= Cheat Sheet == Open a database require 'rubygems' require 'sequel' DB = Sequel.sqlite('my_blog.db') DB = Sequel.connect('postgres://user:password@localhost/my_db') DB = Sequel.postgres('my_db', :user => 'user', :password => 'password', :host => 'localhost') DB = Sequel.ado('mydb') == Open an SQLite memory database Without a filename argument, the sqlite adapter will setup a new sqlite database in memory. DB = Sequel.sqlite == Logging SQL statements require 'logger' DB = Sequel.sqlite '', :loggers => [Logger.new($stdout)] # or DB.loggers << Logger.new(...) == Using raw SQL DB.run "CREATE TABLE users (name VARCHAR(255) NOT NULL, age INT(3) NOT NULL)" dataset = DB["SELECT age FROM users WHERE name = ?", name] dataset.map(:age) DB.fetch("SELECT name FROM users") do |row| p row[:name] end == Create a dataset dataset = DB[:items] dataset = DB.from(:items) == Most dataset methods are chainable dataset = DB[:managers].where(:salary => 5000..10000).order(:name, :department) == Insert rows dataset.insert(:name => 'Sharon', :grade => 50) == Retrieve rows dataset.each{|r| p r} dataset.all # => [{...}, {...}, ...] dataset.first # => {...} == Update/Delete rows dataset.filter(~:active).delete dataset.filter('price < ?', 100).update(:active => true) == Datasets are Enumerable dataset.map{|r| r[:name]} dataset.map(:name) # same as above dataset.inject(0){|sum, r| sum + r[:value]} dataset.sum(:value) # same as above == Filtering (see also doc/dataset_filtering.rdoc) === Equality dataset.filter(:name => 'abc') dataset.filter('name = ?', 'abc') === Inequality dataset.filter{value > 100} dataset.exclude{value <= 100} === Inclusion dataset.filter(:value => 50..100) dataset.where{(value >= 50) & (value <= 100)} dataset.where('value IN ?', [50,75,100]) dataset.where(:value=>[50,75,100]) dataset.where(:id=>other_dataset.select(:other_id)) === Subselects as scalar values dataset.where('price > (SELECT avg(price) + 100 FROM table)') dataset.filter{price > dataset.select(avg(price) + 100)} === LIKE/Regexp DB[:items].filter(:name.like('AL%')) DB[:items].filter(:name => /^AL/) === AND/OR/NOT DB[:items].filter{(x > 5) & (y > 10)}.sql # SELECT * FROM items WHERE ((x > 5) AND (y > 10)) DB[:items].filter({:x => 1, :y => 2}.sql_or & ~{:z => 3}).sql # SELECT * FROM items WHERE (((x = 1) OR (y = 2)) AND (z != 3)) === Mathematical operators DB[:items].filter((:x + :y) > :z).sql # SELECT * FROM items WHERE ((x + y) > z) DB[:items].filter{price - 100 < avg(price)}.sql # SELECT * FROM items WHERE ((price - 100) < avg(price)) == Ordering dataset.order(:kind) dataset.reverse_order(:kind) dataset.order(:kind.desc, :name) == Limit/Offset dataset.limit(30) # LIMIT 30 dataset.limit(30, 10) # LIMIT 30 OFFSET 10 == Joins DB[:items].left_outer_join(:categories, :id => :category_id).sql # SELECT * FROM items LEFT OUTER JOIN categories ON categories.id = items.category_id DB[:items].join(:categories, :id => :category_id).join(:groups, :id => :items__group_id) # SELECT * FROM items INNER JOIN categories ON categories.id = items.category_id INNER JOIN groups ON groups.id = items.group_id == Aggregate functions methods dataset.count #=> record count dataset.max(:price) dataset.min(:price) dataset.avg(:price) dataset.sum(:stock) dataset.group_and_count(:category) dataset.group(:category).select(:category, :AVG.sql_function(:price)) == SQL Functions / Literals dataset.update(:updated_at => :NOW.sql_function) dataset.update(:updated_at => 'NOW()'.lit) dataset.update(:updated_at => "DateValue('1/1/2001')".lit) dataset.update(:updated_at => :DateValue.sql_function('1/1/2001')) == Schema Manipulation DB.create_table :items do primary_key :id String :name, :unique => true, :null => false TrueClass :active, :default => true foreign_key :category_id, :categories DateTime :created_at index :created_at end DB.drop_table :items DB.create_table :test do String :zipcode enum :system, :elements => ['mac', 'linux', 'windows'] end == Aliasing DB[:items].select(:name.as(:item_name)) DB[:items].select(:name___item_name) DB[:items___items_table].select(:items_table__name___item_name) # SELECT items_table.name AS item_name FROM items AS items_table == Transactions DB.transaction do dataset.insert(:first_name => 'Inigo', :last_name => 'Montoya') dataset.insert(:first_name => 'Farm', :last_name => 'Boy') end # Either both are inserted or neither are inserted Database#transaction is re-entrant: DB.transaction do # BEGIN issued only here DB.transaction dataset << {:first_name => 'Inigo', :last_name => 'Montoya'} end end # COMMIT issued only here Transactions are aborted if an error is raised: DB.transaction do raise "some error occurred" end # ROLLBACK issued and the error is re-raised Transactions can also be aborted by raising Sequel::Rollback: DB.transaction do raise(Sequel::Rollback) if something_bad_happened end # ROLLBACK issued and no error raised Savepoints can be used if the database supports it: DB.transaction do dataset << {:first_name => 'Farm', :last_name => 'Boy'} # Inserted DB.transaction(:savepoint=>true) # This savepoint is rolled back dataset << {:first_name => 'Inigo', :last_name => 'Montoya'} # Not inserted raise(Sequel::Rollback) if something_bad_happened end dataset << {:first_name => 'Prince', :last_name => 'Humperdink'} # Inserted end == Miscellaneous: dataset.sql # "SELECT * FROM items" dataset.delete_sql # "DELETE FROM items" dataset.where(:name => 'sequel').exists # "EXISTS ( SELECT * FROM items WHERE name = 'sequel' )" dataset.columns #=> array of columns in the result set, does a SELECT DB.schema(:items) => [[:id, {:type=>:integer, ...}], [:name, {:type=>:string, ...}], ...]