# encoding: utf-8 # Code generated by Microsoft (R) AutoRest Code Generator 0.17.0.0 # Changes may cause incorrect behavior and will be lost if the code is # regenerated. module Azure::ARM::MachineLearning # # These APIs allow end users to operate on Azure Machine Learning Web # Services resources. They support the following operations: # class WebServices include Azure::ARM::MachineLearning::Models include MsRestAzure # # Creates and initializes a new instance of the WebServices class. # @param client service class for accessing basic functionality. # def initialize(client) @client = client end # @return [AzureMLWebServicesManagementClient] reference to the AzureMLWebServicesManagementClient attr_reader :client # # Creates or updates a new Azure ML web service or update an existing one. # # @param create_or_update_payload [WebService] The payload to create or update # the Azure ML web service. # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [WebService] operation results. # def create_or_update(create_or_update_payload, resource_group_name, web_service_name, custom_headers = nil) response = create_or_update_async(create_or_update_payload, resource_group_name, web_service_name, custom_headers).value! response.body unless response.nil? end # # @param create_or_update_payload [WebService] The payload to create or update # the Azure ML web service. # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [Concurrent::Promise] promise which provides async access to http # response. # def create_or_update_async(create_or_update_payload, resource_group_name, web_service_name, custom_headers = nil) # Send request promise = begin_create_or_update_async(create_or_update_payload, resource_group_name, web_service_name, custom_headers) promise = promise.then do |response| # Defining deserialization method. deserialize_method = lambda do |parsed_response| result_mapper = WebService.mapper() parsed_response = @client.deserialize(result_mapper, parsed_response, 'parsed_response') end # Waiting for response. @client.get_long_running_operation_result(response, deserialize_method) end promise end # # Creates or updates a new Azure ML web service or update an existing one. # # @param create_or_update_payload [WebService] The payload to create or update # the Azure ML web service. # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [WebService] operation results. # def begin_create_or_update(create_or_update_payload, resource_group_name, web_service_name, custom_headers = nil) response = begin_create_or_update_async(create_or_update_payload, resource_group_name, web_service_name, custom_headers).value! response.body unless response.nil? end # # Creates or updates a new Azure ML web service or update an existing one. # # @param create_or_update_payload [WebService] The payload to create or update # the Azure ML web service. # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [MsRestAzure::AzureOperationResponse] HTTP response information. # def begin_create_or_update_with_http_info(create_or_update_payload, resource_group_name, web_service_name, custom_headers = nil) begin_create_or_update_async(create_or_update_payload, resource_group_name, web_service_name, custom_headers).value! end # # Creates or updates a new Azure ML web service or update an existing one. # # @param create_or_update_payload [WebService] The payload to create or update # the Azure ML web service. # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param [Hash{String => String}] A hash of custom headers that will be added # to the HTTP request. # # @return [Concurrent::Promise] Promise object which holds the HTTP response. # def begin_create_or_update_async(create_or_update_payload, resource_group_name, web_service_name, custom_headers = nil) fail ArgumentError, 'create_or_update_payload is nil' if create_or_update_payload.nil? fail ArgumentError, '@client.subscription_id is nil' if @client.subscription_id.nil? fail ArgumentError, 'resource_group_name is nil' if resource_group_name.nil? fail ArgumentError, 'web_service_name is nil' if web_service_name.nil? fail ArgumentError, '@client.api_version is nil' if @client.api_version.nil? request_headers = {} # Set Headers request_headers['x-ms-client-request-id'] = SecureRandom.uuid request_headers['accept-language'] = @client.accept_language unless @client.accept_language.nil? request_headers['Content-Type'] = 'application/json; charset=utf-8' # Serialize Request request_mapper = WebService.mapper() request_content = @client.serialize(request_mapper, create_or_update_payload, 'create_or_update_payload') request_content = request_content != nil ? JSON.generate(request_content, quirks_mode: true) : nil path_template = '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearning/webServices/{webServiceName}' request_url = @base_url || @client.base_url options = { middlewares: [[MsRest::RetryPolicyMiddleware, times: 3, retry: 0.02], [:cookie_jar]], path_params: {'subscriptionId' => @client.subscription_id,'resourceGroupName' => resource_group_name,'webServiceName' => web_service_name}, query_params: {'api-version' => @client.api_version}, body: request_content, headers: request_headers.merge(custom_headers || {}), base_url: request_url } promise = @client.make_request_async(:put, path_template, options) promise = promise.then do |result| http_response = result.response status_code = http_response.status response_content = http_response.body unless status_code == 200 || status_code == 201 error_model = JSON.load(response_content) fail MsRestAzure::AzureOperationError.new(result.request, http_response, error_model) end result.request_id = http_response['x-ms-request-id'] unless http_response['x-ms-request-id'].nil? # Deserialize Response if status_code == 200 begin parsed_response = response_content.to_s.empty? ? nil : JSON.load(response_content) result_mapper = WebService.mapper() result.body = @client.deserialize(result_mapper, parsed_response, 'result.body') rescue Exception => e fail MsRest::DeserializationError.new('Error occurred in deserializing the response', e.message, e.backtrace, result) end end # Deserialize Response if status_code == 201 begin parsed_response = response_content.to_s.empty? ? nil : JSON.load(response_content) result_mapper = WebService.mapper() result.body = @client.deserialize(result_mapper, parsed_response, 'result.body') rescue Exception => e fail MsRest::DeserializationError.new('Error occurred in deserializing the response', e.message, e.backtrace, result) end end result end promise.execute end # # Retrieve an Azure ML web service definition by its subscription, resource # group and name. # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [WebService] operation results. # def get(resource_group_name, web_service_name, custom_headers = nil) response = get_async(resource_group_name, web_service_name, custom_headers).value! response.body unless response.nil? end # # Retrieve an Azure ML web service definition by its subscription, resource # group and name. # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [MsRestAzure::AzureOperationResponse] HTTP response information. # def get_with_http_info(resource_group_name, web_service_name, custom_headers = nil) get_async(resource_group_name, web_service_name, custom_headers).value! end # # Retrieve an Azure ML web service definition by its subscription, resource # group and name. # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param [Hash{String => String}] A hash of custom headers that will be added # to the HTTP request. # # @return [Concurrent::Promise] Promise object which holds the HTTP response. # def get_async(resource_group_name, web_service_name, custom_headers = nil) fail ArgumentError, '@client.subscription_id is nil' if @client.subscription_id.nil? fail ArgumentError, 'resource_group_name is nil' if resource_group_name.nil? fail ArgumentError, 'web_service_name is nil' if web_service_name.nil? fail ArgumentError, '@client.api_version is nil' if @client.api_version.nil? request_headers = {} # Set Headers request_headers['x-ms-client-request-id'] = SecureRandom.uuid request_headers['accept-language'] = @client.accept_language unless @client.accept_language.nil? path_template = '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearning/webServices/{webServiceName}' request_url = @base_url || @client.base_url options = { middlewares: [[MsRest::RetryPolicyMiddleware, times: 3, retry: 0.02], [:cookie_jar]], path_params: {'subscriptionId' => @client.subscription_id,'resourceGroupName' => resource_group_name,'webServiceName' => web_service_name}, query_params: {'api-version' => @client.api_version}, headers: request_headers.merge(custom_headers || {}), base_url: request_url } promise = @client.make_request_async(:get, path_template, options) promise = promise.then do |result| http_response = result.response status_code = http_response.status response_content = http_response.body unless status_code == 200 error_model = JSON.load(response_content) fail MsRestAzure::AzureOperationError.new(result.request, http_response, error_model) end result.request_id = http_response['x-ms-request-id'] unless http_response['x-ms-request-id'].nil? # Deserialize Response if status_code == 200 begin parsed_response = response_content.to_s.empty? ? nil : JSON.load(response_content) result_mapper = WebService.mapper() result.body = @client.deserialize(result_mapper, parsed_response, 'result.body') rescue Exception => e fail MsRest::DeserializationError.new('Error occurred in deserializing the response', e.message, e.backtrace, result) end end result end promise.execute end # # Patch an existing Azure ML web service resource. # # @param patch_payload [WebService] The payload to patch the Azure ML web # service with. # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [WebService] operation results. # def patch(patch_payload, resource_group_name, web_service_name, custom_headers = nil) response = patch_async(patch_payload, resource_group_name, web_service_name, custom_headers).value! response.body unless response.nil? end # # @param patch_payload [WebService] The payload to patch the Azure ML web # service with. # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [Concurrent::Promise] promise which provides async access to http # response. # def patch_async(patch_payload, resource_group_name, web_service_name, custom_headers = nil) # Send request promise = begin_patch_async(patch_payload, resource_group_name, web_service_name, custom_headers) promise = promise.then do |response| # Defining deserialization method. deserialize_method = lambda do |parsed_response| result_mapper = WebService.mapper() parsed_response = @client.deserialize(result_mapper, parsed_response, 'parsed_response') end # Waiting for response. @client.get_long_running_operation_result(response, deserialize_method) end promise end # # Patch an existing Azure ML web service resource. # # @param patch_payload [WebService] The payload to patch the Azure ML web # service with. # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [WebService] operation results. # def begin_patch(patch_payload, resource_group_name, web_service_name, custom_headers = nil) response = begin_patch_async(patch_payload, resource_group_name, web_service_name, custom_headers).value! response.body unless response.nil? end # # Patch an existing Azure ML web service resource. # # @param patch_payload [WebService] The payload to patch the Azure ML web # service with. # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [MsRestAzure::AzureOperationResponse] HTTP response information. # def begin_patch_with_http_info(patch_payload, resource_group_name, web_service_name, custom_headers = nil) begin_patch_async(patch_payload, resource_group_name, web_service_name, custom_headers).value! end # # Patch an existing Azure ML web service resource. # # @param patch_payload [WebService] The payload to patch the Azure ML web # service with. # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param [Hash{String => String}] A hash of custom headers that will be added # to the HTTP request. # # @return [Concurrent::Promise] Promise object which holds the HTTP response. # def begin_patch_async(patch_payload, resource_group_name, web_service_name, custom_headers = nil) fail ArgumentError, 'patch_payload is nil' if patch_payload.nil? fail ArgumentError, '@client.subscription_id is nil' if @client.subscription_id.nil? fail ArgumentError, 'resource_group_name is nil' if resource_group_name.nil? fail ArgumentError, 'web_service_name is nil' if web_service_name.nil? fail ArgumentError, '@client.api_version is nil' if @client.api_version.nil? request_headers = {} # Set Headers request_headers['x-ms-client-request-id'] = SecureRandom.uuid request_headers['accept-language'] = @client.accept_language unless @client.accept_language.nil? request_headers['Content-Type'] = 'application/json; charset=utf-8' # Serialize Request request_mapper = WebService.mapper() request_content = @client.serialize(request_mapper, patch_payload, 'patch_payload') request_content = request_content != nil ? JSON.generate(request_content, quirks_mode: true) : nil path_template = '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearning/webServices/{webServiceName}' request_url = @base_url || @client.base_url options = { middlewares: [[MsRest::RetryPolicyMiddleware, times: 3, retry: 0.02], [:cookie_jar]], path_params: {'subscriptionId' => @client.subscription_id,'resourceGroupName' => resource_group_name,'webServiceName' => web_service_name}, query_params: {'api-version' => @client.api_version}, body: request_content, headers: request_headers.merge(custom_headers || {}), base_url: request_url } promise = @client.make_request_async(:patch, path_template, options) promise = promise.then do |result| http_response = result.response status_code = http_response.status response_content = http_response.body unless status_code == 200 error_model = JSON.load(response_content) fail MsRestAzure::AzureOperationError.new(result.request, http_response, error_model) end result.request_id = http_response['x-ms-request-id'] unless http_response['x-ms-request-id'].nil? # Deserialize Response if status_code == 200 begin parsed_response = response_content.to_s.empty? ? nil : JSON.load(response_content) result_mapper = WebService.mapper() result.body = @client.deserialize(result_mapper, parsed_response, 'result.body') rescue Exception => e fail MsRest::DeserializationError.new('Error occurred in deserializing the response', e.message, e.backtrace, result) end end result end promise.execute end # # Remove an existing Azure ML web service. # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # def remove(resource_group_name, web_service_name, custom_headers = nil) response = remove_async(resource_group_name, web_service_name, custom_headers).value! nil end # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [Concurrent::Promise] promise which provides async access to http # response. # def remove_async(resource_group_name, web_service_name, custom_headers = nil) # Send request promise = begin_remove_async(resource_group_name, web_service_name, custom_headers) promise = promise.then do |response| # Defining deserialization method. deserialize_method = lambda do |parsed_response| end # Waiting for response. @client.get_long_running_operation_result(response, deserialize_method) end promise end # # Remove an existing Azure ML web service. # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # def begin_remove(resource_group_name, web_service_name, custom_headers = nil) response = begin_remove_async(resource_group_name, web_service_name, custom_headers).value! nil end # # Remove an existing Azure ML web service. # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [MsRestAzure::AzureOperationResponse] HTTP response information. # def begin_remove_with_http_info(resource_group_name, web_service_name, custom_headers = nil) begin_remove_async(resource_group_name, web_service_name, custom_headers).value! end # # Remove an existing Azure ML web service. # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param [Hash{String => String}] A hash of custom headers that will be added # to the HTTP request. # # @return [Concurrent::Promise] Promise object which holds the HTTP response. # def begin_remove_async(resource_group_name, web_service_name, custom_headers = nil) fail ArgumentError, '@client.subscription_id is nil' if @client.subscription_id.nil? fail ArgumentError, 'resource_group_name is nil' if resource_group_name.nil? fail ArgumentError, 'web_service_name is nil' if web_service_name.nil? fail ArgumentError, '@client.api_version is nil' if @client.api_version.nil? request_headers = {} # Set Headers request_headers['x-ms-client-request-id'] = SecureRandom.uuid request_headers['accept-language'] = @client.accept_language unless @client.accept_language.nil? path_template = '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearning/webServices/{webServiceName}' request_url = @base_url || @client.base_url options = { middlewares: [[MsRest::RetryPolicyMiddleware, times: 3, retry: 0.02], [:cookie_jar]], path_params: {'subscriptionId' => @client.subscription_id,'resourceGroupName' => resource_group_name,'webServiceName' => web_service_name}, query_params: {'api-version' => @client.api_version}, headers: request_headers.merge(custom_headers || {}), base_url: request_url } promise = @client.make_request_async(:delete, path_template, options) promise = promise.then do |result| http_response = result.response status_code = http_response.status response_content = http_response.body unless status_code == 202 || status_code == 204 error_model = JSON.load(response_content) fail MsRestAzure::AzureOperationError.new(result.request, http_response, error_model) end result.request_id = http_response['x-ms-request-id'] unless http_response['x-ms-request-id'].nil? result end promise.execute end # # Get the access keys of a particular Azure ML web service # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [WebServiceKeys] operation results. # def list_keys(resource_group_name, web_service_name, custom_headers = nil) response = list_keys_async(resource_group_name, web_service_name, custom_headers).value! response.body unless response.nil? end # # Get the access keys of a particular Azure ML web service # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [MsRestAzure::AzureOperationResponse] HTTP response information. # def list_keys_with_http_info(resource_group_name, web_service_name, custom_headers = nil) list_keys_async(resource_group_name, web_service_name, custom_headers).value! end # # Get the access keys of a particular Azure ML web service # # @param resource_group_name [String] Name of the resource group. # @param web_service_name [String] The Azure ML web service name which you # want to reach. # @param [Hash{String => String}] A hash of custom headers that will be added # to the HTTP request. # # @return [Concurrent::Promise] Promise object which holds the HTTP response. # def list_keys_async(resource_group_name, web_service_name, custom_headers = nil) fail ArgumentError, '@client.subscription_id is nil' if @client.subscription_id.nil? fail ArgumentError, 'resource_group_name is nil' if resource_group_name.nil? fail ArgumentError, 'web_service_name is nil' if web_service_name.nil? fail ArgumentError, '@client.api_version is nil' if @client.api_version.nil? request_headers = {} # Set Headers request_headers['x-ms-client-request-id'] = SecureRandom.uuid request_headers['accept-language'] = @client.accept_language unless @client.accept_language.nil? path_template = '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearning/webServices/{webServiceName}/listKeys' request_url = @base_url || @client.base_url options = { middlewares: [[MsRest::RetryPolicyMiddleware, times: 3, retry: 0.02], [:cookie_jar]], path_params: {'subscriptionId' => @client.subscription_id,'resourceGroupName' => resource_group_name,'webServiceName' => web_service_name}, query_params: {'api-version' => @client.api_version}, headers: request_headers.merge(custom_headers || {}), base_url: request_url } promise = @client.make_request_async(:get, path_template, options) promise = promise.then do |result| http_response = result.response status_code = http_response.status response_content = http_response.body unless status_code == 200 error_model = JSON.load(response_content) fail MsRestAzure::AzureOperationError.new(result.request, http_response, error_model) end result.request_id = http_response['x-ms-request-id'] unless http_response['x-ms-request-id'].nil? # Deserialize Response if status_code == 200 begin parsed_response = response_content.to_s.empty? ? nil : JSON.load(response_content) result_mapper = WebServiceKeys.mapper() result.body = @client.deserialize(result_mapper, parsed_response, 'result.body') rescue Exception => e fail MsRest::DeserializationError.new('Error occurred in deserializing the response', e.message, e.backtrace, result) end end result end promise.execute end # # Retrieve all Azure ML web services in a given resource group. # # @param resource_group_name [String] Name of the resource group. # @param skiptoken [String] Continuation token for pagination. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [PaginatedWebServicesList] operation results. # def list_in_resource_group(resource_group_name, skiptoken = nil, custom_headers = nil) response = list_in_resource_group_async(resource_group_name, skiptoken, custom_headers).value! response.body unless response.nil? end # # Retrieve all Azure ML web services in a given resource group. # # @param resource_group_name [String] Name of the resource group. # @param skiptoken [String] Continuation token for pagination. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [MsRestAzure::AzureOperationResponse] HTTP response information. # def list_in_resource_group_with_http_info(resource_group_name, skiptoken = nil, custom_headers = nil) list_in_resource_group_async(resource_group_name, skiptoken, custom_headers).value! end # # Retrieve all Azure ML web services in a given resource group. # # @param resource_group_name [String] Name of the resource group. # @param skiptoken [String] Continuation token for pagination. # @param [Hash{String => String}] A hash of custom headers that will be added # to the HTTP request. # # @return [Concurrent::Promise] Promise object which holds the HTTP response. # def list_in_resource_group_async(resource_group_name, skiptoken = nil, custom_headers = nil) fail ArgumentError, '@client.subscription_id is nil' if @client.subscription_id.nil? fail ArgumentError, 'resource_group_name is nil' if resource_group_name.nil? fail ArgumentError, '@client.api_version is nil' if @client.api_version.nil? request_headers = {} # Set Headers request_headers['x-ms-client-request-id'] = SecureRandom.uuid request_headers['accept-language'] = @client.accept_language unless @client.accept_language.nil? path_template = '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearning/webServices' request_url = @base_url || @client.base_url options = { middlewares: [[MsRest::RetryPolicyMiddleware, times: 3, retry: 0.02], [:cookie_jar]], path_params: {'subscriptionId' => @client.subscription_id,'resourceGroupName' => resource_group_name}, query_params: {'api-version' => @client.api_version,'$skiptoken' => skiptoken}, headers: request_headers.merge(custom_headers || {}), base_url: request_url } promise = @client.make_request_async(:get, path_template, options) promise = promise.then do |result| http_response = result.response status_code = http_response.status response_content = http_response.body unless status_code == 200 error_model = JSON.load(response_content) fail MsRestAzure::AzureOperationError.new(result.request, http_response, error_model) end result.request_id = http_response['x-ms-request-id'] unless http_response['x-ms-request-id'].nil? # Deserialize Response if status_code == 200 begin parsed_response = response_content.to_s.empty? ? nil : JSON.load(response_content) result_mapper = PaginatedWebServicesList.mapper() result.body = @client.deserialize(result_mapper, parsed_response, 'result.body') rescue Exception => e fail MsRest::DeserializationError.new('Error occurred in deserializing the response', e.message, e.backtrace, result) end end result end promise.execute end # # Retrieve all Azure ML web services in the current Azure subscription. # # @param skiptoken [String] Continuation token for pagination. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [PaginatedWebServicesList] operation results. # def list(skiptoken = nil, custom_headers = nil) response = list_async(skiptoken, custom_headers).value! response.body unless response.nil? end # # Retrieve all Azure ML web services in the current Azure subscription. # # @param skiptoken [String] Continuation token for pagination. # @param custom_headers [Hash{String => String}] A hash of custom headers that # will be added to the HTTP request. # # @return [MsRestAzure::AzureOperationResponse] HTTP response information. # def list_with_http_info(skiptoken = nil, custom_headers = nil) list_async(skiptoken, custom_headers).value! end # # Retrieve all Azure ML web services in the current Azure subscription. # # @param skiptoken [String] Continuation token for pagination. # @param [Hash{String => String}] A hash of custom headers that will be added # to the HTTP request. # # @return [Concurrent::Promise] Promise object which holds the HTTP response. # def list_async(skiptoken = nil, custom_headers = nil) fail ArgumentError, '@client.subscription_id is nil' if @client.subscription_id.nil? fail ArgumentError, '@client.api_version is nil' if @client.api_version.nil? request_headers = {} # Set Headers request_headers['x-ms-client-request-id'] = SecureRandom.uuid request_headers['accept-language'] = @client.accept_language unless @client.accept_language.nil? path_template = '/subscriptions/{subscriptionId}/providers/Microsoft.MachineLearning/webServices' request_url = @base_url || @client.base_url options = { middlewares: [[MsRest::RetryPolicyMiddleware, times: 3, retry: 0.02], [:cookie_jar]], path_params: {'subscriptionId' => @client.subscription_id}, query_params: {'api-version' => @client.api_version,'$skiptoken' => skiptoken}, headers: request_headers.merge(custom_headers || {}), base_url: request_url } promise = @client.make_request_async(:get, path_template, options) promise = promise.then do |result| http_response = result.response status_code = http_response.status response_content = http_response.body unless status_code == 200 error_model = JSON.load(response_content) fail MsRestAzure::AzureOperationError.new(result.request, http_response, error_model) end result.request_id = http_response['x-ms-request-id'] unless http_response['x-ms-request-id'].nil? # Deserialize Response if status_code == 200 begin parsed_response = response_content.to_s.empty? ? nil : JSON.load(response_content) result_mapper = PaginatedWebServicesList.mapper() result.body = @client.deserialize(result_mapper, parsed_response, 'result.body') rescue Exception => e fail MsRest::DeserializationError.new('Error occurred in deserializing the response', e.message, e.backtrace, result) end end result end promise.execute end end end