#--
# = NMatrix
#
# A linear algebra library for scientific computation in Ruby.
# NMatrix is part of SciRuby.
#
# NMatrix was originally inspired by and derived from NArray, by
# Masahiro Tanaka: http://narray.rubyforge.org
#
# == Copyright Information
#
# SciRuby is Copyright (c) 2010 - 2013, Ruby Science Foundation
# NMatrix is Copyright (c) 2013, Ruby Science Foundation
#
# Please see LICENSE.txt for additional copyright notices.
#
# == Contributing
#
# By contributing source code to SciRuby, you agree to be bound by
# our Contributor Agreement:
#
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
#
# == shortcuts.rb
#
# These are shortcuts for NMatrix and NVector creation, contributed by Daniel
# Carrera (dcarrera@hush.com) and Carlos Agarie (carlos.agarie@gmail.com).
#
# TODO Make all the shortcuts available through modules, allowing someone
# to include them to make "MATLAB-like" scripts.
#
# There are some questions to be answered before this can be done, tho.
#++
class NMatrix
class << self
#
# call-seq:
# zeros(size) -> NMatrix
# zeros(size, dtype) -> NMatrix
# zeros(stype, size, dtype) -> NMatrix
#
# Creates a new matrix of zeros with the dimensions supplied as
# parameters.
#
# * *Arguments* :
# - +stype+ -> (optional) Default is +:dense+.
# - +size+ -> Array (or integer for square matrix) specifying the dimensions.
# - +dtype+ -> (optional) Default is +:float64+
# * *Returns* :
# - NMatrix filled with zeros.
#
# Examples:
#
# NMatrix.zeros(2) # => 0.0 0.0
# 0.0 0.0
#
# NMatrix.zeros([2, 3], :int32) # => 0 0 0
# 0 0 0
#
# NMatrix.zeros(:list, [1, 5], :int32) # => 0 0 0 0 0
#
def zeros(*params)
dtype = params.last.is_a?(Symbol) ? params.pop : :float64
stype = params.first.is_a?(Symbol) ? params.shift : :dense
dim = params.first
NMatrix.new(stype, dim, 0, dtype)
end
alias :zeroes :zeros
#
# call-seq:
# ones(size) -> NMatrix
# ones(size, dtype) -> NMatrix
#
# Creates a matrix filled with ones.
#
# * *Arguments* :
# - +size+ -> Array (or integer for square matrix) specifying the dimensions.
# - +dtype+ -> (optional) Default is +:float64+
# * *Returns* :
# - NMatrix filled with ones.
#
# Examples:
#
# NMatrix.ones([1, 3]) # => 1.0 1.0 1.0
#
# NMatrix.ones([2, 3], :int32) # => 1 1 1
# 1 1 1
#
def ones(*params)
dtype = params.last.is_a?(Symbol) ? params.pop : :float64
dim = params.first
NMatrix.new(dim, 1, dtype)
end
#
# call-seq:
# eye(size) -> NMatrix
# eye(size, dtype) -> NMatrix
# eye(stype, size, dtype) -> NMatrix
#
# Creates an identity matrix (square matrix rank 2).
#
# * *Arguments* :
# - +stype+ -> (optional) Default is +:dense+.
# - +size+ -> Array (or integer for square matrix) specifying the dimensions.
# - +dtype+ -> (optional) Default is +:float64+
# * *Returns* :
# - NMatrix filled with zeros.
#
# Examples:
#
# NMatrix.eye(3) # => 1.0 0.0 0.0
# 0.0 1.0 0.0
# 0.0 0.0 1.0
#
# NMatrix.eye(3, :int32) # => 1 0 0
# 0 1 0
# 0 0 1
#
# NMatrix.eye(:yale, 2, :int32) # => 1 0
# 0 1
#
def eye(*params)
dtype = params.last.is_a?(Symbol) ? params.pop : :float64
stype = params.first.is_a?(Symbol) ? params.shift : :dense
dim = params.first
# Fill the diagonal with 1's.
m = NMatrix.zeros(stype, dim, dtype)
(0 .. (dim - 1)).each do |i|
m[i, i] = 1
end
m
end
alias :identity :eye
#
# call-seq:
# random(size) -> NMatrix
#
# Creates a +:dense+ NMatrix with random numbers between 0 and 1 generated
# by +Random::rand+. The parameter is the dimension of the matrix.
#
# * *Arguments* :
# - +size+ -> Array (or integer for square matrix) specifying the dimensions.
# * *Returns* :
# - NMatrix filled with zeros.
#
# Examples:
#
# NMatrix.random([2, 2]) # => 0.4859439730644226 0.1783195585012436
# 0.23193766176700592 0.4503345191478729
#
def random(size)
rng = Random.new
random_values = []
# Construct the values of the final matrix based on the dimension.
if size.is_a?(Integer)
(size * size - 1).times { |i| random_values << rng.rand }
else
# Dimensions given by an array. Get the product of the array elements
# and generate this number of random values.
size.reduce(1, :*).times { |i| random_values << rng.rand }
end
NMatrix.new(:dense, size, random_values, :float64)
end
#
# call-seq:
# seq(size) -> NMatrix
# seq(size, dtype) -> NMatrix
#
# Creates a matrix filled with a sequence of integers starting at zero.
#
# * *Arguments* :
# - +size+ -> Array (or integer for square matrix) specifying the dimensions.
# - +dtype+ -> (optional) Default is +:float64+
# * *Returns* :
# - NMatrix filled with zeros.
#
# Examples:
#
# NMatrix.seq(2) # => 0 1
# 2 3
#
# NMatrix.seq([3, 3], :float32) # => 0.0 1.0 2.0
# 3.0 4.0 5.0
# 6.0 7.0 8.0
#
def seq(*params)
dtype = params.last.is_a?(Symbol) ? params.pop : nil
size = params.first
# Must provide the dimension as an Integer for a square matrix or as an
# 2 element array, e.g. [2,4].
unless size.is_a?(Integer) || (size.is_a?(Array) && size.size < 3)
raise ArgumentError, "seq() accepts only integers or 2-element arrays \
as dimension."
end
# Construct the values of the final matrix based on the dimension.
if size.is_a?(Integer)
values = (0 .. (size * size - 1)).to_a
else
# Dimensions given by a 2 element array.
values = (0 .. (size.first * size.last - 1)).to_a
end
# It'll produce :int32, except if a dtype is provided.
NMatrix.new(:dense, size, values, dtype)
end
#
# call-seq:
# indgen(size) -> NMatrix
#
# Returns an integer NMatrix. Equivalent to seq(n, :int32).
#
# * *Arguments* :
# - +size+ -> Size of the sequence.
# * *Returns* :
# - NMatrix with dtype +:int32+.
#
def indgen(size)
NMatrix.seq(size, :int32)
end
#
# call-seq:
# findgen(size) -> NMatrix
#
# Returns a float NMatrix. Equivalent to seq(n, :float32).
#
# * *Arguments* :
# - +size+ -> Size of the sequence.
# * *Returns* :
# - NMatrix with dtype +:float32+.
#
def findgen(size)
NMatrix.seq(size, :float32)
end
#
# call-seq:
# bindgen(size) -> NMatrix
#
# Returns a byte NMatrix. Equivalent to seq(n, :byte).
#
# * *Arguments* :
# - +size+ -> Size of the sequence.
# * *Returns* :
# - NMatrix with dtype +:byte+.
#
def bindgen(size)
NMatrix.seq(size, :byte)
end
#
# call-seq:
# cindgen(size) -> NMatrix
#
# Returns an complex NMatrix. Equivalent to seq(n, :complex64).
#
# * *Arguments* :
# - +size+ -> Size of the sequence.
# * *Returns* :
# - NMatrix with dtype +:complex64+.
#
def cindgen(size)
NMatrix.seq(size, :complex64)
end
end
#
# call-seq:
# column(column_number) -> NMatrix
# column(column_number, get_by) -> NMatrix
#
# Returns the column specified. Uses slicing by copy as default.
#
# * *Arguments* :
# - +column_number+ -> Integer.
# - +get_by+ -> Type of slicing to use, +:copy+ or +:reference+.
# * *Returns* :
# - A NMatrix representing the requested column as a column vector.
#
# Examples:
#
# m = NMatrix.new(2, [1, 4, 9, 14], :int32) # => 1 4
# 9 14
#
# m.column(1) # => 4
# 14
#
def column(column_number, get_by = :copy)
unless [:copy, :reference].include?(get_by)
raise ArgumentError, "column() 2nd parameter must be :copy or :reference"
end
if get_by == :copy
self.slice(0 ... self.shape[0], column_number)
else # by reference
self[0 ... self.shape[0], column_number]
end
end
alias :col :column
#
# call-seq:
# row(row_number) -> NMatrix
# row(row_number, get_by) -> NMatrix
#
# * *Arguments* :
# - +row_number+ -> Integer.
# - +get_by+ -> Type of slicing to use, +:copy+ or +:reference+.
# * *Returns* :
# - A NMatrix representing the requested row .
#
def row(row_number, get_by = :copy)
unless [:copy, :reference].include?(get_by)
raise ArgumentError, "row() 2nd parameter must be :copy or :reference"
end
if get_by == :copy
self.slice(row_number, 0 ... self.shape[1])
else # by reference
self[row_number, 0 ... self.shape[1]]
end
end
end
class NVector < NMatrix
class << self
#
# call-seq:
# zeros(size) -> NMatrix
# zeros(size, dtype) -> NMatrix
#
# Creates a new matrix of zeros with the dimensions supplied as
# parameters.
#
# * *Arguments* :
# - +size+ -> Array (or integer for square matrix) specifying the dimensions.
# - +dtype+ -> (optional) Default is +:float64+.
# * *Returns* :
# - NVector filled with zeros.
#
# Examples:
#
# NVector.zeros(2) # => 0.0
# 0.0
#
# NVector.zeros(3, :int32) # => 0
# 0
# 0
#
def zeros(size, dtype = :float64)
NVector.new(size, 0, dtype)
end
alias :zeroes :zeros
#
# call-seq:
# ones(size) -> NVector
# ones(size, dtype) -> NVector
#
# Creates a vector of ones with the dimensions supplied as
# parameters.
#
# * *Arguments* :
# - +size+ -> Array (or integer for square matrix) specifying the dimensions.
# - +dtype+ -> (optional) Default is +:float64+.
# * *Returns* :
# - NVector filled with ones.
#
# Examples:
#
# NVector.ones(2) # => 1.0
# 1.0
#
# NVector.ones(3, :int32) # => 1
# 1
# 1
#
def ones(size, dtype = :float64)
NVector.new(size, 1, dtype)
end
#
# call-seq:
# random(size) -> NVector
#
# Creates a vector with random numbers between 0 and 1 generated by
# +Random::rand+ with the dimensions supplied as parameters.
#
# * *Arguments* :
# - +size+ -> Array (or integer for square matrix) specifying the dimensions.
# - +dtype+ -> (optional) Default is +:float64+.
# * *Returns* :
# - NVector filled with random numbers generated by the +Random+ class.
#
# Examples:
#
# NVector.rand(2) # => 0.4859439730644226
# 0.1783195585012436
#
def random(size)
rng = Random.new
random_values = []
size.times { |i| random_values << rng.rand }
NVector.new(size, random_values, :float64)
end
#
# call-seq:
# seq(n) -> NVector
# seq(n, dtype) -> NVector
#
# Creates a vector with a sequence of +n+ integers starting at zero. You
# can choose other types based on the dtype parameter.
#
# * *Arguments* :
# - +n+ -> Number of integers in the sequence.
# - +dtype+ -> (optional) Default is +:int64+.
# * *Returns* :
# - NVector filled with +n+ integers.
#
# Examples:
#
# NVector.seq(2) # => 0
# 1
#
# NVector.seq(3, :float32) # => 0.0
# 1.0
# 2.0
#
def seq(n, dtype = :int64)
unless n.is_a?(Integer)
raise ArgumentError, "NVector::seq() only accepts integers as size."
end
values = (0 ... n).to_a
NVector.new(n, values, dtype)
end
#
# call-seq:
# indgen(n) -> NVector
#
# Returns an integer NVector. Equivalent to seq(n, :int32).
#
# * *Arguments* :
# - +n+ -> Size of the sequence.
# * *Returns* :
# - NVector filled with +n+ integers of dtype +:int32+.
#
def indgen(n)
NVector.seq(n, :int32)
end
#
# call-seq:
# findgen(n) -> NVector
#
# Returns a float NVector. Equivalent to seq(n, :float32).
#
# * *Arguments* :
# - +n+ -> Size of the sequence.
# * *Returns* :
# - NVector filled with +n+ integers of dtype +:float32+.
#
def findgen(n)
NVector.seq(n, :float32)
end
#
# call-seq:
# bindgen(n) -> NVector
#
# Returns a byte NVector. Equivalent to seq(n, :byte).
#
# * *Arguments* :
# - +n+ -> Size of the sequence.
# * *Returns* :
# - NVector filled with +n+ integers of dtype +:byte+.
#
def bindgen(n)
NVector.seq(n, :byte)
end
#
# call-seq:
# cindgen(n) -> NVector
#
# Returns a complex NVector. Equivalent to seq(n, :complex64).
#
# * *Arguments* :
# - +n+ -> Size of the sequence.
# * *Returns* :
# - NVector filled with +n+ integers of dtype +:complex64+.
#
def cindgen(n)
NVector.seq(n, :complex64)
end
#
# call-seq:
# linspace(a, b) -> NVector
# linspace(a, b, n) -> NVector
#
# Returns a NVector with +n+ values of dtype +:float64+ equally spaced from
# +a+ to +b+, inclusive.
#
# Following the MATLAB implementation, if n isn't provided it's assumed to
# be 100.
#
# * *Arguments* :
# - +a+ -> The first value in the sequence.
# - +b+ -> The last value in the sequence.
# - +n+ -> The number of elements.
# * *Returns* :
# - n-by-1 NMatrix with +n+ +:float64+ values.
#
# Example:
# x = NVector.linspace(0, Math::PI, 1000)
# => #
#
# x.pp
# [0.0]
# [0.0031447373909807737]
# [0.006289474781961547]
# ...
# [3.135303178807831]
# [3.138447916198812]
# [3.141592653589793]
# => nil
#
def linspace(a, b, n = 100)
# See: http://www.mathworks.com/help/matlab/ref/linspace.html
# Formula: seq(n) * step + a
# step = ((b - a) / (n - 1))
step = (b - a) * (1.0 / (n - 1))
# dtype = :float64 is used to prevent integer coercion.
result = NVector.seq(n, :float64) * NVector.new(n, step, :float64)
result += NVector.new(n, a, :float64)
result
end
end
end
# NMatrix needs to have a succinct way to create a matrix by specifying the
# components directly. This is very useful for using it as an advanced
# calculator, it is useful for learning how to use, for testing language
# features and for developing algorithms.
#
# The N class provides a way to create a matrix in a way that is compact and
# natural. The components are specified using Ruby array syntax. Optionally,
# one can specify a dtype as the last parameter (default is :float64).
#
# Examples:
#
# a = N[ 1,2,3,4 ] => 1.0 2.0 3.0 4.0
#
# a = N[ 1,2,3,4, :int32 ] => 1 2 3 4
#
# a = N[ [1,2,3], [3,4,5] ] => 1.0 2.0 3.0
# 3.0 4.0 5.0
#
# SYNTAX COMPARISON:
#
# MATLAB: a = [ [1 2 3] ; [4 5 6] ] or [ 1 2 3 ; 4 5 6 ]
# IDL: a = [ [1,2,3] , [4,5,6] ]
# NumPy: a = array( [1,2,3], [4,5,6] )
#
# SciRuby: a = N[ [1,2,3], [4,5,6] ]
# Ruby array: a = [ [1,2,3], [4,5,6] ]
#
class N
class << self
#
# call-seq:
# N[array-of-arrays, dtype = nil]
#
def [](*params)
dtype = params.last.is_a?(Symbol) ? params.pop : nil
# First find the dimensions of the array.
i = 0
dim = []
foo = params
while foo.is_a?(Array)
dim[i] = foo.length
foo = foo[0]
i += 1
end
# Then flatten the array.
NMatrix.new(dim, params.flatten, dtype)
end
end
end