# frozen_string_literal: true require 'rumale/linear_model/base_linear_model' require 'rumale/base/regressor' module Rumale module LinearModel # SVR is a class that implements Support Vector Regressor # with mini-batch stochastic gradient descent optimization. # # Rumale::SVM provides linear and kernel support vector regressor based on LIBLINEAR and LIBSVM. # If you prefer execution speed, you should use Rumale::SVM::LinearSVR. # https://github.com/yoshoku/rumale-svm # # @example # estimator = # Rumale::LinearModel::SVR.new(reg_param: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, random_seed: 1) # estimator.fit(training_samples, traininig_target_values) # results = estimator.predict(testing_samples) # # *Reference* # 1. S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007. class SVR < BaseLinearModel include Base::Regressor # Return the weight vector for SVR. # @return [Numo::DFloat] (shape: [n_outputs, n_features]) attr_reader :weight_vec # Return the bias term (a.k.a. intercept) for SVR. # @return [Numo::DFloat] (shape: [n_outputs]) attr_reader :bias_term # Return the random generator for performing random sampling. # @return [Random] attr_reader :rng # Create a new regressor with Support Vector Machine by the SGD optimization. # # @param reg_param [Float] The regularization parameter. # @param fit_bias [Boolean] The flag indicating whether to fit the bias term. # @param bias_scale [Float] The scale of the bias term. # @param epsilon [Float] The margin of tolerance. # @param max_iter [Integer] The maximum number of iterations. # @param batch_size [Integer] The size of the mini batches. # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate. # If nil is given, Nadam is used. # @param n_jobs [Integer] The number of jobs for running the fit method in parallel. # If nil is given, the method does not execute in parallel. # If zero or less is given, it becomes equal to the number of processors. # This parameter is ignored if the Parallel gem is not loaded. # @param random_seed [Integer] The seed value using to initialize the random generator. def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1, max_iter: 1000, batch_size: 20, optimizer: nil, n_jobs: nil, random_seed: nil) check_params_numeric(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon, max_iter: max_iter, batch_size: batch_size) check_params_boolean(fit_bias: fit_bias) check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed) check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon, max_iter: max_iter, batch_size: batch_size) keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h keywd_args.delete(:epsilon) super(keywd_args) @params[:epsilon] = epsilon end # Fit the model with given training data. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model. # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model. # @return [SVR] The learned regressor itself. def fit(x, y) x = check_convert_sample_array(x) y = check_convert_tvalue_array(y) check_sample_tvalue_size(x, y) n_outputs = y.shape[1].nil? ? 1 : y.shape[1] n_features = x.shape[1] if n_outputs > 1 @weight_vec = Numo::DFloat.zeros(n_outputs, n_features) @bias_term = Numo::DFloat.zeros(n_outputs) if enable_parallel? models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) } n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = models[n] } else n_outputs.times { |n| @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) } end else @weight_vec, @bias_term = partial_fit(x, y) end self end # Predict values for samples. # # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values. # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample. def predict(x) x = check_convert_sample_array(x) x.dot(@weight_vec.transpose) + @bias_term end # Dump marshal data. # @return [Hash] The marshal data about SVR. def marshal_dump { params: @params, weight_vec: @weight_vec, bias_term: @bias_term, rng: @rng } end # Load marshal data. # @return [nil] def marshal_load(obj) @params = obj[:params] @weight_vec = obj[:weight_vec] @bias_term = obj[:bias_term] @rng = obj[:rng] nil end private def calc_loss_gradient(x, y, weight) z = x.dot(weight) grad = Numo::DFloat.zeros(@params[:batch_size]) grad[(z - y).gt(@params[:epsilon]).where] = 1 grad[(y - z).gt(@params[:epsilon]).where] = -1 grad end end end end