# Ruby OpenAI [![Gem Version](https://img.shields.io/gem/v/ruby-openai.svg)](https://rubygems.org/gems/ruby-openai) [![GitHub license](https://img.shields.io/badge/license-MIT-blue.svg)](https://github.com/alexrudall/ruby-openai/blob/main/LICENSE.txt) [![CircleCI Build Status](https://circleci.com/gh/alexrudall/ruby-openai.svg?style=shield)](https://circleci.com/gh/alexrudall/ruby-openai) Use the [OpenAI API](https://openai.com/blog/openai-api/) with Ruby! 馃馃┑ Stream text with GPT-4, transcribe and translate audio with Whisper, or create images with DALL路E... [馃殺 Hire me](https://peaceterms.com?utm_source=ruby-openai&utm_medium=readme&utm_id=26072023) | [馃幃 Ruby AI Builders Discord](https://discord.gg/k4Uc224xVD) | [馃惁 Twitter](https://twitter.com/alexrudall) | [馃 Anthropic Gem](https://github.com/alexrudall/anthropic) | [馃殏 Midjourney Gem](https://github.com/alexrudall/midjourney) # Table of Contents - [Ruby OpenAI](#ruby-openai) - [Table of Contents](#table-of-contents) - [Installation](#installation) - [Bundler](#bundler) - [Gem install](#gem-install) - [Usage](#usage) - [Quickstart](#quickstart) - [With Config](#with-config) - [Custom timeout or base URI](#custom-timeout-or-base-uri) - [Extra Headers per Client](#extra-headers-per-client) - [Verbose Logging](#verbose-logging) - [Azure](#azure) - [Counting Tokens](#counting-tokens) - [Models](#models) - [Examples](#examples) - [Chat](#chat) - [Streaming Chat](#streaming-chat) - [Vision](#vision) - [JSON Mode](#json-mode) - [Functions](#functions) - [Edits](#edits) - [Embeddings](#embeddings) - [Files](#files) - [Finetunes](#finetunes) - [Assistants](#assistants) - [Threads and Messages](#threads-and-messages) - [Runs](#runs) - [Runs involving function tools](#runs-involving-function-tools) - [Image Generation](#image-generation) - [DALL路E 2](#dalle-2) - [DALL路E 3](#dalle-3) - [Image Edit](#image-edit) - [Image Variations](#image-variations) - [Moderations](#moderations) - [Whisper](#whisper) - [Translate](#translate) - [Transcribe](#transcribe) - [Speech](#speech) - [Errors](#errors) - [Development](#development) - [Release](#release) - [Contributing](#contributing) - [License](#license) - [Code of Conduct](#code-of-conduct) ## Installation ### Bundler Add this line to your application's Gemfile: ```ruby gem "ruby-openai" ``` And then execute: ```bash $ bundle install ``` ### Gem install Or install with: ```bash $ gem install ruby-openai ``` and require with: ```ruby require "openai" ``` ## Usage - Get your API key from [https://platform.openai.com/account/api-keys](https://platform.openai.com/account/api-keys) - If you belong to multiple organizations, you can get your Organization ID from [https://platform.openai.com/account/org-settings](https://platform.openai.com/account/org-settings) ### Quickstart For a quick test you can pass your token directly to a new client: ```ruby client = OpenAI::Client.new(access_token: "access_token_goes_here") ``` ### With Config For a more robust setup, you can configure the gem with your API keys, for example in an `openai.rb` initializer file. Never hardcode secrets into your codebase - instead use something like [dotenv](https://github.com/motdotla/dotenv) to pass the keys safely into your environments. ```ruby OpenAI.configure do |config| config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN") config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional. end ``` Then you can create a client like this: ```ruby client = OpenAI::Client.new ``` You can still override the config defaults when making new clients; any options not included will fall back to any global config set with OpenAI.configure. e.g. in this example the organization_id, request_timeout, etc. will fallback to any set globally using OpenAI.configure, with only the access_token overridden: ```ruby client = OpenAI::Client.new(access_token: "access_token_goes_here") ``` #### Custom timeout or base URI The default timeout for any request using this library is 120 seconds. You can change that by passing a number of seconds to the `request_timeout` when initializing the client. You can also change the base URI used for all requests, eg. to use observability tools like [Helicone](https://docs.helicone.ai/quickstart/integrate-in-one-line-of-code), and add arbitrary other headers e.g. for [openai-caching-proxy-worker](https://github.com/6/openai-caching-proxy-worker): ```ruby client = OpenAI::Client.new( access_token: "access_token_goes_here", uri_base: "https://oai.hconeai.com/", request_timeout: 240, extra_headers: { "X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl "X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache "Helicone-Auth": "Bearer HELICONE_API_KEY", # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy "helicone-stream-force-format" => "true", # Use this with Helicone otherwise streaming drops chunks # https://github.com/alexrudall/ruby-openai/issues/251 } ) ``` or when configuring the gem: ```ruby OpenAI.configure do |config| config.access_token = ENV.fetch("OPENAI_ACCESS_TOKEN") config.organization_id = ENV.fetch("OPENAI_ORGANIZATION_ID") # Optional config.uri_base = "https://oai.hconeai.com/" # Optional config.request_timeout = 240 # Optional config.extra_headers = { "X-Proxy-TTL" => "43200", # For https://github.com/6/openai-caching-proxy-worker#specifying-a-cache-ttl "X-Proxy-Refresh": "true", # For https://github.com/6/openai-caching-proxy-worker#refreshing-the-cache "Helicone-Auth": "Bearer HELICONE_API_KEY" # For https://docs.helicone.ai/getting-started/integration-method/openai-proxy } # Optional end ``` #### Extra Headers per Client You can dynamically pass headers per client object, which will be merged with any headers set globally with OpenAI.configure: ```ruby client = OpenAI::Client.new(access_token: "access_token_goes_here") client.add_headers("X-Proxy-TTL" => "43200") ``` #### Verbose Logging You can pass [Faraday middleware](https://lostisland.github.io/faraday/#/middleware/index) to the client in a block, eg. to enable verbose logging with Ruby's [Logger](https://ruby-doc.org/3.2.2/stdlibs/logger/Logger.html): ```ruby client = OpenAI::Client.new do |f| f.response :logger, Logger.new($stdout), bodies: true end ``` #### Azure To use the [Azure OpenAI Service](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/) API, you can configure the gem like this: ```ruby OpenAI.configure do |config| config.access_token = ENV.fetch("AZURE_OPENAI_API_KEY") config.uri_base = ENV.fetch("AZURE_OPENAI_URI") config.api_type = :azure config.api_version = "2023-03-15-preview" end ``` where `AZURE_OPENAI_URI` is e.g. `https://custom-domain.openai.azure.com/openai/deployments/gpt-35-turbo` ### Counting Tokens OpenAI parses prompt text into [tokens](https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them), which are words or portions of words. (These tokens are unrelated to your API access_token.) Counting tokens can help you estimate your [costs](https://openai.com/pricing). It can also help you ensure your prompt text size is within the max-token limits of your model's context window, and choose an appropriate [`max_tokens`](https://platform.openai.com/docs/api-reference/chat/create#chat/create-max_tokens) completion parameter so your response will fit as well. To estimate the token-count of your text: ```ruby OpenAI.rough_token_count("Your text") ``` If you need a more accurate count, try [tiktoken_ruby](https://github.com/IAPark/tiktoken_ruby). ### Models There are different models that can be used to generate text. For a full list and to retrieve information about a single model: ```ruby client.models.list client.models.retrieve(id: "text-ada-001") ``` #### Examples - [GPT-4 (limited beta)](https://platform.openai.com/docs/models/gpt-4) - gpt-4 (uses current version) - gpt-4-0314 - gpt-4-32k - [GPT-3.5](https://platform.openai.com/docs/models/gpt-3-5) - gpt-3.5-turbo - gpt-3.5-turbo-0301 - text-davinci-003 - [GPT-3](https://platform.openai.com/docs/models/gpt-3) - text-ada-001 - text-babbage-001 - text-curie-001 ### Chat GPT is a model that can be used to generate text in a conversational style. You can use it to [generate a response](https://platform.openai.com/docs/api-reference/chat/create) to a sequence of [messages](https://platform.openai.com/docs/guides/chat/introduction): ```ruby response = client.chat( parameters: { model: "gpt-3.5-turbo", # Required. messages: [{ role: "user", content: "Hello!"}], # Required. temperature: 0.7, }) puts response.dig("choices", 0, "message", "content") # => "Hello! How may I assist you today?" ``` #### Streaming Chat [Quick guide to streaming Chat with Rails 7 and Hotwire](https://gist.github.com/alexrudall/cb5ee1e109353ef358adb4e66631799d) You can stream from the API in realtime, which can be much faster and used to create a more engaging user experience. Pass a [Proc](https://ruby-doc.org/core-2.6/Proc.html) (or any object with a `#call` method) to the `stream` parameter to receive the stream of completion chunks as they are generated. Each time one or more chunks is received, the proc will be called once with each chunk, parsed as a Hash. If OpenAI returns an error, `ruby-openai` will raise a Faraday error. ```ruby client.chat( parameters: { model: "gpt-3.5-turbo", # Required. messages: [{ role: "user", content: "Describe a character called Anna!"}], # Required. temperature: 0.7, stream: proc do |chunk, _bytesize| print chunk.dig("choices", 0, "delta", "content") end }) # => "Anna is a young woman in her mid-twenties, with wavy chestnut hair that falls to her shoulders..." ``` Note: OpenAPI currently does not report token usage for streaming responses. To count tokens while streaming, try `OpenAI.rough_token_count` or [tiktoken_ruby](https://github.com/IAPark/tiktoken_ruby). We think that each call to the stream proc corresponds to a single token, so you can also try counting the number of calls to the proc to get the completion token count. #### Vision You can use the GPT-4 Vision model to generate a description of an image: ```ruby messages = [ { "type": "text", "text": "What鈥檚 in this image?"}, { "type": "image_url", "image_url": { "url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", }, } ] response = client.chat( parameters: { model: "gpt-4-vision-preview", # Required. messages: [{ role: "user", content: messages}], # Required. }) puts response.dig("choices", 0, "message", "content") # => "The image depicts a serene natural landscape featuring a long wooden boardwalk extending straight ahead" ``` #### JSON Mode You can set the response_format to ask for responses in JSON (at least for `gpt-3.5-turbo-1106`): ```ruby response = client.chat( parameters: { model: "gpt-3.5-turbo-1106", response_format: { type: "json_object" }, messages: [{ role: "user", content: "Hello! Give me some JSON please."}], temperature: 0.7, }) puts response.dig("choices", 0, "message", "content") { "name": "John", "age": 30, "city": "New York", "hobbies": ["reading", "traveling", "hiking"], "isStudent": false } ``` You can stream it as well! ```ruby response = client.chat( parameters: { model: "gpt-3.5-turbo-1106", messages: [{ role: "user", content: "Can I have some JSON please?"}], response_format: { type: "json_object" }, stream: proc do |chunk, _bytesize| print chunk.dig("choices", 0, "delta", "content") end }) { "message": "Sure, please let me know what specific JSON data you are looking for.", "JSON_data": { "example_1": { "key_1": "value_1", "key_2": "value_2", "key_3": "value_3" }, "example_2": { "key_4": "value_4", "key_5": "value_5", "key_6": "value_6" } } } ``` ### Functions You can describe and pass in functions and the model will intelligently choose to output a JSON object containing arguments to call those them. For example, if you want the model to use your method `get_current_weather` to get the current weather in a given location: ```ruby def get_current_weather(location:, unit: "fahrenheit") # use a weather api to fetch weather end response = client.chat( parameters: { model: "gpt-3.5-turbo-0613", messages: [ { "role": "user", "content": "What is the weather like in San Francisco?", }, ], tools: [ { type: "function", function: { name: "get_current_weather", description: "Get the current weather in a given location", parameters: { type: :object, properties: { location: { type: :string, description: "The city and state, e.g. San Francisco, CA", }, unit: { type: "string", enum: %w[celsius fahrenheit], }, }, required: ["location"], }, }, } ], }, ) message = response.dig("choices", 0, "message") if message["role"] == "assistant" && message["tool_calls"] function_name = message.dig("tool_calls", "function", "name") args = JSON.parse( message.dig("tool_calls", "function", "arguments"), { symbolize_names: true }, ) case function_name when "get_current_weather" get_current_weather(**args) end end # => "The weather is nice 馃尀" ``` ### Edits Send a string and some instructions for what to do to the string: ```ruby response = client.edits( parameters: { model: "text-davinci-edit-001", input: "What day of the wek is it?", instruction: "Fix the spelling mistakes" } ) puts response.dig("choices", 0, "text") # => What day of the week is it? ``` ### Embeddings You can use the embeddings endpoint to get a vector of numbers representing an input. You can then compare these vectors for different inputs to efficiently check how similar the inputs are. ```ruby response = client.embeddings( parameters: { model: "text-embedding-ada-002", input: "The food was delicious and the waiter..." } ) puts response.dig("data", 0, "embedding") # => Vector representation of your embedding ``` ### Files Put your data in a `.jsonl` file like this: ```json {"prompt":"Overjoyed with my new phone! ->", "completion":" positive"} {"prompt":"@lakers disappoint for a third straight night ->", "completion":" negative"} ``` and pass the path to `client.files.upload` to upload it to OpenAI, and then interact with it: ```ruby client.files.upload(parameters: { file: "path/to/sentiment.jsonl", purpose: "fine-tune" }) client.files.list client.files.retrieve(id: "file-123") client.files.content(id: "file-123") client.files.delete(id: "file-123") ``` ### Finetunes Upload your fine-tuning data in a `.jsonl` file as above and get its ID: ```ruby response = client.files.upload(parameters: { file: "path/to/sarcasm.jsonl", purpose: "fine-tune" }) file_id = JSON.parse(response.body)["id"] ``` You can then use this file ID to create a fine tuning job: ```ruby response = client.finetunes.create( parameters: { training_file: file_id, model: "gpt-3.5-turbo-0613" }) fine_tune_id = response["id"] ``` That will give you the fine-tune ID. If you made a mistake you can cancel the fine-tune model before it is processed: ```ruby client.finetunes.cancel(id: fine_tune_id) ``` You may need to wait a short time for processing to complete. Once processed, you can use list or retrieve to get the name of the fine-tuned model: ```ruby client.finetunes.list response = client.finetunes.retrieve(id: fine_tune_id) fine_tuned_model = response["fine_tuned_model"] ``` This fine-tuned model name can then be used in chat completions: ```ruby response = client.chat( parameters: { model: fine_tuned_model, messages: [{ role: "user", content: "I love Mondays!"}] } ) response.dig("choices", 0, "message", "content") ``` You can also capture the events for a job: ``` client.finetunes.list_events(id: fine_tune_id) ``` ### Assistants Assistants can call models to interact with threads and use tools to perform tasks (see [Assistant Overview](https://platform.openai.com/docs/assistants/overview)). To create a new assistant (see [API documentation](https://platform.openai.com/docs/api-reference/assistants/createAssistant)): ```ruby response = client.assistants.create( parameters: { model: "gpt-3.5-turbo-1106", # Retrieve via client.models.list. Assistants need 'gpt-3.5-turbo-1106' or later. name: "OpenAI-Ruby test assistant", description: nil, instructions: "You are a helpful assistant for coding a OpenAI API client using the OpenAI-Ruby gem.", tools: [ { type: 'retrieval' }, # Allow access to files attached using file_ids { type: 'code_interpreter' }, # Allow access to Python code interpreter ], "file_ids": ["file-123"], # See Files section above for how to upload files "metadata": { my_internal_version_id: '1.0.0' } }) assistant_id = response["id"] ``` Given an `assistant_id` you can `retrieve` the current field values: ```ruby client.assistants.retrieve(id: assistant_id) ``` You can get a `list` of all assistants currently available under the organization: ```ruby client.assistants.list ``` You can modify an existing assistant using the assistant's id (see [API documentation](https://platform.openai.com/docs/api-reference/assistants/modifyAssistant)): ```ruby response = client.assistants.modify( id: assistant_id, parameters: { name: "Modified Test Assistant for OpenAI-Ruby", metadata: { my_internal_version_id: '1.0.1' } }) ``` You can delete assistants: ``` client.assistants.delete(id: assistant_id) ``` ### Threads and Messages Once you have created an assistant as described above, you need to prepare a `Thread` of `Messages` for the assistant to work on (see [introduction on Assistants](https://platform.openai.com/docs/assistants/how-it-works)). For example, as an initial setup you could do: ```ruby # Create thread response = client.threads.create # Note: Once you create a thread, there is no way to list it # or recover it currently (as of 2023-12-10). So hold onto the `id` thread_id = response["id"] # Add initial message from user (see https://platform.openai.com/docs/api-reference/messages/createMessage) message_id = client.messages.create( thread_id: thread_id, parameters: { role: "user", # Required for manually created messages content: "Can you help me write an API library to interact with the OpenAI API please?" })["id"] # Retrieve individual message message = client.messages.retrieve(thread_id: thread_id, id: message_id) # Review all messages on the thread messages = client.messages.list(thread_id: thread_id) ``` To clean up after a thread is no longer needed: ```ruby # To delete the thread (and all associated messages): client.threads.delete(id: thread_id) client.messages.retrieve(thread_id: thread_id, id: message_id) # -> Fails after thread is deleted ``` ### Runs To submit a thread to be evaluated with the model of an assistant, create a `Run` as follows (Note: This is one place where OpenAI will take your money): ```ruby # Create run (will use instruction/model/tools from Assistant's definition) response = client.runs.create(thread_id: thread_id, parameters: { assistant_id: assistant_id }) run_id = response['id'] # Retrieve/poll Run to observe status response = client.runs.retrieve(id: run_id, thread_id: thread_id) status = response['status'] ``` The `status` response can include the following strings `queued`, `in_progress`, `requires_action`, `cancelling`, `cancelled`, `failed`, `completed`, or `expired` which you can handle as follows: ```ruby while true do response = client.runs.retrieve(id: run_id, thread_id: thread_id) status = response['status'] case status when 'queued', 'in_progress', 'cancelling' puts 'Sleeping' sleep 1 # Wait one second and poll again when 'completed' break # Exit loop and report result to user when 'requires_action' # Handle tool calls (see below) when 'cancelled', 'failed', 'expired' puts response['last_error'].inspect break # or `exit` else puts "Unknown status response: #{status}" end end ``` If the `status` response indicates that the `run` is `completed`, the associated `thread` will have one or more new `messages` attached: ```ruby # Either retrieve all messages in bulk again, or... messages = client.messages.list(thread_id: thread_id) # Note: as of 2023-12-11 adding limit or order options isn't working, yet # Alternatively retrieve the `run steps` for the run which link to the messages: run_steps = client.run_steps.list(thread_id: thread_id, run_id: run_id) new_message_ids = run_steps['data'].filter_map { |step| if step['type'] == 'message_creation' step.dig('step_details', "message_creation", "message_id") end # Ignore tool calls, because they don't create new messages. } # Retrieve the individual messages new_messages = new_message_ids.map { |msg_id| client.messages.retrieve(id: msg_id, thread_id: thread_id) } # Find the actual response text in the content array of the messages new_messages.each { |msg| msg['content'].each { |content_item| case content_item['type'] when 'text' puts content_item.dig('text', 'value') # Also handle annotations when 'image_file' # Use File endpoint to retrieve file contents via id id = content_item.dig('image_file', 'file_id') end } } ``` At any time you can list all runs which have been performed on a particular thread or are currently running (in descending/newest first order): ```ruby client.runs.list(thread_id: thread_id) ``` #### Runs involving function tools In case you are allowing the assistant to access `function` tools (they are defined in the same way as functions during chat completion), you might get a status code of `requires_action` when the assistant wants you to evaluate one or more function tools: ```ruby def get_current_weather(location:, unit: "celsius") # Your function code goes here if location =~ /San Francisco/i return unit == "celsius" ? "The weather is nice 馃尀 at 27掳C" : "The weather is nice 馃尀 at 80掳F" else return unit == "celsius" ? "The weather is icy 馃ザ at -5掳C" : "The weather is icy 馃ザ at 23掳F" end end if status == 'requires_action' tools_to_call = response.dig('required_action', 'submit_tool_outputs', 'tool_calls') my_tool_outputs = tools_to_call.map { |tool| # Call the functions based on the tool's name function_name = tool.dig('function', 'name') arguments = JSON.parse( tool.dig("function", "arguments"), { symbolize_names: true }, ) tool_output = case function_name when "get_current_weather" get_current_weather(**arguments) end { tool_call_id: tool['id'], output: tool_output } } client.runs.submit_tool_outputs(thread_id: thread_id, run_id: run_id, parameters: { tool_outputs: my_tool_outputs }) end ``` Note that you have 10 minutes to submit your tool output before the run expires. ### Image Generation Generate images using DALL路E 2 or DALL路E 3! #### DALL路E 2 For DALL路E 2 the size of any generated images must be one of `256x256`, `512x512` or `1024x1024` - if not specified the image will default to `1024x1024`. ```ruby response = client.images.generate(parameters: { prompt: "A baby sea otter cooking pasta wearing a hat of some sort", size: "256x256" }) puts response.dig("data", 0, "url") # => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..." ``` ![Ruby](https://i.ibb.co/6y4HJFx/img-d-Tx-Rf-RHj-SO5-Gho-Cbd8o-LJvw3.png) #### DALL路E 3 For DALL路E 3 the size of any generated images must be one of `1024x1024`, `1024x1792` or `1792x1024`. Additionally the quality of the image can be specified to either `standard` or `hd`. ```ruby response = client.images.generate(parameters: { prompt: "A springer spaniel cooking pasta wearing a hat of some sort", size: "1024x1792", quality: "standard" }) puts response.dig("data", 0, "url") # => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..." ``` ![Ruby](https://i.ibb.co/z2tCKv9/img-Goio0l-S0i81-NUNa-BIx-Eh-CT6-L.png) ### Image Edit Fill in the transparent part of an image, or upload a mask with transparent sections to indicate the parts of an image that can be changed according to your prompt... ```ruby response = client.images.edit(parameters: { prompt: "A solid red Ruby on a blue background", image: "image.png", mask: "mask.png" }) puts response.dig("data", 0, "url") # => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..." ``` ![Ruby](https://i.ibb.co/sWVh3BX/dalle-ruby.png) ### Image Variations Create n variations of an image. ```ruby response = client.images.variations(parameters: { image: "image.png", n: 2 }) puts response.dig("data", 0, "url") # => "https://oaidalleapiprodscus.blob.core.windows.net/private/org-Rf437IxKhh..." ``` ![Ruby](https://i.ibb.co/TWJLP2y/img-miu-Wk-Nl0-QNy-Xtj-Lerc3c0l-NW.png) ![Ruby](https://i.ibb.co/ScBhDGB/img-a9-Be-Rz-Au-Xwd-AV0-ERLUTSTGdi.png) ### Moderations Pass a string to check if it violates OpenAI's Content Policy: ```ruby response = client.moderations(parameters: { input: "I'm worried about that." }) puts response.dig("results", 0, "category_scores", "hate") # => 5.505014632944949e-05 ``` ### Whisper Whisper is a speech to text model that can be used to generate text based on audio files: #### Translate The translations API takes as input the audio file in any of the supported languages and transcribes the audio into English. ```ruby response = client.audio.translate( parameters: { model: "whisper-1", file: File.open("path_to_file", "rb"), }) puts response["text"] # => "Translation of the text" ``` #### Transcribe The transcriptions API takes as input the audio file you want to transcribe and returns the text in the desired output file format. You can pass the language of the audio file to improve transcription quality. Supported languages are listed [here](https://github.com/openai/whisper#available-models-and-languages). You need to provide the language as an ISO-639-1 code, eg. "en" for English or "ne" for Nepali. You can look up the codes [here](https://en.wikipedia.org/wiki/List_of_ISO_639_language_codes). ```ruby response = client.audio.transcribe( parameters: { model: "whisper-1", file: File.open("path_to_file", "rb"), language: "en" # Optional. }) puts response["text"] # => "Transcription of the text" ``` #### Speech The speech API takes as input the text and a voice and returns the content of an audio file you can listen to. ```ruby response = client.audio.speech( parameters: { model: "tts-1", input: "This is a speech test!", voice: "alloy" } ) File.binwrite('demo.mp3', response) # => mp3 file that plays: "This is a speech test!" ``` ### Errors HTTP errors can be caught like this: ``` begin OpenAI::Client.new.models.retrieve(id: "text-ada-001") rescue Faraday::Error => e raise "Got a Faraday error: #{e}" end ``` ## Development After checking out the repo, run `bin/setup` to install dependencies. You can run `bin/console` for an interactive prompt that will allow you to experiment. To install this gem onto your local machine, run `bundle exec rake install`. To run all tests, execute the command `bundle exec rake`, which will also run the linter (Rubocop). This repository uses [VCR](https://github.com/vcr/vcr) to log API requests. > [!WARNING] > If you have an `OPENAI_ACCESS_TOKEN` in your `ENV`, running the specs will use this to run the specs against the actual API, which will be slow and cost you money - 2 cents or more! Remove it from your environment with `unset` or similar if you just want to run the specs against the stored VCR responses. ## Release First run the specs without VCR so they actually hit the API. This will cost 2 cents or more. Set OPENAI_ACCESS_TOKEN in your environment or pass it in like this: ``` OPENAI_ACCESS_TOKEN=123abc bundle exec rspec ``` Then update the version number in `version.rb`, update `CHANGELOG.md`, run `bundle install` to update Gemfile.lock, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org). ## Contributing Bug reports and pull requests are welcome on GitHub at . This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [code of conduct](https://github.com/alexrudall/ruby-openai/blob/main/CODE_OF_CONDUCT.md). ## License The gem is available as open source under the terms of the [MIT License](https://opensource.org/licenses/MIT). ## Code of Conduct Everyone interacting in the Ruby OpenAI project's codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/alexrudall/ruby-openai/blob/main/CODE_OF_CONDUCT.md).