#-- # = NMatrix # # A linear algebra library for scientific computation in Ruby. # NMatrix is part of SciRuby. # # NMatrix was originally inspired by and derived from NArray, by # Masahiro Tanaka: http://narray.rubyforge.org # # == Copyright Information # # SciRuby is Copyright (c) 2010 - 2013, Ruby Science Foundation # NMatrix is Copyright (c) 2013, Ruby Science Foundation # # Please see LICENSE.txt for additional copyright notices. # # == Contributing # # By contributing source code to SciRuby, you agree to be bound by # our Contributor Agreement: # # * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement # # == shortcuts.rb # # These are shortcuts for NMatrix and NVector creation, contributed by Daniel # Carrera (dcarrera@hush.com) and Carlos Agarie (carlos.agarie@gmail.com). # # TODO Make all the shortcuts available through modules, allowing someone # to include them to make "MATLAB-like" scripts. # # There are some questions to be answered before this can be done, tho. #++ class NMatrix class << self # # call-seq: # zeros(size) -> NMatrix # zeros(size, dtype) -> NMatrix # zeros(stype, size, dtype) -> NMatrix # # Creates a new matrix of zeros with the dimensions supplied as # parameters. # # * *Arguments* : # - +stype+ -> (optional) Default is +:dense+. # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+ # * *Returns* : # - NMatrix filled with zeros. # # Examples: # # NMatrix.zeros(2) # => 0.0 0.0 # 0.0 0.0 # # NMatrix.zeros([2, 3], :int32) # => 0 0 0 # 0 0 0 # # NMatrix.zeros(:list, [1, 5], :int32) # => 0 0 0 0 0 # def zeros(*params) dtype = params.last.is_a?(Symbol) ? params.pop : :float64 stype = params.first.is_a?(Symbol) ? params.shift : :dense dim = params.first NMatrix.new(stype, dim, 0, dtype) end alias :zeroes :zeros # # call-seq: # ones(size) -> NMatrix # ones(size, dtype) -> NMatrix # # Creates a matrix filled with ones. # # * *Arguments* : # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+ # * *Returns* : # - NMatrix filled with ones. # # Examples: # # NMatrix.ones([1, 3]) # => 1.0 1.0 1.0 # # NMatrix.ones([2, 3], :int32) # => 1 1 1 # 1 1 1 # def ones(*params) dtype = params.last.is_a?(Symbol) ? params.pop : :float64 dim = params.first NMatrix.new(dim, 1, dtype) end # # call-seq: # eye(size) -> NMatrix # eye(size, dtype) -> NMatrix # eye(stype, size, dtype) -> NMatrix # # Creates an identity matrix (square matrix rank 2). # # * *Arguments* : # - +stype+ -> (optional) Default is +:dense+. # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+ # * *Returns* : # - NMatrix filled with zeros. # # Examples: # # NMatrix.eye(3) # => 1.0 0.0 0.0 # 0.0 1.0 0.0 # 0.0 0.0 1.0 # # NMatrix.eye(3, :int32) # => 1 0 0 # 0 1 0 # 0 0 1 # # NMatrix.eye(:yale, 2, :int32) # => 1 0 # 0 1 # def eye(*params) dtype = params.last.is_a?(Symbol) ? params.pop : :float64 stype = params.first.is_a?(Symbol) ? params.shift : :dense dim = params.first # Fill the diagonal with 1's. m = NMatrix.zeros(stype, dim, dtype) (0 .. (dim - 1)).each do |i| m[i, i] = 1 end m end alias :identity :eye # # call-seq: # random(size) -> NMatrix # # Creates a +:dense+ NMatrix with random numbers between 0 and 1 generated # by +Random::rand+. The parameter is the dimension of the matrix. # # * *Arguments* : # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # * *Returns* : # - NMatrix filled with zeros. # # Examples: # # NMatrix.random([2, 2]) # => 0.4859439730644226 0.1783195585012436 # 0.23193766176700592 0.4503345191478729 # def random(size) rng = Random.new random_values = [] # Construct the values of the final matrix based on the dimension. if size.is_a?(Integer) (size * size - 1).times { |i| random_values << rng.rand } else # Dimensions given by an array. Get the product of the array elements # and generate this number of random values. size.reduce(1, :*).times { |i| random_values << rng.rand } end NMatrix.new(:dense, size, random_values, :float64) end # # call-seq: # seq(size) -> NMatrix # seq(size, dtype) -> NMatrix # # Creates a matrix filled with a sequence of integers starting at zero. # # * *Arguments* : # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+ # * *Returns* : # - NMatrix filled with zeros. # # Examples: # # NMatrix.seq(2) # => 0 1 # 2 3 # # NMatrix.seq([3, 3], :float32) # => 0.0 1.0 2.0 # 3.0 4.0 5.0 # 6.0 7.0 8.0 # def seq(*params) dtype = params.last.is_a?(Symbol) ? params.pop : nil size = params.first # Must provide the dimension as an Integer for a square matrix or as an # 2 element array, e.g. [2,4]. unless size.is_a?(Integer) || (size.is_a?(Array) && size.size < 3) raise ArgumentError, "seq() accepts only integers or 2-element arrays \ as dimension." end # Construct the values of the final matrix based on the dimension. if size.is_a?(Integer) values = (0 .. (size * size - 1)).to_a else # Dimensions given by a 2 element array. values = (0 .. (size.first * size.last - 1)).to_a end # It'll produce :int32, except if a dtype is provided. NMatrix.new(:dense, size, values, dtype) end # # call-seq: # indgen(size) -> NMatrix # # Returns an integer NMatrix. Equivalent to seq(n, :int32). # # * *Arguments* : # - +size+ -> Size of the sequence. # * *Returns* : # - NMatrix with dtype +:int32+. # def indgen(size) NMatrix.seq(size, :int32) end # # call-seq: # findgen(size) -> NMatrix # # Returns a float NMatrix. Equivalent to seq(n, :float32). # # * *Arguments* : # - +size+ -> Size of the sequence. # * *Returns* : # - NMatrix with dtype +:float32+. # def findgen(size) NMatrix.seq(size, :float32) end # # call-seq: # bindgen(size) -> NMatrix # # Returns a byte NMatrix. Equivalent to seq(n, :byte). # # * *Arguments* : # - +size+ -> Size of the sequence. # * *Returns* : # - NMatrix with dtype +:byte+. # def bindgen(size) NMatrix.seq(size, :byte) end # # call-seq: # cindgen(size) -> NMatrix # # Returns an complex NMatrix. Equivalent to seq(n, :complex64). # # * *Arguments* : # - +size+ -> Size of the sequence. # * *Returns* : # - NMatrix with dtype +:complex64+. # def cindgen(size) NMatrix.seq(size, :complex64) end end # # call-seq: # column(column_number) -> NMatrix # column(column_number, get_by) -> NMatrix # # Returns the column specified. Uses slicing by copy as default. # # * *Arguments* : # - +column_number+ -> Integer. # - +get_by+ -> Type of slicing to use, +:copy+ or +:reference+. # * *Returns* : # - A NMatrix representing the requested column as a column vector. # # Examples: # # m = NMatrix.new(2, [1, 4, 9, 14], :int32) # => 1 4 # 9 14 # # m.column(1) # => 4 # 14 # def column(column_number, get_by = :copy) unless [:copy, :reference].include?(get_by) raise ArgumentError, "column() 2nd parameter must be :copy or :reference" end if get_by == :copy self.slice(0 ... self.shape[0], column_number) else # by reference self[0 ... self.shape[0], column_number] end end alias :col :column # # call-seq: # row(row_number) -> NMatrix # row(row_number, get_by) -> NMatrix # # * *Arguments* : # - +row_number+ -> Integer. # - +get_by+ -> Type of slicing to use, +:copy+ or +:reference+. # * *Returns* : # - A NMatrix representing the requested row . # def row(row_number, get_by = :copy) unless [:copy, :reference].include?(get_by) raise ArgumentError, "row() 2nd parameter must be :copy or :reference" end if get_by == :copy self.slice(row_number, 0 ... self.shape[1]) else # by reference self[row_number, 0 ... self.shape[1]] end end end class NVector < NMatrix class << self # # call-seq: # zeros(size) -> NMatrix # zeros(size, dtype) -> NMatrix # # Creates a new matrix of zeros with the dimensions supplied as # parameters. # # * *Arguments* : # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+. # * *Returns* : # - NVector filled with zeros. # # Examples: # # NVector.zeros(2) # => 0.0 # 0.0 # # NVector.zeros(3, :int32) # => 0 # 0 # 0 # def zeros(size, dtype = :float64) NVector.new(size, 0, dtype) end alias :zeroes :zeros # # call-seq: # ones(size) -> NVector # ones(size, dtype) -> NVector # # Creates a vector of ones with the dimensions supplied as # parameters. # # * *Arguments* : # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+. # * *Returns* : # - NVector filled with ones. # # Examples: # # NVector.ones(2) # => 1.0 # 1.0 # # NVector.ones(3, :int32) # => 1 # 1 # 1 # def ones(size, dtype = :float64) NVector.new(size, 1, dtype) end # # call-seq: # random(size) -> NVector # # Creates a vector with random numbers between 0 and 1 generated by # +Random::rand+ with the dimensions supplied as parameters. # # * *Arguments* : # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+. # * *Returns* : # - NVector filled with random numbers generated by the +Random+ class. # # Examples: # # NVector.rand(2) # => 0.4859439730644226 # 0.1783195585012436 # def random(size) rng = Random.new random_values = [] size.times { |i| random_values << rng.rand } NVector.new(size, random_values, :float64) end # # call-seq: # seq(n) -> NVector # seq(n, dtype) -> NVector # # Creates a vector with a sequence of +n+ integers starting at zero. You # can choose other types based on the dtype parameter. # # * *Arguments* : # - +n+ -> Number of integers in the sequence. # - +dtype+ -> (optional) Default is +:int64+. # * *Returns* : # - NVector filled with +n+ integers. # # Examples: # # NVector.seq(2) # => 0 # 1 # # NVector.seq(3, :float32) # => 0.0 # 1.0 # 2.0 # def seq(n, dtype = :int64) unless n.is_a?(Integer) raise ArgumentError, "NVector::seq() only accepts integers as size." end values = (0 ... n).to_a NVector.new(n, values, dtype) end # # call-seq: # indgen(n) -> NVector # # Returns an integer NVector. Equivalent to seq(n, :int32). # # * *Arguments* : # - +n+ -> Size of the sequence. # * *Returns* : # - NVector filled with +n+ integers of dtype +:int32+. # def indgen(n) NVector.seq(n, :int32) end # # call-seq: # findgen(n) -> NVector # # Returns a float NVector. Equivalent to seq(n, :float32). # # * *Arguments* : # - +n+ -> Size of the sequence. # * *Returns* : # - NVector filled with +n+ integers of dtype +:float32+. # def findgen(n) NVector.seq(n, :float32) end # # call-seq: # bindgen(n) -> NVector # # Returns a byte NVector. Equivalent to seq(n, :byte). # # * *Arguments* : # - +n+ -> Size of the sequence. # * *Returns* : # - NVector filled with +n+ integers of dtype +:byte+. # def bindgen(n) NVector.seq(n, :byte) end # # call-seq: # cindgen(n) -> NVector # # Returns a complex NVector. Equivalent to seq(n, :complex64). # # * *Arguments* : # - +n+ -> Size of the sequence. # * *Returns* : # - NVector filled with +n+ integers of dtype +:complex64+. # def cindgen(n) NVector.seq(n, :complex64) end # # call-seq: # linspace(a, b) -> NVector # linspace(a, b, n) -> NVector # # Returns a NVector with +n+ values of dtype +:float64+ equally spaced from # +a+ to +b+, inclusive. # # Following the MATLAB implementation, if n isn't provided it's assumed to # be 100. # # * *Arguments* : # - +a+ -> The first value in the sequence. # - +b+ -> The last value in the sequence. # - +n+ -> The number of elements. # * *Returns* : # - n-by-1 NMatrix with +n+ +:float64+ values. # # Example: # x = NVector.linspace(0, Math::PI, 1000) # => # # # x.pp # [0.0] # [0.0031447373909807737] # [0.006289474781961547] # ... # [3.135303178807831] # [3.138447916198812] # [3.141592653589793] # => nil # def linspace(a, b, n = 100) # See: http://www.mathworks.com/help/matlab/ref/linspace.html # Formula: seq(n) * step + a # step = ((b - a) / (n - 1)) step = (b - a) * (1.0 / (n - 1)) # dtype = :float64 is used to prevent integer coercion. result = NVector.seq(n, :float64) * NVector.new(n, step, :float64) result += NVector.new(n, a, :float64) result end end end # NMatrix needs to have a succinct way to create a matrix by specifying the # components directly. This is very useful for using it as an advanced # calculator, it is useful for learning how to use, for testing language # features and for developing algorithms. # # The N class provides a way to create a matrix in a way that is compact and # natural. The components are specified using Ruby array syntax. Optionally, # one can specify a dtype as the last parameter (default is :float64). # # Examples: # # a = N[ 1,2,3,4 ] => 1.0 2.0 3.0 4.0 # # a = N[ 1,2,3,4, :int32 ] => 1 2 3 4 # # a = N[ [1,2,3], [3,4,5] ] => 1.0 2.0 3.0 # 3.0 4.0 5.0 # # SYNTAX COMPARISON: # # MATLAB: a = [ [1 2 3] ; [4 5 6] ] or [ 1 2 3 ; 4 5 6 ] # IDL: a = [ [1,2,3] , [4,5,6] ] # NumPy: a = array( [1,2,3], [4,5,6] ) # # SciRuby: a = N[ [1,2,3], [4,5,6] ] # Ruby array: a = [ [1,2,3], [4,5,6] ] # class N class << self # # call-seq: # N[array-of-arrays, dtype = nil] # def [](*params) dtype = params.last.is_a?(Symbol) ? params.pop : nil # First find the dimensions of the array. i = 0 dim = [] foo = params while foo.is_a?(Array) dim[i] = foo.length foo = foo[0] i += 1 end # Then flatten the array. NMatrix.new(dim, params.flatten, dtype) end end end