# ******************************************************************************* # OpenStudio(R), Copyright (c) 2008-2020, Alliance for Sustainable Energy, LLC. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # (1) Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # (2) Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # (3) Neither the name of the copyright holder nor the names of any contributors # may be used to endorse or promote products derived from this software without # specific prior written permission from the respective party. # # (4) Other than as required in clauses (1) and (2), distributions in any form # of modifications or other derivative works may not use the "OpenStudio" # trademark, "OS", "os", or any other confusingly similar designation without # specific prior written permission from Alliance for Sustainable Energy, LLC. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND ANY CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S), ANY CONTRIBUTORS, THE # UNITED STATES GOVERNMENT, OR THE UNITED STATES DEPARTMENT OF ENERGY, NOR ANY OF # THEIR EMPLOYEES, BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ******************************************************************************* # start the measure class CoilHeatingWaterPercentChange < OpenStudio::Measure::ModelMeasure # human readable name def name 'Heating Coils Water Percent Change' end # human readable description def description 'This is a general purpose measure to calibrate Water Heating Coils with a Percent Change.' end # human readable description of modeling approach def modeler_description 'It will be used for calibration of rated capacity and efficiency and parasitic loads. User can choose between a SINGLE coil or ALL the Coils.' end def change_name(object, ua_factor, coil_capacity_perc_change) nameString = object.name.get.to_s nameString += " #{ua_factor.round(2)}percng UA" if ua_factor != 1.0 if coil_capacity_perc_change != 1.0 nameString += " #{coil_capacity_perc_change.round(2)}percng coilCap" end object.setName(nameString) end # define the arguments that the user will input def arguments(model) args = OpenStudio::Measure::OSArgumentVector.new # populate choice argument for constructions that are applied to surfaces in the model loop_handles = OpenStudio::StringVector.new loop_display_names = OpenStudio::StringVector.new # putting air loops and names into hash loop_args = model.getAirLoopHVACs loop_args_hash = {} loop_args.each do |loop_arg| loop_args_hash[loop_arg.name.to_s] = loop_arg end # looping through sorted hash of air loops loop_args_hash.sort.map do |_key, value| show_loop = false components = value.supplyComponents components.each do |component| next if component.to_CoilHeatingWater.empty? show_loop = true loop_handles << component.handle.to_s loop_display_names << component.name.to_s end # if loop as object of correct type then add to hash. # if show_loop == true # loop_handles << value.handle.to_s # loop_display_names << key # end end # add building to string vector with space type building = model.getBuilding loop_handles << building.handle.to_s loop_display_names << '*All Water Heating Coils*' loop_handles << '0' loop_display_names << '*None*' # make a choice argument for space type coil_arg = OpenStudio::Measure::OSArgument.makeChoiceArgument('coil', loop_handles, loop_display_names) coil_arg.setDisplayName('Apply the Measure to a SINGLE Water Heating Coil, ALL the Water Heating Coils or NONE.') coil_arg.setDefaultValue('*All Water Heating Coils*') # if no space type is chosen this will run on the entire building args << coil_arg # ua_factor ua_factor = OpenStudio::Measure::OSArgument.makeDoubleArgument('ua_factor', true) ua_factor.setDisplayName('Percent Change for UA coefficient.') ua_factor.setDescription('Percent Change for UA coefficient.') ua_factor.setDefaultValue(0.0) args << ua_factor # coil_capacity_perc_change coil_capacity_perc_change = OpenStudio::Measure::OSArgument.makeDoubleArgument('coil_capacity_perc_change', true) coil_capacity_perc_change.setDisplayName('Percent Change for coil Capacity.') coil_capacity_perc_change.setDescription('Percent Change for coil Capacity.') coil_capacity_perc_change.setDefaultValue(0.0) args << coil_capacity_perc_change args end # define what happens when the measure is run def run(model, runner, user_arguments) super(model, runner, user_arguments) # use the built-in error checking unless runner.validateUserArguments(arguments(model), user_arguments) return false end # assign the user inputs to variables coil_object = runner.getOptionalWorkspaceObjectChoiceValue('coil', user_arguments, model) coil_handle = runner.getStringArgumentValue('coil', user_arguments) coil_capacity_perc_change = runner.getDoubleArgumentValue('coil_capacity_perc_change', user_arguments) ua_factor = runner.getDoubleArgumentValue('ua_factor', user_arguments) # find objects to change coils = [] building = model.getBuilding building_handle = building.handle.to_s runner.registerInfo("coil_handle: #{coil_handle}") # setup coils if coil_handle == building_handle # Use ALL coils runner.registerInfo('Applying change to ALL Coils') loops = model.getAirLoopHVACs # loop through air loops loops.each do |loop| supply_components = loop.supplyComponents # find coils on loops supply_components.each do |supply_component| unless supply_component.to_CoilHeatingWater.empty? coils << supply_component.to_CoilHeatingWater.get end end end elsif coil_handle == 0.to_s # coils set to NONE so do nothing runner.registerInfo('Applying change to NONE Coils') elsif !coil_handle.empty? # Single coil handle found, check if object is good if !coil_object.get.to_CoilHeatingWater.empty? runner.registerInfo("Applying change to #{coil_object.get.name} coil") coils << coil_object.get.to_CoilHeatingWater.get else runner.registerError("coil with handle #{coil_handle} could not be found.") end else runner.registerError('coil handle is empty.') return false end # report initial condition of model runner.registerInitialCondition("Coils to change: #{coils.size}") runner.registerInfo("Coils to change: #{coils.size}") altered_coils = [] altered_capacity = [] altered_coilefficiency = [] # loop through coils coils.each do |coil| altered_coil = false # coil_capacity_perc_change if coil_capacity_perc_change != 0.0 if coil.ratedCapacity.is_initialized runner.registerInfo("Applying ratedCapacity #{coil_capacity_perc_change} Percent Change to #{coil.name.get}.") coil.setRatedCapacity(coil.ratedCapacity.get + coil.ratedCapacity.get * coil_capacity_perc_change * 0.01) altered_capacity << coil.handle.to_s altered_coil = true end end # modify ua_factor if ua_factor != 0.0 if coil.uFactorTimesAreaValue.is_initialized runner.registerInfo("Applying uFactorTimesAreaValue #{ua_factor} Percent Change to #{coil.name.get}.") coil.setUFactorTimesAreaValue(coil.uFactorTimesAreaValue.get + coil.uFactorTimesAreaValue.get * ua_factor * 0.01) altered_coilefficiency << coil.handle.to_s altered_coil = true end end next unless altered_coil altered_coils << coil.handle.to_s change_name(coil, ua_factor, coil_capacity_perc_change) runner.registerInfo("coil name changed to: #{coil.name.get}") end # end coil loop # na if nothing in model to look at if altered_coils.empty? runner.registerAsNotApplicable('No Coils were altered in the model') return true end # report final condition of model runner.registerFinalCondition("#{altered_coils.size} Coils objects were altered.") true end end # register the measure to be used by the application CoilHeatingWaterPercentChange.new.registerWithApplication