # add to local hash space_types_local_count[space_type][:floor_area] = raw_footprint_area_used / v[:multiplier].to_f # adjust balance ot running and local counts current_footprint_area += raw_footprint_area_used space_type_hash[:floor_area] -= raw_footprint_area_used # test if think slice left on current floor. # fix by moving smallest space type to next floor and and the same amount more of the sliver space type to this story raw_footprint_area_used < valid_bar_area_min && sliver_override == false ? (test_a = true) : (test_a = false) # test if what would be left of the current space type would result in a sliver on the next story. # fix by removing some of this space type so their is enough left for the next story, and replace the removed amount with the largest space type in the model (space_type_hash[:floor_area] < valid_bar_area_min) && (space_type_hash[:floor_area] > 0.0001) ? (test_b = true) : (test_b = false) # identify very small slices and re-arrange spaces to different stories to avoid this if test_a # get first/smallest space type to move to another story first_space = space_types_local_count.first # adjustments running counter for space type being removed from this story space_types_running_count.each do |k2, v2| next if k2 != first_space[0] v2[:floor_area] += first_space[1][:floor_area] * v[:multiplier] end # adjust running count for current space type space_type_hash[:floor_area] -= first_space[1][:floor_area] * v[:multiplier] # add to local count for current space type space_types_local_count[space_type][:floor_area] += first_space[1][:floor_area] # remove from local count for removed space type space_types_local_count.shift elsif test_b # swap size swap_size = valid_bar_area_min * 5 # currently equal to default perimeter zone depth of 15' # adjust running count for current space type space_type_hash[:floor_area] += swap_size # remove from local count for current space type space_types_local_count[space_type][:floor_area] -= swap_size / v[:multiplier].to_f # adjust footprint used current_footprint_area -= swap_size # the next larger space type will be brought down to fill out the footprint without any additional code end end # creating footprint for story footprints << OsLib_Geometry.make_sliced_bar_simple_polygons(runner, space_types_local_count, length, width, footprint_origin) end return footprints end # sliced bar simple creates a single sliced bar for space types passed in # todo - look at length and width to adjust slicing direction def self.make_sliced_bar_simple_polygons(runner, space_types, length, width, footprint_origin = OpenStudio::Point3d.new(0, 0, 0), perimeter_zone_depth = OpenStudio.convert(15, 'ft', 'm').get) hash_of_point_vectors = {} # key is name, value is a hash, one item of which is polygon. Another could be space type # determine if core and perimeter zoning can be used if !(length > perimeter_zone_depth * 2.5 && width > perimeter_zone_depth * 2.5) perimeter_zone_depth = 0 # if any size is to small then just model floor as single zone, issue warning runner.registerWarning('Not modeling core and perimeter zones for some portion of the model.') end x_delta = footprint_origin.x - length / 2.0 y_delta = footprint_origin.y - width / 2.0 z = 0 # this represents the entire bar, not individual space type slices nw_point = OpenStudio::Point3d.new(x_delta, y_delta + width, z) sw_point = OpenStudio::Point3d.new(x_delta, y_delta, z) # total building floor area to calculate ratios from space type floor areas total_floor_area = 0.0 space_types.each do |space_type, space_type_hash| total_floor_area += space_type_hash[:floor_area] end # sort array by floor area but shift largest object to front space_types = space_types.sort_by { |k, v| v[:floor_area] } space_types.insert(0, space_types.delete_at(space_types.size - 1)) # min and max bar end values min_bar_end_multiplier = 0.75 max_bar_end_multiplier = 1.5 # sort_by results in arrays with two items , first is key, second is hash value re_apply_largest_space_type_at_end = false max_reduction = nil # used when looping through section_hash_for_space_type if first space type needs to also be at far end of bar space_types.each do |space_type, space_type_hash| # setup end perimeter zones if needed start_perimeter_width_deduction = 0.0 end_perimeter_width_deduction = 0.0 if space_type == space_types.first[0] if length * space_type_hash[:floor_area] / total_floor_area > max_bar_end_multiplier * perimeter_zone_depth start_perimeter_width_deduction = perimeter_zone_depth end # see if last space type is too small for perimeter. If it is then save some of this space type if length * space_types.last[1][:floor_area] / total_floor_area < perimeter_zone_depth * min_bar_end_multiplier re_apply_largest_space_type_at_end = true end end if space_type == space_types.last[0] if length * space_type_hash[:floor_area] / total_floor_area > max_bar_end_multiplier * perimeter_zone_depth end_perimeter_width_deduction = perimeter_zone_depth end end non_end_adjusted_width = (length * space_type_hash[:floor_area] / total_floor_area) - start_perimeter_width_deduction - end_perimeter_width_deduction # adjustment of end space type is too small and is replaced with largest space type if (space_type == space_types.first[0]) && re_apply_largest_space_type_at_end max_reduction = [perimeter_zone_depth, non_end_adjusted_width].min non_end_adjusted_width -= max_reduction end if (space_type == space_types.last[0]) && re_apply_largest_space_type_at_end end_perimeter_width_deduction = space_types.first[0] end # poulate data for core and perimeter of slice section_hash_for_space_type = {} section_hash_for_space_type['end_a'] = start_perimeter_width_deduction section_hash_for_space_type[''] = non_end_adjusted_width section_hash_for_space_type['end_b'] = end_perimeter_width_deduction # loop through sections for space type (main and possibly one or two end perimeter sections) section_hash_for_space_type.each do |k, width| if width.class.to_s == 'OpenStudio::Model::SpaceType' # confirm this space_type = width max_reduction = [perimeter_zone_depth, max_reduction].min width = max_reduction end if width == 0 next end ne_point = nw_point + OpenStudio::Vector3d.new(width, 0, 0) se_point = sw_point + OpenStudio::Vector3d.new(width, 0, 0) if perimeter_zone_depth > 0 polygon_a = OpenStudio::Point3dVector.new polygon_a << sw_point polygon_a << sw_point + OpenStudio::Vector3d.new(0, perimeter_zone_depth, 0) polygon_a << se_point + OpenStudio::Vector3d.new(0, perimeter_zone_depth, 0) polygon_a << se_point hash_of_point_vectors["#{space_type.name} A #{k}"] = {} hash_of_point_vectors["#{space_type.name} A #{k}"][:space_type] = space_type hash_of_point_vectors["#{space_type.name} A #{k}"][:polygon] = polygon_a polygon_b = OpenStudio::Point3dVector.new polygon_b << sw_point + OpenStudio::Vector3d.new(0, perimeter_zone_depth, 0) polygon_b << nw_point + OpenStudio::Vector3d.new(0, - perimeter_zone_depth, 0) polygon_b << ne_point + OpenStudio::Vector3d.new(0, - perimeter_zone_depth, 0) polygon_b << se_point + OpenStudio::Vector3d.new(0, perimeter_zone_depth, 0) hash_of_point_vectors["#{space_type.name} B #{k}"] = {} hash_of_point_vectors["#{space_type.name} B #{k}"][:space_type] = space_type hash_of_point_vectors["#{space_type.name} B #{k}"][:polygon] = polygon_b polygon_c = OpenStudio::Point3dVector.new polygon_c << nw_point + OpenStudio::Vector3d.new(0, - perimeter_zone_depth, 0) polygon_c << nw_point polygon_c << ne_point polygon_c << ne_point + OpenStudio::Vector3d.new(0, - perimeter_zone_depth, 0) hash_of_point_vectors["#{space_type.name} C #{k}"] = {} hash_of_point_vectors["#{space_type.name} C #{k}"][:space_type] = space_type hash_of_point_vectors["#{space_type.name} C #{k}"][:polygon] = polygon_c else polygon_a = OpenStudio::Point3dVector.new polygon_a << sw_point polygon_a << nw_point polygon_a << ne_point polygon_a << se_point hash_of_point_vectors["#{space_type.name} #{k}"] = {} hash_of_point_vectors["#{space_type.name} #{k}"][:space_type] = space_type hash_of_point_vectors["#{space_type.name} #{k}"][:polygon] = polygon_a end # update west points nw_point = ne_point sw_point = se_point end end return hash_of_point_vectors end # take diagram made by make_core_and_perimeter_polygons and make multi-story building # todo - add option to create shading surfaces when using multiplier. Mainly important for non rectangular buildings where self shading would be an issue def self.makeSpacesFromPolygons(runner, model, footprints, typical_story_height, effective_num_stories, footprint_origin = OpenStudio::Point3d.new(0, 0, 0), story_hash = {}) # default story hash is for three stories with mid-story multiplier, but user can pass in custom versions if story_hash.empty? if effective_num_stories > 2 story_hash['Ground'] = { space_origin_z: footprint_origin.z, space_height: typical_story_height, multiplier: 1 } story_hash['Mid'] = { space_origin_z: footprint_origin.z + typical_story_height + typical_story_height * (effective_num_stories.ceil - 3) / 2.0, space_height: typical_story_height, multiplier: effective_num_stories - 2 } story_hash['Top'] = { space_origin_z: footprint_origin.z + typical_story_height * (effective_num_stories.ceil - 1), space_height: typical_story_height, multiplier: 1 } elsif effective_num_stories > 1 story_hash['Ground'] = { space_origin_z: footprint_origin.z, space_height: typical_story_height, multiplier: 1 } story_hash['Top'] = { space_origin_z: footprint_origin.z + typical_story_height * (effective_num_stories.ceil - 1), space_height: typical_story_height, multiplier: 1 } else # one story only story_hash['Ground'] = { space_origin_z: footprint_origin.z, space_height: typical_story_height, multiplier: 1 } end end # loop through story_hash and polygons to generate all of the spaces story_hash.each_with_index do |(story_name, story_data), index| # make new story story = OpenStudio::Model::BuildingStory.new(model) story.setNominalFloortoFloorHeight(story_data[:space_height]) # not used for anything story.setNominalZCoordinate (story_data[:space_origin_z]) # not used for anything story.setName("Story #{story_name}") # multiplier values for adjacent stories to be altered below as needed multiplier_story_above = 1 multiplier_story_below = 1 if index == 0 # bottom floor, only check above if story_hash.size > 1 multiplier_story_above = story_hash.values[index + 1][:multiplier] end elsif index == story_hash.size - 1 # top floor, check only below multiplier_story_below = story_hash.values[index + -1][:multiplier] else # mid floor, check above and below multiplier_story_above = story_hash.values[index + 1][:multiplier] multiplier_story_below = story_hash.values[index + -1][:multiplier] end # if adjacent story has multiplier > 1 then make appropriate surfaces adiabatic adiabatic_ceilings = false adiabatic_floors = false if story_data[:multiplier] > 1 adiabatic_ceilings = true adiabatic_floors = true elsif multiplier_story_above > 1 adiabatic_ceilings = true elsif multiplier_story_below > 1 adiabatic_floors = true end # get the right collection of polygons to make up footprint for each building story if index > footprints.size - 1 # use last footprint target_footprint = footprints.last else target_footprint = footprints[index] end target_footprint.each do |name, space_data| # gather options options = { 'name' => "#{name} - #{story.name}", 'spaceType' => space_data[:space_type], 'story' => story, 'makeThermalZone' => true, 'thermalZoneMultiplier' => story_data[:multiplier], 'floor_to_floor_height' => story_data[:space_height] } # make space space = OsLib_Geometry.makeSpaceFromPolygon(model, space_data[:polygon].first, space_data[:polygon], options) # set z origin to proper position space.setZOrigin(story_data[:space_origin_z]) # loop through celings and floors to hard asssign constructions and set boundary condition if adiabatic_ceilings || adiabatic_floors space.surfaces.each do |surface| if adiabatic_floors && (surface.surfaceType == 'Floor') if surface.construction.is_initialized surface.setConstruction(surface.construction.get) end surface.setOutsideBoundaryCondition('Adiabatic') end if adiabatic_ceilings && (surface.surfaceType == 'RoofCeiling') if surface.construction.is_initialized surface.setConstruction(surface.construction.get) end surface.setOutsideBoundaryCondition('Adiabatic') end end end end # TODO: - in future add code to include plenums or raised floor to each/any story. end # any changes to wall boundary conditions will be handled by same code that calls this method. # this method doesn't need to know about basements and party walls. return model end # add def to create a space from input, optionally take a name, space type, story and thermal zone. def self.makeSpaceFromPolygon(model, space_origin, point3dVector, options = {}) # set defaults to use if user inputs not passed in defaults = { 'name' => nil, 'spaceType' => nil, 'story' => nil, 'makeThermalZone' => nil, 'thermalZone' => nil, 'thermalZoneMultiplier' => 1, 'floor_to_floor_height' => OpenStudio.convert(10, 'ft', 'm').get } # merge user inputs with defaults options = defaults.merge(options) # Identity matrix for setting space origins m = OpenStudio::Matrix.new(4, 4, 0) m[0, 0] = 1 m[1, 1] = 1 m[2, 2] = 1 m[3, 3] = 1 # make space from floor print space = OpenStudio::Model::Space.fromFloorPrint(point3dVector, options['floor_to_floor_height'], model) space = space.get m[0, 3] = space_origin.x m[1, 3] = space_origin.y m[2, 3] = space_origin.z space.changeTransformation(OpenStudio::Transformation.new(m)) space.setBuildingStory(options['story']) if !options['name'].nil? space.setName(options['name']) end if !options['spaceType'].nil? space.setSpaceType(options['spaceType']) end # create thermal zone if requested and assign if options['makeThermalZone'] new_zone = OpenStudio::Model::ThermalZone.new(model) new_zone.setMultiplier(options['thermalZoneMultiplier']) space.setThermalZone(new_zone) new_zone.setName("Zone #{space.name}") else if !options['thermalZone'].nil? then space.setThermalZone(options['thermalZone']) end end result = space return result end def self.getExteriorWindowAndWllAreaByOrientation(model, spaceArray, options = {}) # set defaults to use if user inputs not passed in defaults = { 'northEast' => 45, 'southEast' => 125, 'southWest' => 225, 'northWest' => 315 } # merge user inputs with defaults options = defaults.merge(options) # counters total_gross_ext_wall_area_North = 0 total_gross_ext_wall_area_South = 0 total_gross_ext_wall_area_East = 0 total_gross_ext_wall_area_West = 0 total_ext_window_area_North = 0 total_ext_window_area_South = 0 total_ext_window_area_East = 0 total_ext_window_area_West = 0 spaceArray.each do |space| # get surface area adjusting for zone multiplier zone = space.thermalZone if !zone.empty? zone_multiplier = zone.get.multiplier if zone_multiplier > 1 end else zone_multiplier = 1 # space is not in a thermal zone end space.surfaces.each do |s| next if s.surfaceType != 'Wall' next if s.outsideBoundaryCondition != 'Outdoors' surface_gross_area = s.grossArea * zone_multiplier # loop through sub surfaces and add area including multiplier ext_window_area = 0 s.subSurfaces.each do |subSurface| ext_window_area += subSurface.grossArea * subSurface.multiplier * zone_multiplier end absoluteAzimuth = OpenStudio.convert(s.azimuth, 'rad', 'deg').get + s.space.get.directionofRelativeNorth + model.getBuilding.northAxis absoluteAzimuth -= 360.0 until absoluteAzimuth < 360.0 # add to exterior wall counter if north or south if (options['northEast'] <= absoluteAzimuth) && (absoluteAzimuth < options['southEast']) # East exterior walls total_gross_ext_wall_area_East += surface_gross_area total_ext_window_area_East += ext_window_area elsif (options['southEast'] <= absoluteAzimuth) && (absoluteAzimuth < options['southWest']) # South exterior walls total_gross_ext_wall_area_South += surface_gross_area total_ext_window_area_South += ext_window_area elsif (options['southWest'] <= absoluteAzimuth) && (absoluteAzimuth < options['northWest']) # West exterior walls total_gross_ext_wall_area_West += surface_gross_area total_ext_window_area_West += ext_window_area else # North exterior walls total_gross_ext_wall_area_North += surface_gross_area total_ext_window_area_North += ext_window_area end end end result = { 'northWall' => total_gross_ext_wall_area_North, 'northWindow' => total_ext_window_area_North, 'southWall' => total_gross_ext_wall_area_South, 'southWindow' => total_ext_window_area_South, 'eastWall' => total_gross_ext_wall_area_East, 'eastWindow' => total_ext_window_area_East, 'westWall' => total_gross_ext_wall_area_West, 'westWindow' => total_ext_window_area_West } return result end def self.getAbsoluteAzimuthForSurface(surface, model) absolute_azimuth = OpenStudio.convert(surface.azimuth, 'rad', 'deg').get + surface.space.get.directionofRelativeNorth + model.getBuilding.northAxis absolute_azimuth -= 360.0 until absolute_azimuth < 360.0 return absolute_azimuth end # dont use this, use calculate_story_exterior_wall_perimeter instead def self.estimate_perimeter(perim_story) perimeter = 0 perim_story.spaces.each do |space| space.surfaces.each do |surface| next if (surface.outsideBoundaryCondition != 'Outdoors') || (surface.surfaceType != 'Wall') area = surface.grossArea z_value_array = OsLib_Geometry.getSurfaceZValues([surface]) next if z_value_array.max == z_value_array.min # shouldn't see this unless wall is horizontal perimeter += area / (z_value_array.max - z_value_array.min) end end return perimeter end # calculate story perimeter. Selected story should have above grade walls. If not perimeter may return zero. # optional_multiplier_adjustment is used in special case when there are zone multipliers that represent additional zones within the same story # the value entered represents the story_multiplier which reduces the adjustment by that factor over the full zone multiplier # todo - this doesn't catch walls that are split that sit above floor surfaces that are not (e.g. main corridoor in secondary school model) # todo - also odd with multi-height spaces def self.calculate_story_exterior_wall_perimeter(runner, story, optional_multiplier_adjustment = nil, tested_wall_boundary_condition = ['Outdoors', 'Ground'], bounding_box = nil) perimeter = 0 party_walls = [] story.spaces.each do |space| # counter to use later edge_hash = {} edge_counter = 0 space.surfaces.each do |surface| # get vertices vertex_hash = {} vertex_counter = 0 surface.vertices.each do |vertex| vertex_counter += 1 vertex_hash[vertex_counter] = [vertex.x, vertex.y, vertex.z] end # make edges counter = 0 vertex_hash.each do |k, v| edge_counter += 1 counter += 1 if vertex_hash.size != counter edge_hash[edge_counter] = [v, vertex_hash[counter + 1], surface, surface.outsideBoundaryCondition, surface.surfaceType] else # different code for wrap around vertex edge_hash[edge_counter] = [v, vertex_hash[1], surface, surface.outsideBoundaryCondition, surface.surfaceType] end end end # check edges for matches (need opposite vertices and proper boundary conditions) edge_hash.each do |k1, v1| # apply to any floor boundary condition. This supports used in floors above basements next if v1[4] != 'Floor' edge_hash.each do |k2, v2| test_boundary_cond = false next if !tested_wall_boundary_condition.include?(v2[3]) # method arg takes multiple conditions next if v2[4] != 'Wall' # see if edges have same geometry # found cases where the two lines below removed edges and resulted in lower than actual perimeter. Added new code with tolerance. # next if not v1[0] == v2[1] # next if not same geometry reversed # next if not v1[1] == v2[0] # these are three item array's add in tollerance for each array entry tolerance = 0.0001 test_a = true test_b = true 3.times.each do |i| if (v1[0][i] - v2[1][i]).abs > tolerance test_a = false end if (v1[1][i] - v2[0][i]).abs > tolerance test_b = false end end next if test_a != true next if test_b != true # edge_bounding_box = OpenStudio::BoundingBox.new # edge_bounding_box.addPoints(space.transformation() * v2[2].vertices) # if not edge_bounding_box.intersects(bounding_box) doesn't seem to work reliably, writing custom code to check point_one = OpenStudio::Point3d.new(v2[0][0], v2[0][1], v2[0][2]) point_one = (space.transformation * point_one) point_two = OpenStudio::Point3d.new(v2[1][0], v2[1][1], v2[1][2]) point_two = (space.transformation * point_two) if !bounding_box.nil? && (v2[3] == 'Adiabatic') on_bounding_box = false if ((bounding_box.minX.to_f - point_one.x).abs < tolerance) && ((bounding_box.minX.to_f - point_two.x).abs < tolerance) on_bounding_box = true elsif ((bounding_box.maxX.to_f - point_one.x).abs < tolerance) && ((bounding_box.maxX.to_f - point_two.x).abs < tolerance) on_bounding_box = true elsif ((bounding_box.minY.to_f - point_one.y).abs < tolerance) && ((bounding_box.minY.to_f - point_two.y).abs < tolerance) on_bounding_box = true elsif ((bounding_box.maxY.to_f - point_one.y).abs < tolerance) && ((bounding_box.maxY.to_f - point_two.y).abs < tolerance) on_bounding_box = true end # if not edge_bounding_box.intersects(bounding_box) doesn't seem to work reliably, writing custom code to check # todo - this is basic check for adiabatic party walls and won't catch all situations. Can be made more robust in the future if on_bounding_box == true length = OpenStudio::Vector3d.new(point_one - point_two).length party_walls << v2[2] length_ip_display = OpenStudio.convert(length, 'm', 'ft').get.round(2) runner.registerInfo(" * #{v2[2].name} has an adiabatic boundary condition and sits in plane with the building bounding box. Adding #{length_ip_display} (ft) to perimeter length of #{story.name} for this surface, assuming it is a party wall.") elsif space.multiplier == 1 length = OpenStudio::Vector3d.new(point_one - point_two).length party_walls << v2[2] length_ip_display = OpenStudio.convert(length, 'm', 'ft').get.round(2) runner.registerInfo(" * #{v2[2].name} has an adiabatic boundary condition and is in a zone with a multiplier of 1. Adding #{length_ip_display} (ft) to perimeter length of #{story.name} for this surface, assuming it is a party wall.") else length = 0 end else length = OpenStudio::Vector3d.new(point_one - point_two).length end if optional_multiplier_adjustment.nil? perimeter += length else # adjust for multiplier non_story_multiplier = space.multiplier / optional_multiplier_adjustment.to_f perimeter += length * non_story_multiplier end end end end return { perimeter: perimeter, party_walls: party_walls } end # currently takes in model and checks for edges shared by a ground exposed floor and exterior exposed wall. Later could be updated for a specific story independent of floor boundary condition. # todo - this doesn't catch walls that are split that sit above floor surfaces that are not (e.g. main corridoor in secondary school model) # todo - also odd with multi-height spaces def self.calculate_perimeter(model) perimeter = 0 model.getSpaces.each do |space| # counter to use later edge_hash = {} edge_counter = 0 space.surfaces.each do |surface| # get vertices vertex_hash = {} vertex_counter = 0 surface.vertices.each do |vertex| vertex_counter += 1 vertex_hash[vertex_counter] = [vertex.x, vertex.y, vertex.z] end # make edges counter = 0 vertex_hash.each do |k, v| edge_counter += 1 counter += 1 if vertex_hash.size != counter edge_hash[edge_counter] = [v, vertex_hash[counter + 1], surface, surface.outsideBoundaryCondition, surface.surfaceType] else # different code for wrap around vertex edge_hash[edge_counter] = [v, vertex_hash[1], surface, surface.outsideBoundaryCondition, surface.surfaceType] end end end # check edges for matches (need opposite vertices and proper boundary conditions) edge_hash.each do |k1, v1| next if v1[3] != 'Ground' # skip if not ground exposed floor next if v1[4] != 'Floor' edge_hash.each do |k2, v2| next if v2[3] != 'Outdoors' # skip if not exterior exposed wall (todo - update to handle basement) next if v2[4] != 'Wall' # see if edges have same geometry # found cases where the two lines below removed edges and resulted in lower than actual perimeter. Added new code with tolerance. # next if not v1[0] == v2[1] # next if not same geometry reversed # next if not v1[1] == v2[0] # these are three item array's add in tollerance for each array entry tolerance = 0.0001 test_a = true test_b = true 3.times.each do |i| if (v1[0][i] - v2[1][i]).abs > tolerance test_a = false end if (v1[1][i] - v2[0][i]).abs > tolerance test_b = false end end next if test_a != true next if test_b != true point_one = OpenStudio::Point3d.new(v1[0][0], v1[0][1], v1[0][2]) point_two = OpenStudio::Point3d.new(v1[1][0], v1[1][1], v1[1][2]) length = OpenStudio::Vector3d.new(point_one - point_two).length perimeter += length end end end return perimeter end end