--- http_interactions: - request: method: post uri: https://staging2-lcm-prod.intgdc.com/gdc/account/login body: encoding: UTF-8 string: '{"postUserLogin":{"login":"rubydev+admin@gooddata.com","password":"","remember":1,"verify_level":2}}' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - '' X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:MiS1dsJC8Dv_Q4EGi4i0Iw Dont-Reauth: - 'true' Content-Length: - '113' Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin X-Gdc-Authsst: - "" X-Gdc-Authtt: - "" Expires: - Thu, 01 Jan 1970 00:00:00 GMT Cache-Control: - no-store, no-cache, must-revalidate, max-age=0 Pragma: - no-cache P3p: - CP='IDC DSP COR ADM DEVi TAIi PSA PSD IVAi IVDi CONi HIS OUR IND CNT' X-Gdc-Log-Header: - '' Content-Type: - application/json;charset=UTF-8 Date: - Fri, 04 May 2018 09:38:28 GMT Server: - GoodData WebApp X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:MiS1dsJC8Dv_Q4EGi4i0Iw:Tu5tkrzByqXosUcv X-Gdc-Request-Time: - '48' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"userLogin":{"profile":"/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa","state":"/gdc/account/login/5ad80b895edcc438e5a4418e222733fa","token":""}}' http_version: recorded_at: Fri, 04 May 2018 09:38:28 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/account/token body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:ar0gvexQ0qe5_4T1cVC4jg X-Gdc-Authsst: - "" Dont-Reauth: - 'true' Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin Expires: - Thu, 01 Jan 1970 00:00:00 GMT Cache-Control: - no-store, no-cache, must-revalidate, max-age=0 Pragma: - no-cache P3p: - CP='IDC DSP COR ADM DEVi TAIi PSA PSD IVAi IVDi CONi HIS OUR IND CNT' X-Gdc-Authtt: - "" X-Gdc-Log-Header: - '' Content-Type: - application/json Date: - Fri, 04 May 2018 09:38:29 GMT Server: - GoodData WebApp X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:ar0gvexQ0qe5_4T1cVC4jg:TIwYXlERqjrZiN4P X-Gdc-Request-Time: - '16' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"userToken":{"token":""}}' http_version: recorded_at: Fri, 04 May 2018 09:38:29 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:mJ28imC0TjRk_PD84_HZKQ Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin Date: - Fri, 04 May 2018 09:38:29 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:mJ28imC0TjRk_PD84_HZKQ:CC6AMZRpL9sg9M9V X-Gdc-Request-Time: - '57' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"accountSetting":{"position":null,"effectiveIpWhitelist":null,"email":"rubydev+admin@gooddata.com","updated":"2018-05-03 15:33:57","lastName":"1","phoneNumber":"","links":{"auditEvents":"/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa/auditEvents","domain":"/gdc/domains/staging2-lcm-prod","self":"/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa","projects":"/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa/projects"},"firstName":"the","country":null,"ssoProvider":"test-ruby","timezone":null,"language":"en-US","ipWhitelist":null,"companyName":"","authenticationModes":["PASSWORD","SSO"],"login":"rubydev+admin@gooddata.com","created":"2017-02-10 12:18:01"}}' http_version: recorded_at: Fri, 04 May 2018 09:38:29 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:_6yYSQtxLHzv_NdvVL6tlg Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin,Accept-Encoding Date: - Fri, 04 May 2018 09:38:30 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Transfer-Encoding: - chunked X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:_6yYSQtxLHzv_NdvVL6tlg:gKK6Oh2RHheKlLR5 X-Gdc-Request-Time: - '45' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"about":{"summary":"Use links to navigate the services.","category":"GoodData API root","links":[{"link":"/gdc/","summary":"","category":"home","title":"home"},{"link":"/gdc/account/token","summary":"Temporary token generator.","category":"token","title":"token"},{"link":"/gdc/account/login","summary":"Authentication service.","category":"login","title":"login"},{"link":"/gdc/md","summary":"Metadata resources.","category":"md","title":"metadata"},{"link":"/gdc/xtab2","summary":"Report execution resource.","category":"xtab","title":"xtab"},{"link":"/gdc/exporter","summary":"Report exporting resource.","category":"report-exporter","title":"exporter"},{"link":"/gdc/account","summary":"Resource for logged in account manipulation.","category":"account","title":"account"},{"link":"/gdc/projects","summary":"Resource for user and project management.","category":"projects","title":"projects"},{"link":"/gdc/tool","summary":"Miscellaneous resources.","category":"tool","title":"tool"},{"link":"/gdc/releaseInfo","summary":"Release information.","category":"releaseInfo","title":"releaseInfo"},{"link":"/gdc/uploads","summary":"User data staging area.","category":"uploads","title":"user-uploads"}]}}' http_version: recorded_at: Fri, 04 May 2018 09:38:30 GMT - request: method: post uri: https://staging2-lcm-prod.intgdc.com/gdc/projects body: encoding: UTF-8 string: '{"project":{"meta":{"summary":"No summary","title":"Project for id to uri spec ash_20180504113830"},"content":{"guidedNavigation":1,"driver":"Pg","environment":"TESTING","authorizationToken":""}}}' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:O2VVTFlTs7zb-5K0P06PSA Content-Length: - '208' Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin Date: - Fri, 04 May 2018 09:38:30 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:O2VVTFlTs7zb-5K0P06PSA:qluk2Ujlx4MTOYf3 X-Gdc-Request-Time: - '427' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"uri":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34"}' http_version: recorded_at: Fri, 04 May 2018 09:38:31 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34 body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:Gcnoz0rZRVmWPj0Jl7cIFw Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin,Accept-Encoding Date: - Fri, 04 May 2018 09:38:31 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=99 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Transfer-Encoding: - chunked X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:Gcnoz0rZRVmWPj0Jl7cIFw:QFgETzym9cQ80ayy X-Gdc-Request-Time: - '43' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"project":{"content":{"environment":"TESTING","cluster":"","guidedNavigation":"1","isPublic":"0","driver":"Pg","state":"PREPARING"},"links":{"ldm_thumbnail":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm?thumbnail=1","self":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34","clearCaches":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/clearCaches","invitations":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/invitations","users":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/users?link=1&offset=0&limit=100","uploads":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/uploads/","ldm":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm","metadata":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34","publicartifacts":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/publicartifacts","roles":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/roles","userRoles":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/users/5ad80b895edcc438e5a4418e222733fa/roles","userPermissions":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/users/5ad80b895edcc438e5a4418e222733fa/permissions","dataload":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/dataload","connectors":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/connectors","execute":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/execute","config":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/config","projectFeatureFlags":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/projectFeatureFlags","schedules":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/schedules","templates":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/templates","eventstores":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/dataload/eventstore/stores"},"meta":{"created":"2018-05-04 11:38:31","summary":"No summary","updated":"2018-05-04 11:38:31","author":"/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa","title":"Project for id to uri spec ash_20180504113830","contributor":"/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa"}}}' http_version: recorded_at: Fri, 04 May 2018 09:38:32 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34 body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:KdcWQdcXMHhNReaE-jfjuQ Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin,Accept-Encoding Date: - Fri, 04 May 2018 09:38:35 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Transfer-Encoding: - chunked X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:KdcWQdcXMHhNReaE-jfjuQ:lY4rqBGd1L1vOCMU X-Gdc-Request-Time: - '40' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"project":{"content":{"environment":"TESTING","cluster":"","authorizationToken":"","guidedNavigation":"1","isPublic":"0","driver":"Pg","state":"ENABLED"},"links":{"ldm_thumbnail":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm?thumbnail=1","self":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34","clearCaches":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/clearCaches","invitations":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/invitations","users":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/users?link=1&offset=0&limit=100","uploads":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/uploads/","ldm":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm","metadata":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34","publicartifacts":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/publicartifacts","roles":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/roles","userRoles":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/users/5ad80b895edcc438e5a4418e222733fa/roles","userPermissions":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/users/5ad80b895edcc438e5a4418e222733fa/permissions","dataload":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/dataload","connectors":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/connectors","execute":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/execute","config":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/config","projectFeatureFlags":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/projectFeatureFlags","schedules":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/schedules","templates":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/templates","eventstores":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/dataload/eventstore/stores"},"meta":{"created":"2018-05-04 11:38:31","summary":"No summary","updated":"2018-05-04 11:38:32","author":"/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa","title":"Project for id to uri spec ash_20180504113830","contributor":"/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa"}}}' http_version: recorded_at: Fri, 04 May 2018 09:38:35 GMT - request: method: post uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/diff?includeGrain=true body: encoding: UTF-8 string: '{"diffRequest":{"targetModel":{"projectModel":{"modelMetadata":{"containCA":true},"datasets":[{"dataset":{"identifier":"dataset.csv_policies","title":"Policies","anchor":{"attribute":{"identifier":"attr.csv_policies.factsof","title":"Records of Policies","folder":"Policies"}},"attributes":[{"attribute":{"identifier":"attr.csv_policies.customer","title":"Customer","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.customer","title":"Customer","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.customer"}},{"attribute":{"identifier":"attr.csv_policies.state","title":"State","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.state","title":"State","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.state"}},{"attribute":{"identifier":"attr.csv_policies.coverage","title":"Coverage","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.coverage","title":"Coverage","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.coverage"}},{"attribute":{"identifier":"attr.csv_policies.education","title":"Education","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.education","title":"Education","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.education"}},{"attribute":{"identifier":"attr.csv_policies.employmentstatus","title":"Employmentstatus","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.employmentstatus","title":"Employmentstatus","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.employmentstatus"}},{"attribute":{"identifier":"attr.csv_policies.gender","title":"Gender","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.gender","title":"Gender","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.gender"}},{"attribute":{"identifier":"attr.csv_policies.marital_status","title":"Marital Status","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.marital_status","title":"Marital Status","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.marital_status"}},{"attribute":{"identifier":"attr.csv_policies.policy_type","title":"Policy Type","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.policy_type","title":"Policy Type","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.policy_type"}},{"attribute":{"identifier":"attr.csv_policies.renew_offer_type","title":"Renew Offer Type","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.renew_offer_type","title":"Renew Offer Type","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.renew_offer_type"}},{"attribute":{"identifier":"attr.csv_policies.sales_channel","title":"Sales Channel","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.sales_channel","title":"Sales Channel","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.sales_channel"}},{"attribute":{"identifier":"attr.csv_policies.vehicle_class","title":"Vehicle Class","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.vehicle_class","title":"Vehicle Class","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.vehicle_class"}},{"attribute":{"identifier":"attr.csv_policies.vehicle_size","title":"Vehicle Size","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.vehicle_size","title":"Vehicle Size","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.vehicle_size"}}],"facts":[{"fact":{"identifier":"fact.csv_policies.customer_lifetime_value","title":"Customer Lifetime Value","folder":"Policies","dataType":"DECIMAL(15,6)","type":"fact","restricted":true}},{"fact":{"identifier":"fact.csv_policies.income","title":"Income","folder":"Policies","dataType":"DECIMAL(15,6)","type":"fact","restricted":true}},{"fact":{"identifier":"fact.csv_policies.monthly_premium_auto","title":"Monthly Premium Auto","folder":"Policies","dataType":"DECIMAL(15,6)","type":"fact"}},{"fact":{"identifier":"fact.csv_policies.total_claim_amount","title":"Total Claim Amount","folder":"Policies","dataType":"DECIMAL(15,6)","type":"fact"}}],"references":["effective_to_date"]}}],"dateDimensions":[{"dateDimension":{"name":"effective_to_date","title":"Effective To Date"}}]}}}}' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:3GQrKpppc_uDHHmtjYymzg Content-Length: - '4502' Host: - staging2-lcm-prod.intgdc.com response: status: code: 202 message: Accepted headers: Vary: - Origin Location: - "/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/diff/edd06db33cbac3a1085d7308cb31aaa001cd752f15bde1170000004a" X-Gdc-Log-Header: - '' Date: - Fri, 04 May 2018 09:38:39 GMT Server: - GoodData WebApp Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:3GQrKpppc_uDHHmtjYymzg:HQmNQEGaOLJM2EZc X-Gdc-Request-Time: - '44' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"asyncTask":{"link":{"poll":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/diff/edd06db33cbac3a1085d7308cb31aaa001cd752f15bde1170000004a"}}}' http_version: recorded_at: Fri, 04 May 2018 09:38:39 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/diff/edd06db33cbac3a1085d7308cb31aaa001cd752f15bde1170000004a body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:xNmuVazVUsW5KDw8Pj11KA Process: - 'false' Host: - staging2-lcm-prod.intgdc.com response: status: code: 202 message: Accepted headers: Vary: - Origin Location: - "/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/diff/edd06db33cbac3a1085d7308cb31aaa001cd752f15bde1170000004a" X-Gdc-Log-Header: - '' Date: - Fri, 04 May 2018 09:38:40 GMT Server: - GoodData WebApp Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:xNmuVazVUsW5KDw8Pj11KA:MCJtuOH9uXOiPIgO X-Gdc-Request-Time: - '22' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"asyncTask":{"link":{"poll":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/diff/edd06db33cbac3a1085d7308cb31aaa001cd752f15bde1170000004a"}}}' http_version: recorded_at: Fri, 04 May 2018 09:38:40 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/diff/edd06db33cbac3a1085d7308cb31aaa001cd752f15bde1170000004a body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:is2bGFJZpSW3ydLsadelgg Process: - 'false' Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin X-Gdc-Log-Header: - '' Date: - Fri, 04 May 2018 09:38:50 GMT Server: - GoodData WebApp Accept-Ranges: - bytes Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Content-Length: - '40432' X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:is2bGFJZpSW3ydLsadelgg:ioO7IRxcTi7Qpn28 X-Gdc-Request-Time: - '21' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"projectModelDiff":{"updateOperations":[{"updateOperation":{"type":"dataset.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create dataset ''%s''","parameters":["Policies"]}},{"updateOperation":{"type":"date-dimension.create","destructive":false,"description":"Create date dimension ''%s''","parameters":["Effective To Date"]}},{"updateOperation":{"type":"anchor.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create anchor ''%s''","parameters":["Records of Policies"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Customer"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["State"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Coverage"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Education"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Employmentstatus"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Gender"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Marital Status"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Policy Type"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Renew Offer Type"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Sales Channel"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Vehicle Class"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Vehicle Size"]}},{"updateOperation":{"type":"fact.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create fact ''%s''","parameters":["Customer Lifetime Value"]}},{"updateOperation":{"type":"fact.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create fact ''%s''","parameters":["Income"]}},{"updateOperation":{"type":"fact.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create fact ''%s''","parameters":["Monthly Premium Auto"]}},{"updateOperation":{"type":"fact.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create fact ''%s''","parameters":["Total Claim Amount"]}},{"updateOperation":{"type":"dataset.references.add.dd","dataset":"dataset.csv_policies","destructive":false,"description":"Add reference to date dimension ''%s''","parameters":["Effective To Date"]}}],"updateScripts":[{"updateScript":{"maqlDdl":"CREATE FOLDER {dim.policies} VISUAL(TITLE \"Policies\") TYPE ATTRIBUTE;\nCREATE FOLDER {ffld.policies} VISUAL(TITLE \"Policies\") TYPE FACT;\nCREATE DATASET {dataset.csv_policies} VISUAL(TITLE \"Policies\");\nINCLUDE TEMPLATE \"URN:GOODDATA:DATE\" MODIFY (IDENTIFIER \"effective_to_date\", TITLE \"Effective To Date\");\nCREATE ATTRIBUTE {attr.csv_policies.factsof} VISUAL(TITLE \"Records of Policies\", FOLDER {dim.policies}) AS KEYS {f_csv_policies.id} FULLSET;\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.factsof};\nCREATE ATTRIBUTE {attr.csv_policies.customer} VISUAL(TITLE \"Customer\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_customer.id} FULLSET, {f_csv_policies.customer_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.customer};\nALTER ATTRIBUTE {attr.csv_policies.customer} ADD LABELS {label.csv_policies.customer} VISUAL(TITLE \"Customer\") AS {d_csv_policies_customer.nm_customer};\nALTER DATATYPE {d_csv_policies_customer.nm_customer} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.customer} DEFAULT LABEL {label.csv_policies.customer};\nCREATE ATTRIBUTE {attr.csv_policies.state} VISUAL(TITLE \"State\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_state.id} FULLSET, {f_csv_policies.state_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.state};\nALTER ATTRIBUTE {attr.csv_policies.state} ADD LABELS {label.csv_policies.state} VISUAL(TITLE \"State\") AS {d_csv_policies_state.nm_state};\nALTER DATATYPE {d_csv_policies_state.nm_state} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.state} DEFAULT LABEL {label.csv_policies.state};\nCREATE ATTRIBUTE {attr.csv_policies.coverage} VISUAL(TITLE \"Coverage\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_coverage.id} FULLSET, {f_csv_policies.coverage_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.coverage};\nALTER ATTRIBUTE {attr.csv_policies.coverage} ADD LABELS {label.csv_policies.coverage} VISUAL(TITLE \"Coverage\") AS {d_csv_policies_coverage.nm_coverage};\nALTER DATATYPE {d_csv_policies_coverage.nm_coverage} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.coverage} DEFAULT LABEL {label.csv_policies.coverage};\nCREATE ATTRIBUTE {attr.csv_policies.education} VISUAL(TITLE \"Education\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_education.id} FULLSET, {f_csv_policies.education_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.education};\nALTER ATTRIBUTE {attr.csv_policies.education} ADD LABELS {label.csv_policies.education} VISUAL(TITLE \"Education\") AS {d_csv_policies_education.nm_education};\nALTER DATATYPE {d_csv_policies_education.nm_education} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.education} DEFAULT LABEL {label.csv_policies.education};\nCREATE ATTRIBUTE {attr.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_employmentstatus.id} FULLSET, {f_csv_policies.employmentstatus_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.employmentstatus};\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} ADD LABELS {label.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\") AS {d_csv_policies_employmentstatus.nm_employmentstatus};\nALTER DATATYPE {d_csv_policies_employmentstatus.nm_employmentstatus} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} DEFAULT LABEL {label.csv_policies.employmentstatus};\nCREATE ATTRIBUTE {attr.csv_policies.gender} VISUAL(TITLE \"Gender\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_gender.id} FULLSET, {f_csv_policies.gender_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.gender};\nALTER ATTRIBUTE {attr.csv_policies.gender} ADD LABELS {label.csv_policies.gender} VISUAL(TITLE \"Gender\") AS {d_csv_policies_gender.nm_gender};\nALTER DATATYPE {d_csv_policies_gender.nm_gender} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.gender} DEFAULT LABEL {label.csv_policies.gender};\nCREATE ATTRIBUTE {attr.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_marital_status.id} FULLSET, {f_csv_policies.marital_status_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.marital_status};\nALTER ATTRIBUTE {attr.csv_policies.marital_status} ADD LABELS {label.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\") AS {d_csv_policies_marital_status.nm_marital_status};\nALTER DATATYPE {d_csv_policies_marital_status.nm_marital_status} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.marital_status} DEFAULT LABEL {label.csv_policies.marital_status};\nCREATE ATTRIBUTE {attr.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_policy_type.id} FULLSET, {f_csv_policies.policy_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.policy_type};\nALTER ATTRIBUTE {attr.csv_policies.policy_type} ADD LABELS {label.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\") AS {d_csv_policies_policy_type.nm_policy_type};\nALTER DATATYPE {d_csv_policies_policy_type.nm_policy_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.policy_type} DEFAULT LABEL {label.csv_policies.policy_type};\nCREATE ATTRIBUTE {attr.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_renew_offer_type.id} FULLSET, {f_csv_policies.renew_offer_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.renew_offer_type};\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} ADD LABELS {label.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\") AS {d_csv_policies_renew_offer_type.nm_renew_offer_type};\nALTER DATATYPE {d_csv_policies_renew_offer_type.nm_renew_offer_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} DEFAULT LABEL {label.csv_policies.renew_offer_type};\nCREATE ATTRIBUTE {attr.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_sales_channel.id} FULLSET, {f_csv_policies.sales_channel_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.sales_channel};\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} ADD LABELS {label.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\") AS {d_csv_policies_sales_channel.nm_sales_channel};\nALTER DATATYPE {d_csv_policies_sales_channel.nm_sales_channel} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} DEFAULT LABEL {label.csv_policies.sales_channel};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_class.id} FULLSET, {f_csv_policies.vehicle_class_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_class};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} ADD LABELS {label.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\") AS {d_csv_policies_vehicle_class.nm_vehicle_class};\nALTER DATATYPE {d_csv_policies_vehicle_class.nm_vehicle_class} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} DEFAULT LABEL {label.csv_policies.vehicle_class};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_size.id} FULLSET, {f_csv_policies.vehicle_size_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_size};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} ADD LABELS {label.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\") AS {d_csv_policies_vehicle_size.nm_vehicle_size};\nALTER DATATYPE {d_csv_policies_vehicle_size.nm_vehicle_size} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} DEFAULT LABEL {label.csv_policies.vehicle_size};\nCREATE FACT {fact.csv_policies.customer_lifetime_value} VISUAL(TITLE \"Customer Lifetime Value\", FOLDER {ffld.policies}) AS {f_csv_policies.f_customer_lifetime_value};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.customer_lifetime_value};\nALTER DATATYPE {f_csv_policies.f_customer_lifetime_value} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.customer_lifetime_value};\nCREATE FACT {fact.csv_policies.income} VISUAL(TITLE \"Income\", FOLDER {ffld.policies}) AS {f_csv_policies.f_income};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.income};\nALTER DATATYPE {f_csv_policies.f_income} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.income};\nCREATE FACT {fact.csv_policies.monthly_premium_auto} VISUAL(TITLE \"Monthly Premium Auto\", FOLDER {ffld.policies}) AS {f_csv_policies.f_monthly_premium_auto};\nALTER DATATYPE {f_csv_policies.f_monthly_premium_auto} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.monthly_premium_auto};\nCREATE FACT {fact.csv_policies.total_claim_amount} VISUAL(TITLE \"Total Claim Amount\", FOLDER {ffld.policies}) AS {f_csv_policies.f_total_claim_amount};\nALTER DATATYPE {f_csv_policies.f_total_claim_amount} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.total_claim_amount};\nALTER ATTRIBUTE {effective_to_date.date} ADD KEYS {f_csv_policies.dt_effective_to_date_id};\nSYNCHRONIZE {dataset.csv_policies};","maqlDdlChunks":["CREATE FOLDER {dim.policies} VISUAL(TITLE \"Policies\") TYPE ATTRIBUTE;\nCREATE FOLDER {ffld.policies} VISUAL(TITLE \"Policies\") TYPE FACT;\nCREATE DATASET {dataset.csv_policies} VISUAL(TITLE \"Policies\");\nINCLUDE TEMPLATE \"URN:GOODDATA:DATE\" MODIFY (IDENTIFIER \"effective_to_date\", TITLE \"Effective To Date\");\nCREATE ATTRIBUTE {attr.csv_policies.factsof} VISUAL(TITLE \"Records of Policies\", FOLDER {dim.policies}) AS KEYS {f_csv_policies.id} FULLSET;\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.factsof};\nCREATE ATTRIBUTE {attr.csv_policies.customer} VISUAL(TITLE \"Customer\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_customer.id} FULLSET, {f_csv_policies.customer_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.customer};\nALTER ATTRIBUTE {attr.csv_policies.customer} ADD LABELS {label.csv_policies.customer} VISUAL(TITLE \"Customer\") AS {d_csv_policies_customer.nm_customer};\nALTER DATATYPE {d_csv_policies_customer.nm_customer} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.customer} DEFAULT LABEL {label.csv_policies.customer};\nCREATE ATTRIBUTE {attr.csv_policies.state} VISUAL(TITLE \"State\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_state.id} FULLSET, {f_csv_policies.state_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.state};\nALTER ATTRIBUTE {attr.csv_policies.state} ADD LABELS {label.csv_policies.state} VISUAL(TITLE \"State\") AS {d_csv_policies_state.nm_state};\nALTER DATATYPE {d_csv_policies_state.nm_state} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.state} DEFAULT LABEL {label.csv_policies.state};\nCREATE ATTRIBUTE {attr.csv_policies.coverage} VISUAL(TITLE \"Coverage\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_coverage.id} FULLSET, {f_csv_policies.coverage_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.coverage};\nALTER ATTRIBUTE {attr.csv_policies.coverage} ADD LABELS {label.csv_policies.coverage} VISUAL(TITLE \"Coverage\") AS {d_csv_policies_coverage.nm_coverage};\nALTER DATATYPE {d_csv_policies_coverage.nm_coverage} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.coverage} DEFAULT LABEL {label.csv_policies.coverage};\nCREATE ATTRIBUTE {attr.csv_policies.education} VISUAL(TITLE \"Education\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_education.id} FULLSET, {f_csv_policies.education_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.education};\nALTER ATTRIBUTE {attr.csv_policies.education} ADD LABELS {label.csv_policies.education} VISUAL(TITLE \"Education\") AS {d_csv_policies_education.nm_education};\nALTER DATATYPE {d_csv_policies_education.nm_education} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.education} DEFAULT LABEL {label.csv_policies.education};\nCREATE ATTRIBUTE {attr.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_employmentstatus.id} FULLSET, {f_csv_policies.employmentstatus_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.employmentstatus};\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} ADD LABELS {label.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\") AS {d_csv_policies_employmentstatus.nm_employmentstatus};\nALTER DATATYPE {d_csv_policies_employmentstatus.nm_employmentstatus} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} DEFAULT LABEL {label.csv_policies.employmentstatus};\nCREATE ATTRIBUTE {attr.csv_policies.gender} VISUAL(TITLE \"Gender\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_gender.id} FULLSET, {f_csv_policies.gender_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.gender};\nALTER ATTRIBUTE {attr.csv_policies.gender} ADD LABELS {label.csv_policies.gender} VISUAL(TITLE \"Gender\") AS {d_csv_policies_gender.nm_gender};\nALTER DATATYPE {d_csv_policies_gender.nm_gender} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.gender} DEFAULT LABEL {label.csv_policies.gender};\nCREATE ATTRIBUTE {attr.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_marital_status.id} FULLSET, {f_csv_policies.marital_status_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.marital_status};\nALTER ATTRIBUTE {attr.csv_policies.marital_status} ADD LABELS {label.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\") AS {d_csv_policies_marital_status.nm_marital_status};\nALTER DATATYPE {d_csv_policies_marital_status.nm_marital_status} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.marital_status} DEFAULT LABEL {label.csv_policies.marital_status};\nCREATE ATTRIBUTE {attr.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_policy_type.id} FULLSET, {f_csv_policies.policy_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.policy_type};\nALTER ATTRIBUTE {attr.csv_policies.policy_type} ADD LABELS {label.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\") AS {d_csv_policies_policy_type.nm_policy_type};\nALTER DATATYPE {d_csv_policies_policy_type.nm_policy_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.policy_type} DEFAULT LABEL {label.csv_policies.policy_type};\nCREATE ATTRIBUTE {attr.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_renew_offer_type.id} FULLSET, {f_csv_policies.renew_offer_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.renew_offer_type};\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} ADD LABELS {label.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\") AS {d_csv_policies_renew_offer_type.nm_renew_offer_type};\nALTER DATATYPE {d_csv_policies_renew_offer_type.nm_renew_offer_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} DEFAULT LABEL {label.csv_policies.renew_offer_type};\nCREATE ATTRIBUTE {attr.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_sales_channel.id} FULLSET, {f_csv_policies.sales_channel_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.sales_channel};\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} ADD LABELS {label.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\") AS {d_csv_policies_sales_channel.nm_sales_channel};\nALTER DATATYPE {d_csv_policies_sales_channel.nm_sales_channel} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} DEFAULT LABEL {label.csv_policies.sales_channel};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_class.id} FULLSET, {f_csv_policies.vehicle_class_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_class};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} ADD LABELS {label.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\") AS {d_csv_policies_vehicle_class.nm_vehicle_class};\nALTER DATATYPE {d_csv_policies_vehicle_class.nm_vehicle_class} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} DEFAULT LABEL {label.csv_policies.vehicle_class};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_size.id} FULLSET, {f_csv_policies.vehicle_size_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_size};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} ADD LABELS {label.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\") AS {d_csv_policies_vehicle_size.nm_vehicle_size};\nALTER DATATYPE {d_csv_policies_vehicle_size.nm_vehicle_size} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} DEFAULT LABEL {label.csv_policies.vehicle_size};\nCREATE FACT {fact.csv_policies.customer_lifetime_value} VISUAL(TITLE \"Customer Lifetime Value\", FOLDER {ffld.policies}) AS {f_csv_policies.f_customer_lifetime_value};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.customer_lifetime_value};\nALTER DATATYPE {f_csv_policies.f_customer_lifetime_value} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.customer_lifetime_value};\nCREATE FACT {fact.csv_policies.income} VISUAL(TITLE \"Income\", FOLDER {ffld.policies}) AS {f_csv_policies.f_income};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.income};\nALTER DATATYPE {f_csv_policies.f_income} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.income};\nCREATE FACT {fact.csv_policies.monthly_premium_auto} VISUAL(TITLE \"Monthly Premium Auto\", FOLDER {ffld.policies}) AS {f_csv_policies.f_monthly_premium_auto};\nALTER DATATYPE {f_csv_policies.f_monthly_premium_auto} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.monthly_premium_auto};\nCREATE FACT {fact.csv_policies.total_claim_amount} VISUAL(TITLE \"Total Claim Amount\", FOLDER {ffld.policies}) AS {f_csv_policies.f_total_claim_amount};\nALTER DATATYPE {f_csv_policies.f_total_claim_amount} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.total_claim_amount};\nALTER ATTRIBUTE {effective_to_date.date} ADD KEYS {f_csv_policies.dt_effective_to_date_id};\nSYNCHRONIZE {dataset.csv_policies};"],"preserveData":true,"cascadeDrops":false}},{"updateScript":{"maqlDdl":"CREATE FOLDER {dim.policies} VISUAL(TITLE \"Policies\") TYPE ATTRIBUTE;\nCREATE FOLDER {ffld.policies} VISUAL(TITLE \"Policies\") TYPE FACT;\nCREATE DATASET {dataset.csv_policies} VISUAL(TITLE \"Policies\");\nINCLUDE TEMPLATE \"URN:GOODDATA:DATE\" MODIFY (IDENTIFIER \"effective_to_date\", TITLE \"Effective To Date\");\nCREATE ATTRIBUTE {attr.csv_policies.factsof} VISUAL(TITLE \"Records of Policies\", FOLDER {dim.policies}) AS KEYS {f_csv_policies.id} FULLSET;\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.factsof};\nCREATE ATTRIBUTE {attr.csv_policies.customer} VISUAL(TITLE \"Customer\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_customer.id} FULLSET, {f_csv_policies.customer_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.customer};\nALTER ATTRIBUTE {attr.csv_policies.customer} ADD LABELS {label.csv_policies.customer} VISUAL(TITLE \"Customer\") AS {d_csv_policies_customer.nm_customer};\nALTER DATATYPE {d_csv_policies_customer.nm_customer} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.customer} DEFAULT LABEL {label.csv_policies.customer};\nCREATE ATTRIBUTE {attr.csv_policies.state} VISUAL(TITLE \"State\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_state.id} FULLSET, {f_csv_policies.state_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.state};\nALTER ATTRIBUTE {attr.csv_policies.state} ADD LABELS {label.csv_policies.state} VISUAL(TITLE \"State\") AS {d_csv_policies_state.nm_state};\nALTER DATATYPE {d_csv_policies_state.nm_state} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.state} DEFAULT LABEL {label.csv_policies.state};\nCREATE ATTRIBUTE {attr.csv_policies.coverage} VISUAL(TITLE \"Coverage\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_coverage.id} FULLSET, {f_csv_policies.coverage_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.coverage};\nALTER ATTRIBUTE {attr.csv_policies.coverage} ADD LABELS {label.csv_policies.coverage} VISUAL(TITLE \"Coverage\") AS {d_csv_policies_coverage.nm_coverage};\nALTER DATATYPE {d_csv_policies_coverage.nm_coverage} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.coverage} DEFAULT LABEL {label.csv_policies.coverage};\nCREATE ATTRIBUTE {attr.csv_policies.education} VISUAL(TITLE \"Education\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_education.id} FULLSET, {f_csv_policies.education_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.education};\nALTER ATTRIBUTE {attr.csv_policies.education} ADD LABELS {label.csv_policies.education} VISUAL(TITLE \"Education\") AS {d_csv_policies_education.nm_education};\nALTER DATATYPE {d_csv_policies_education.nm_education} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.education} DEFAULT LABEL {label.csv_policies.education};\nCREATE ATTRIBUTE {attr.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_employmentstatus.id} FULLSET, {f_csv_policies.employmentstatus_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.employmentstatus};\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} ADD LABELS {label.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\") AS {d_csv_policies_employmentstatus.nm_employmentstatus};\nALTER DATATYPE {d_csv_policies_employmentstatus.nm_employmentstatus} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} DEFAULT LABEL {label.csv_policies.employmentstatus};\nCREATE ATTRIBUTE {attr.csv_policies.gender} VISUAL(TITLE \"Gender\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_gender.id} FULLSET, {f_csv_policies.gender_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.gender};\nALTER ATTRIBUTE {attr.csv_policies.gender} ADD LABELS {label.csv_policies.gender} VISUAL(TITLE \"Gender\") AS {d_csv_policies_gender.nm_gender};\nALTER DATATYPE {d_csv_policies_gender.nm_gender} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.gender} DEFAULT LABEL {label.csv_policies.gender};\nCREATE ATTRIBUTE {attr.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_marital_status.id} FULLSET, {f_csv_policies.marital_status_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.marital_status};\nALTER ATTRIBUTE {attr.csv_policies.marital_status} ADD LABELS {label.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\") AS {d_csv_policies_marital_status.nm_marital_status};\nALTER DATATYPE {d_csv_policies_marital_status.nm_marital_status} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.marital_status} DEFAULT LABEL {label.csv_policies.marital_status};\nCREATE ATTRIBUTE {attr.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_policy_type.id} FULLSET, {f_csv_policies.policy_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.policy_type};\nALTER ATTRIBUTE {attr.csv_policies.policy_type} ADD LABELS {label.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\") AS {d_csv_policies_policy_type.nm_policy_type};\nALTER DATATYPE {d_csv_policies_policy_type.nm_policy_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.policy_type} DEFAULT LABEL {label.csv_policies.policy_type};\nCREATE ATTRIBUTE {attr.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_renew_offer_type.id} FULLSET, {f_csv_policies.renew_offer_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.renew_offer_type};\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} ADD LABELS {label.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\") AS {d_csv_policies_renew_offer_type.nm_renew_offer_type};\nALTER DATATYPE {d_csv_policies_renew_offer_type.nm_renew_offer_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} DEFAULT LABEL {label.csv_policies.renew_offer_type};\nCREATE ATTRIBUTE {attr.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_sales_channel.id} FULLSET, {f_csv_policies.sales_channel_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.sales_channel};\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} ADD LABELS {label.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\") AS {d_csv_policies_sales_channel.nm_sales_channel};\nALTER DATATYPE {d_csv_policies_sales_channel.nm_sales_channel} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} DEFAULT LABEL {label.csv_policies.sales_channel};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_class.id} FULLSET, {f_csv_policies.vehicle_class_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_class};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} ADD LABELS {label.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\") AS {d_csv_policies_vehicle_class.nm_vehicle_class};\nALTER DATATYPE {d_csv_policies_vehicle_class.nm_vehicle_class} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} DEFAULT LABEL {label.csv_policies.vehicle_class};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_size.id} FULLSET, {f_csv_policies.vehicle_size_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_size};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} ADD LABELS {label.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\") AS {d_csv_policies_vehicle_size.nm_vehicle_size};\nALTER DATATYPE {d_csv_policies_vehicle_size.nm_vehicle_size} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} DEFAULT LABEL {label.csv_policies.vehicle_size};\nCREATE FACT {fact.csv_policies.customer_lifetime_value} VISUAL(TITLE \"Customer Lifetime Value\", FOLDER {ffld.policies}) AS {f_csv_policies.f_customer_lifetime_value};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.customer_lifetime_value};\nALTER DATATYPE {f_csv_policies.f_customer_lifetime_value} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.customer_lifetime_value};\nCREATE FACT {fact.csv_policies.income} VISUAL(TITLE \"Income\", FOLDER {ffld.policies}) AS {f_csv_policies.f_income};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.income};\nALTER DATATYPE {f_csv_policies.f_income} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.income};\nCREATE FACT {fact.csv_policies.monthly_premium_auto} VISUAL(TITLE \"Monthly Premium Auto\", FOLDER {ffld.policies}) AS {f_csv_policies.f_monthly_premium_auto};\nALTER DATATYPE {f_csv_policies.f_monthly_premium_auto} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.monthly_premium_auto};\nCREATE FACT {fact.csv_policies.total_claim_amount} VISUAL(TITLE \"Total Claim Amount\", FOLDER {ffld.policies}) AS {f_csv_policies.f_total_claim_amount};\nALTER DATATYPE {f_csv_policies.f_total_claim_amount} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.total_claim_amount};\nALTER ATTRIBUTE {effective_to_date.date} ADD KEYS {f_csv_policies.dt_effective_to_date_id};\nSYNCHRONIZE {dataset.csv_policies};","maqlDdlChunks":["CREATE FOLDER {dim.policies} VISUAL(TITLE \"Policies\") TYPE ATTRIBUTE;\nCREATE FOLDER {ffld.policies} VISUAL(TITLE \"Policies\") TYPE FACT;\nCREATE DATASET {dataset.csv_policies} VISUAL(TITLE \"Policies\");\nINCLUDE TEMPLATE \"URN:GOODDATA:DATE\" MODIFY (IDENTIFIER \"effective_to_date\", TITLE \"Effective To Date\");\nCREATE ATTRIBUTE {attr.csv_policies.factsof} VISUAL(TITLE \"Records of Policies\", FOLDER {dim.policies}) AS KEYS {f_csv_policies.id} FULLSET;\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.factsof};\nCREATE ATTRIBUTE {attr.csv_policies.customer} VISUAL(TITLE \"Customer\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_customer.id} FULLSET, {f_csv_policies.customer_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.customer};\nALTER ATTRIBUTE {attr.csv_policies.customer} ADD LABELS {label.csv_policies.customer} VISUAL(TITLE \"Customer\") AS {d_csv_policies_customer.nm_customer};\nALTER DATATYPE {d_csv_policies_customer.nm_customer} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.customer} DEFAULT LABEL {label.csv_policies.customer};\nCREATE ATTRIBUTE {attr.csv_policies.state} VISUAL(TITLE \"State\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_state.id} FULLSET, {f_csv_policies.state_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.state};\nALTER ATTRIBUTE {attr.csv_policies.state} ADD LABELS {label.csv_policies.state} VISUAL(TITLE \"State\") AS {d_csv_policies_state.nm_state};\nALTER DATATYPE {d_csv_policies_state.nm_state} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.state} DEFAULT LABEL {label.csv_policies.state};\nCREATE ATTRIBUTE {attr.csv_policies.coverage} VISUAL(TITLE \"Coverage\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_coverage.id} FULLSET, {f_csv_policies.coverage_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.coverage};\nALTER ATTRIBUTE {attr.csv_policies.coverage} ADD LABELS {label.csv_policies.coverage} VISUAL(TITLE \"Coverage\") AS {d_csv_policies_coverage.nm_coverage};\nALTER DATATYPE {d_csv_policies_coverage.nm_coverage} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.coverage} DEFAULT LABEL {label.csv_policies.coverage};\nCREATE ATTRIBUTE {attr.csv_policies.education} VISUAL(TITLE \"Education\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_education.id} FULLSET, {f_csv_policies.education_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.education};\nALTER ATTRIBUTE {attr.csv_policies.education} ADD LABELS {label.csv_policies.education} VISUAL(TITLE \"Education\") AS {d_csv_policies_education.nm_education};\nALTER DATATYPE {d_csv_policies_education.nm_education} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.education} DEFAULT LABEL {label.csv_policies.education};\nCREATE ATTRIBUTE {attr.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_employmentstatus.id} FULLSET, {f_csv_policies.employmentstatus_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.employmentstatus};\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} ADD LABELS {label.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\") AS {d_csv_policies_employmentstatus.nm_employmentstatus};\nALTER DATATYPE {d_csv_policies_employmentstatus.nm_employmentstatus} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} DEFAULT LABEL {label.csv_policies.employmentstatus};\nCREATE ATTRIBUTE {attr.csv_policies.gender} VISUAL(TITLE \"Gender\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_gender.id} FULLSET, {f_csv_policies.gender_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.gender};\nALTER ATTRIBUTE {attr.csv_policies.gender} ADD LABELS {label.csv_policies.gender} VISUAL(TITLE \"Gender\") AS {d_csv_policies_gender.nm_gender};\nALTER DATATYPE {d_csv_policies_gender.nm_gender} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.gender} DEFAULT LABEL {label.csv_policies.gender};\nCREATE ATTRIBUTE {attr.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_marital_status.id} FULLSET, {f_csv_policies.marital_status_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.marital_status};\nALTER ATTRIBUTE {attr.csv_policies.marital_status} ADD LABELS {label.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\") AS {d_csv_policies_marital_status.nm_marital_status};\nALTER DATATYPE {d_csv_policies_marital_status.nm_marital_status} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.marital_status} DEFAULT LABEL {label.csv_policies.marital_status};\nCREATE ATTRIBUTE {attr.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_policy_type.id} FULLSET, {f_csv_policies.policy_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.policy_type};\nALTER ATTRIBUTE {attr.csv_policies.policy_type} ADD LABELS {label.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\") AS {d_csv_policies_policy_type.nm_policy_type};\nALTER DATATYPE {d_csv_policies_policy_type.nm_policy_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.policy_type} DEFAULT LABEL {label.csv_policies.policy_type};\nCREATE ATTRIBUTE {attr.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_renew_offer_type.id} FULLSET, {f_csv_policies.renew_offer_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.renew_offer_type};\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} ADD LABELS {label.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\") AS {d_csv_policies_renew_offer_type.nm_renew_offer_type};\nALTER DATATYPE {d_csv_policies_renew_offer_type.nm_renew_offer_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} DEFAULT LABEL {label.csv_policies.renew_offer_type};\nCREATE ATTRIBUTE {attr.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_sales_channel.id} FULLSET, {f_csv_policies.sales_channel_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.sales_channel};\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} ADD LABELS {label.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\") AS {d_csv_policies_sales_channel.nm_sales_channel};\nALTER DATATYPE {d_csv_policies_sales_channel.nm_sales_channel} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} DEFAULT LABEL {label.csv_policies.sales_channel};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_class.id} FULLSET, {f_csv_policies.vehicle_class_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_class};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} ADD LABELS {label.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\") AS {d_csv_policies_vehicle_class.nm_vehicle_class};\nALTER DATATYPE {d_csv_policies_vehicle_class.nm_vehicle_class} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} DEFAULT LABEL {label.csv_policies.vehicle_class};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_size.id} FULLSET, {f_csv_policies.vehicle_size_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_size};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} ADD LABELS {label.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\") AS {d_csv_policies_vehicle_size.nm_vehicle_size};\nALTER DATATYPE {d_csv_policies_vehicle_size.nm_vehicle_size} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} DEFAULT LABEL {label.csv_policies.vehicle_size};\nCREATE FACT {fact.csv_policies.customer_lifetime_value} VISUAL(TITLE \"Customer Lifetime Value\", FOLDER {ffld.policies}) AS {f_csv_policies.f_customer_lifetime_value};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.customer_lifetime_value};\nALTER DATATYPE {f_csv_policies.f_customer_lifetime_value} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.customer_lifetime_value};\nCREATE FACT {fact.csv_policies.income} VISUAL(TITLE \"Income\", FOLDER {ffld.policies}) AS {f_csv_policies.f_income};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.income};\nALTER DATATYPE {f_csv_policies.f_income} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.income};\nCREATE FACT {fact.csv_policies.monthly_premium_auto} VISUAL(TITLE \"Monthly Premium Auto\", FOLDER {ffld.policies}) AS {f_csv_policies.f_monthly_premium_auto};\nALTER DATATYPE {f_csv_policies.f_monthly_premium_auto} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.monthly_premium_auto};\nCREATE FACT {fact.csv_policies.total_claim_amount} VISUAL(TITLE \"Total Claim Amount\", FOLDER {ffld.policies}) AS {f_csv_policies.f_total_claim_amount};\nALTER DATATYPE {f_csv_policies.f_total_claim_amount} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.total_claim_amount};\nALTER ATTRIBUTE {effective_to_date.date} ADD KEYS {f_csv_policies.dt_effective_to_date_id};\nSYNCHRONIZE {dataset.csv_policies};"],"preserveData":false,"cascadeDrops":false}}]}}' http_version: recorded_at: Fri, 04 May 2018 09:38:50 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/diff/edd06db33cbac3a1085d7308cb31aaa001cd752f15bde1170000004a body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:aopbOuXj8g2maebj6bOAbA Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin X-Gdc-Log-Header: - '' Date: - Fri, 04 May 2018 09:38:50 GMT Server: - GoodData WebApp Accept-Ranges: - bytes Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Content-Length: - '40432' X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:aopbOuXj8g2maebj6bOAbA:Q4dnCuzc4khK1qc2 X-Gdc-Request-Time: - '20' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"projectModelDiff":{"updateOperations":[{"updateOperation":{"type":"dataset.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create dataset ''%s''","parameters":["Policies"]}},{"updateOperation":{"type":"date-dimension.create","destructive":false,"description":"Create date dimension ''%s''","parameters":["Effective To Date"]}},{"updateOperation":{"type":"anchor.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create anchor ''%s''","parameters":["Records of Policies"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Customer"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["State"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Coverage"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Education"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Employmentstatus"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Gender"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Marital Status"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Policy Type"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Renew Offer Type"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Sales Channel"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Vehicle Class"]}},{"updateOperation":{"type":"attribute.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create attribute ''%s''","parameters":["Vehicle Size"]}},{"updateOperation":{"type":"fact.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create fact ''%s''","parameters":["Customer Lifetime Value"]}},{"updateOperation":{"type":"fact.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create fact ''%s''","parameters":["Income"]}},{"updateOperation":{"type":"fact.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create fact ''%s''","parameters":["Monthly Premium Auto"]}},{"updateOperation":{"type":"fact.create","dataset":"dataset.csv_policies","destructive":false,"description":"Create fact ''%s''","parameters":["Total Claim Amount"]}},{"updateOperation":{"type":"dataset.references.add.dd","dataset":"dataset.csv_policies","destructive":false,"description":"Add reference to date dimension ''%s''","parameters":["Effective To Date"]}}],"updateScripts":[{"updateScript":{"maqlDdl":"CREATE FOLDER {dim.policies} VISUAL(TITLE \"Policies\") TYPE ATTRIBUTE;\nCREATE FOLDER {ffld.policies} VISUAL(TITLE \"Policies\") TYPE FACT;\nCREATE DATASET {dataset.csv_policies} VISUAL(TITLE \"Policies\");\nINCLUDE TEMPLATE \"URN:GOODDATA:DATE\" MODIFY (IDENTIFIER \"effective_to_date\", TITLE \"Effective To Date\");\nCREATE ATTRIBUTE {attr.csv_policies.factsof} VISUAL(TITLE \"Records of Policies\", FOLDER {dim.policies}) AS KEYS {f_csv_policies.id} FULLSET;\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.factsof};\nCREATE ATTRIBUTE {attr.csv_policies.customer} VISUAL(TITLE \"Customer\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_customer.id} FULLSET, {f_csv_policies.customer_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.customer};\nALTER ATTRIBUTE {attr.csv_policies.customer} ADD LABELS {label.csv_policies.customer} VISUAL(TITLE \"Customer\") AS {d_csv_policies_customer.nm_customer};\nALTER DATATYPE {d_csv_policies_customer.nm_customer} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.customer} DEFAULT LABEL {label.csv_policies.customer};\nCREATE ATTRIBUTE {attr.csv_policies.state} VISUAL(TITLE \"State\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_state.id} FULLSET, {f_csv_policies.state_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.state};\nALTER ATTRIBUTE {attr.csv_policies.state} ADD LABELS {label.csv_policies.state} VISUAL(TITLE \"State\") AS {d_csv_policies_state.nm_state};\nALTER DATATYPE {d_csv_policies_state.nm_state} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.state} DEFAULT LABEL {label.csv_policies.state};\nCREATE ATTRIBUTE {attr.csv_policies.coverage} VISUAL(TITLE \"Coverage\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_coverage.id} FULLSET, {f_csv_policies.coverage_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.coverage};\nALTER ATTRIBUTE {attr.csv_policies.coverage} ADD LABELS {label.csv_policies.coverage} VISUAL(TITLE \"Coverage\") AS {d_csv_policies_coverage.nm_coverage};\nALTER DATATYPE {d_csv_policies_coverage.nm_coverage} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.coverage} DEFAULT LABEL {label.csv_policies.coverage};\nCREATE ATTRIBUTE {attr.csv_policies.education} VISUAL(TITLE \"Education\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_education.id} FULLSET, {f_csv_policies.education_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.education};\nALTER ATTRIBUTE {attr.csv_policies.education} ADD LABELS {label.csv_policies.education} VISUAL(TITLE \"Education\") AS {d_csv_policies_education.nm_education};\nALTER DATATYPE {d_csv_policies_education.nm_education} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.education} DEFAULT LABEL {label.csv_policies.education};\nCREATE ATTRIBUTE {attr.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_employmentstatus.id} FULLSET, {f_csv_policies.employmentstatus_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.employmentstatus};\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} ADD LABELS {label.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\") AS {d_csv_policies_employmentstatus.nm_employmentstatus};\nALTER DATATYPE {d_csv_policies_employmentstatus.nm_employmentstatus} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} DEFAULT LABEL {label.csv_policies.employmentstatus};\nCREATE ATTRIBUTE {attr.csv_policies.gender} VISUAL(TITLE \"Gender\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_gender.id} FULLSET, {f_csv_policies.gender_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.gender};\nALTER ATTRIBUTE {attr.csv_policies.gender} ADD LABELS {label.csv_policies.gender} VISUAL(TITLE \"Gender\") AS {d_csv_policies_gender.nm_gender};\nALTER DATATYPE {d_csv_policies_gender.nm_gender} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.gender} DEFAULT LABEL {label.csv_policies.gender};\nCREATE ATTRIBUTE {attr.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_marital_status.id} FULLSET, {f_csv_policies.marital_status_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.marital_status};\nALTER ATTRIBUTE {attr.csv_policies.marital_status} ADD LABELS {label.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\") AS {d_csv_policies_marital_status.nm_marital_status};\nALTER DATATYPE {d_csv_policies_marital_status.nm_marital_status} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.marital_status} DEFAULT LABEL {label.csv_policies.marital_status};\nCREATE ATTRIBUTE {attr.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_policy_type.id} FULLSET, {f_csv_policies.policy_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.policy_type};\nALTER ATTRIBUTE {attr.csv_policies.policy_type} ADD LABELS {label.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\") AS {d_csv_policies_policy_type.nm_policy_type};\nALTER DATATYPE {d_csv_policies_policy_type.nm_policy_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.policy_type} DEFAULT LABEL {label.csv_policies.policy_type};\nCREATE ATTRIBUTE {attr.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_renew_offer_type.id} FULLSET, {f_csv_policies.renew_offer_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.renew_offer_type};\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} ADD LABELS {label.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\") AS {d_csv_policies_renew_offer_type.nm_renew_offer_type};\nALTER DATATYPE {d_csv_policies_renew_offer_type.nm_renew_offer_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} DEFAULT LABEL {label.csv_policies.renew_offer_type};\nCREATE ATTRIBUTE {attr.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_sales_channel.id} FULLSET, {f_csv_policies.sales_channel_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.sales_channel};\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} ADD LABELS {label.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\") AS {d_csv_policies_sales_channel.nm_sales_channel};\nALTER DATATYPE {d_csv_policies_sales_channel.nm_sales_channel} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} DEFAULT LABEL {label.csv_policies.sales_channel};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_class.id} FULLSET, {f_csv_policies.vehicle_class_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_class};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} ADD LABELS {label.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\") AS {d_csv_policies_vehicle_class.nm_vehicle_class};\nALTER DATATYPE {d_csv_policies_vehicle_class.nm_vehicle_class} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} DEFAULT LABEL {label.csv_policies.vehicle_class};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_size.id} FULLSET, {f_csv_policies.vehicle_size_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_size};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} ADD LABELS {label.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\") AS {d_csv_policies_vehicle_size.nm_vehicle_size};\nALTER DATATYPE {d_csv_policies_vehicle_size.nm_vehicle_size} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} DEFAULT LABEL {label.csv_policies.vehicle_size};\nCREATE FACT {fact.csv_policies.customer_lifetime_value} VISUAL(TITLE \"Customer Lifetime Value\", FOLDER {ffld.policies}) AS {f_csv_policies.f_customer_lifetime_value};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.customer_lifetime_value};\nALTER DATATYPE {f_csv_policies.f_customer_lifetime_value} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.customer_lifetime_value};\nCREATE FACT {fact.csv_policies.income} VISUAL(TITLE \"Income\", FOLDER {ffld.policies}) AS {f_csv_policies.f_income};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.income};\nALTER DATATYPE {f_csv_policies.f_income} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.income};\nCREATE FACT {fact.csv_policies.monthly_premium_auto} VISUAL(TITLE \"Monthly Premium Auto\", FOLDER {ffld.policies}) AS {f_csv_policies.f_monthly_premium_auto};\nALTER DATATYPE {f_csv_policies.f_monthly_premium_auto} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.monthly_premium_auto};\nCREATE FACT {fact.csv_policies.total_claim_amount} VISUAL(TITLE \"Total Claim Amount\", FOLDER {ffld.policies}) AS {f_csv_policies.f_total_claim_amount};\nALTER DATATYPE {f_csv_policies.f_total_claim_amount} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.total_claim_amount};\nALTER ATTRIBUTE {effective_to_date.date} ADD KEYS {f_csv_policies.dt_effective_to_date_id};\nSYNCHRONIZE {dataset.csv_policies};","maqlDdlChunks":["CREATE FOLDER {dim.policies} VISUAL(TITLE \"Policies\") TYPE ATTRIBUTE;\nCREATE FOLDER {ffld.policies} VISUAL(TITLE \"Policies\") TYPE FACT;\nCREATE DATASET {dataset.csv_policies} VISUAL(TITLE \"Policies\");\nINCLUDE TEMPLATE \"URN:GOODDATA:DATE\" MODIFY (IDENTIFIER \"effective_to_date\", TITLE \"Effective To Date\");\nCREATE ATTRIBUTE {attr.csv_policies.factsof} VISUAL(TITLE \"Records of Policies\", FOLDER {dim.policies}) AS KEYS {f_csv_policies.id} FULLSET;\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.factsof};\nCREATE ATTRIBUTE {attr.csv_policies.customer} VISUAL(TITLE \"Customer\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_customer.id} FULLSET, {f_csv_policies.customer_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.customer};\nALTER ATTRIBUTE {attr.csv_policies.customer} ADD LABELS {label.csv_policies.customer} VISUAL(TITLE \"Customer\") AS {d_csv_policies_customer.nm_customer};\nALTER DATATYPE {d_csv_policies_customer.nm_customer} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.customer} DEFAULT LABEL {label.csv_policies.customer};\nCREATE ATTRIBUTE {attr.csv_policies.state} VISUAL(TITLE \"State\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_state.id} FULLSET, {f_csv_policies.state_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.state};\nALTER ATTRIBUTE {attr.csv_policies.state} ADD LABELS {label.csv_policies.state} VISUAL(TITLE \"State\") AS {d_csv_policies_state.nm_state};\nALTER DATATYPE {d_csv_policies_state.nm_state} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.state} DEFAULT LABEL {label.csv_policies.state};\nCREATE ATTRIBUTE {attr.csv_policies.coverage} VISUAL(TITLE \"Coverage\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_coverage.id} FULLSET, {f_csv_policies.coverage_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.coverage};\nALTER ATTRIBUTE {attr.csv_policies.coverage} ADD LABELS {label.csv_policies.coverage} VISUAL(TITLE \"Coverage\") AS {d_csv_policies_coverage.nm_coverage};\nALTER DATATYPE {d_csv_policies_coverage.nm_coverage} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.coverage} DEFAULT LABEL {label.csv_policies.coverage};\nCREATE ATTRIBUTE {attr.csv_policies.education} VISUAL(TITLE \"Education\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_education.id} FULLSET, {f_csv_policies.education_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.education};\nALTER ATTRIBUTE {attr.csv_policies.education} ADD LABELS {label.csv_policies.education} VISUAL(TITLE \"Education\") AS {d_csv_policies_education.nm_education};\nALTER DATATYPE {d_csv_policies_education.nm_education} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.education} DEFAULT LABEL {label.csv_policies.education};\nCREATE ATTRIBUTE {attr.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_employmentstatus.id} FULLSET, {f_csv_policies.employmentstatus_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.employmentstatus};\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} ADD LABELS {label.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\") AS {d_csv_policies_employmentstatus.nm_employmentstatus};\nALTER DATATYPE {d_csv_policies_employmentstatus.nm_employmentstatus} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} DEFAULT LABEL {label.csv_policies.employmentstatus};\nCREATE ATTRIBUTE {attr.csv_policies.gender} VISUAL(TITLE \"Gender\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_gender.id} FULLSET, {f_csv_policies.gender_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.gender};\nALTER ATTRIBUTE {attr.csv_policies.gender} ADD LABELS {label.csv_policies.gender} VISUAL(TITLE \"Gender\") AS {d_csv_policies_gender.nm_gender};\nALTER DATATYPE {d_csv_policies_gender.nm_gender} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.gender} DEFAULT LABEL {label.csv_policies.gender};\nCREATE ATTRIBUTE {attr.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_marital_status.id} FULLSET, {f_csv_policies.marital_status_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.marital_status};\nALTER ATTRIBUTE {attr.csv_policies.marital_status} ADD LABELS {label.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\") AS {d_csv_policies_marital_status.nm_marital_status};\nALTER DATATYPE {d_csv_policies_marital_status.nm_marital_status} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.marital_status} DEFAULT LABEL {label.csv_policies.marital_status};\nCREATE ATTRIBUTE {attr.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_policy_type.id} FULLSET, {f_csv_policies.policy_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.policy_type};\nALTER ATTRIBUTE {attr.csv_policies.policy_type} ADD LABELS {label.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\") AS {d_csv_policies_policy_type.nm_policy_type};\nALTER DATATYPE {d_csv_policies_policy_type.nm_policy_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.policy_type} DEFAULT LABEL {label.csv_policies.policy_type};\nCREATE ATTRIBUTE {attr.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_renew_offer_type.id} FULLSET, {f_csv_policies.renew_offer_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.renew_offer_type};\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} ADD LABELS {label.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\") AS {d_csv_policies_renew_offer_type.nm_renew_offer_type};\nALTER DATATYPE {d_csv_policies_renew_offer_type.nm_renew_offer_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} DEFAULT LABEL {label.csv_policies.renew_offer_type};\nCREATE ATTRIBUTE {attr.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_sales_channel.id} FULLSET, {f_csv_policies.sales_channel_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.sales_channel};\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} ADD LABELS {label.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\") AS {d_csv_policies_sales_channel.nm_sales_channel};\nALTER DATATYPE {d_csv_policies_sales_channel.nm_sales_channel} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} DEFAULT LABEL {label.csv_policies.sales_channel};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_class.id} FULLSET, {f_csv_policies.vehicle_class_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_class};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} ADD LABELS {label.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\") AS {d_csv_policies_vehicle_class.nm_vehicle_class};\nALTER DATATYPE {d_csv_policies_vehicle_class.nm_vehicle_class} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} DEFAULT LABEL {label.csv_policies.vehicle_class};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_size.id} FULLSET, {f_csv_policies.vehicle_size_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_size};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} ADD LABELS {label.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\") AS {d_csv_policies_vehicle_size.nm_vehicle_size};\nALTER DATATYPE {d_csv_policies_vehicle_size.nm_vehicle_size} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} DEFAULT LABEL {label.csv_policies.vehicle_size};\nCREATE FACT {fact.csv_policies.customer_lifetime_value} VISUAL(TITLE \"Customer Lifetime Value\", FOLDER {ffld.policies}) AS {f_csv_policies.f_customer_lifetime_value};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.customer_lifetime_value};\nALTER DATATYPE {f_csv_policies.f_customer_lifetime_value} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.customer_lifetime_value};\nCREATE FACT {fact.csv_policies.income} VISUAL(TITLE \"Income\", FOLDER {ffld.policies}) AS {f_csv_policies.f_income};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.income};\nALTER DATATYPE {f_csv_policies.f_income} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.income};\nCREATE FACT {fact.csv_policies.monthly_premium_auto} VISUAL(TITLE \"Monthly Premium Auto\", FOLDER {ffld.policies}) AS {f_csv_policies.f_monthly_premium_auto};\nALTER DATATYPE {f_csv_policies.f_monthly_premium_auto} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.monthly_premium_auto};\nCREATE FACT {fact.csv_policies.total_claim_amount} VISUAL(TITLE \"Total Claim Amount\", FOLDER {ffld.policies}) AS {f_csv_policies.f_total_claim_amount};\nALTER DATATYPE {f_csv_policies.f_total_claim_amount} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.total_claim_amount};\nALTER ATTRIBUTE {effective_to_date.date} ADD KEYS {f_csv_policies.dt_effective_to_date_id};\nSYNCHRONIZE {dataset.csv_policies};"],"preserveData":true,"cascadeDrops":false}},{"updateScript":{"maqlDdl":"CREATE FOLDER {dim.policies} VISUAL(TITLE \"Policies\") TYPE ATTRIBUTE;\nCREATE FOLDER {ffld.policies} VISUAL(TITLE \"Policies\") TYPE FACT;\nCREATE DATASET {dataset.csv_policies} VISUAL(TITLE \"Policies\");\nINCLUDE TEMPLATE \"URN:GOODDATA:DATE\" MODIFY (IDENTIFIER \"effective_to_date\", TITLE \"Effective To Date\");\nCREATE ATTRIBUTE {attr.csv_policies.factsof} VISUAL(TITLE \"Records of Policies\", FOLDER {dim.policies}) AS KEYS {f_csv_policies.id} FULLSET;\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.factsof};\nCREATE ATTRIBUTE {attr.csv_policies.customer} VISUAL(TITLE \"Customer\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_customer.id} FULLSET, {f_csv_policies.customer_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.customer};\nALTER ATTRIBUTE {attr.csv_policies.customer} ADD LABELS {label.csv_policies.customer} VISUAL(TITLE \"Customer\") AS {d_csv_policies_customer.nm_customer};\nALTER DATATYPE {d_csv_policies_customer.nm_customer} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.customer} DEFAULT LABEL {label.csv_policies.customer};\nCREATE ATTRIBUTE {attr.csv_policies.state} VISUAL(TITLE \"State\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_state.id} FULLSET, {f_csv_policies.state_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.state};\nALTER ATTRIBUTE {attr.csv_policies.state} ADD LABELS {label.csv_policies.state} VISUAL(TITLE \"State\") AS {d_csv_policies_state.nm_state};\nALTER DATATYPE {d_csv_policies_state.nm_state} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.state} DEFAULT LABEL {label.csv_policies.state};\nCREATE ATTRIBUTE {attr.csv_policies.coverage} VISUAL(TITLE \"Coverage\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_coverage.id} FULLSET, {f_csv_policies.coverage_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.coverage};\nALTER ATTRIBUTE {attr.csv_policies.coverage} ADD LABELS {label.csv_policies.coverage} VISUAL(TITLE \"Coverage\") AS {d_csv_policies_coverage.nm_coverage};\nALTER DATATYPE {d_csv_policies_coverage.nm_coverage} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.coverage} DEFAULT LABEL {label.csv_policies.coverage};\nCREATE ATTRIBUTE {attr.csv_policies.education} VISUAL(TITLE \"Education\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_education.id} FULLSET, {f_csv_policies.education_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.education};\nALTER ATTRIBUTE {attr.csv_policies.education} ADD LABELS {label.csv_policies.education} VISUAL(TITLE \"Education\") AS {d_csv_policies_education.nm_education};\nALTER DATATYPE {d_csv_policies_education.nm_education} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.education} DEFAULT LABEL {label.csv_policies.education};\nCREATE ATTRIBUTE {attr.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_employmentstatus.id} FULLSET, {f_csv_policies.employmentstatus_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.employmentstatus};\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} ADD LABELS {label.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\") AS {d_csv_policies_employmentstatus.nm_employmentstatus};\nALTER DATATYPE {d_csv_policies_employmentstatus.nm_employmentstatus} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} DEFAULT LABEL {label.csv_policies.employmentstatus};\nCREATE ATTRIBUTE {attr.csv_policies.gender} VISUAL(TITLE \"Gender\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_gender.id} FULLSET, {f_csv_policies.gender_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.gender};\nALTER ATTRIBUTE {attr.csv_policies.gender} ADD LABELS {label.csv_policies.gender} VISUAL(TITLE \"Gender\") AS {d_csv_policies_gender.nm_gender};\nALTER DATATYPE {d_csv_policies_gender.nm_gender} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.gender} DEFAULT LABEL {label.csv_policies.gender};\nCREATE ATTRIBUTE {attr.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_marital_status.id} FULLSET, {f_csv_policies.marital_status_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.marital_status};\nALTER ATTRIBUTE {attr.csv_policies.marital_status} ADD LABELS {label.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\") AS {d_csv_policies_marital_status.nm_marital_status};\nALTER DATATYPE {d_csv_policies_marital_status.nm_marital_status} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.marital_status} DEFAULT LABEL {label.csv_policies.marital_status};\nCREATE ATTRIBUTE {attr.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_policy_type.id} FULLSET, {f_csv_policies.policy_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.policy_type};\nALTER ATTRIBUTE {attr.csv_policies.policy_type} ADD LABELS {label.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\") AS {d_csv_policies_policy_type.nm_policy_type};\nALTER DATATYPE {d_csv_policies_policy_type.nm_policy_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.policy_type} DEFAULT LABEL {label.csv_policies.policy_type};\nCREATE ATTRIBUTE {attr.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_renew_offer_type.id} FULLSET, {f_csv_policies.renew_offer_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.renew_offer_type};\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} ADD LABELS {label.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\") AS {d_csv_policies_renew_offer_type.nm_renew_offer_type};\nALTER DATATYPE {d_csv_policies_renew_offer_type.nm_renew_offer_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} DEFAULT LABEL {label.csv_policies.renew_offer_type};\nCREATE ATTRIBUTE {attr.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_sales_channel.id} FULLSET, {f_csv_policies.sales_channel_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.sales_channel};\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} ADD LABELS {label.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\") AS {d_csv_policies_sales_channel.nm_sales_channel};\nALTER DATATYPE {d_csv_policies_sales_channel.nm_sales_channel} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} DEFAULT LABEL {label.csv_policies.sales_channel};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_class.id} FULLSET, {f_csv_policies.vehicle_class_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_class};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} ADD LABELS {label.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\") AS {d_csv_policies_vehicle_class.nm_vehicle_class};\nALTER DATATYPE {d_csv_policies_vehicle_class.nm_vehicle_class} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} DEFAULT LABEL {label.csv_policies.vehicle_class};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_size.id} FULLSET, {f_csv_policies.vehicle_size_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_size};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} ADD LABELS {label.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\") AS {d_csv_policies_vehicle_size.nm_vehicle_size};\nALTER DATATYPE {d_csv_policies_vehicle_size.nm_vehicle_size} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} DEFAULT LABEL {label.csv_policies.vehicle_size};\nCREATE FACT {fact.csv_policies.customer_lifetime_value} VISUAL(TITLE \"Customer Lifetime Value\", FOLDER {ffld.policies}) AS {f_csv_policies.f_customer_lifetime_value};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.customer_lifetime_value};\nALTER DATATYPE {f_csv_policies.f_customer_lifetime_value} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.customer_lifetime_value};\nCREATE FACT {fact.csv_policies.income} VISUAL(TITLE \"Income\", FOLDER {ffld.policies}) AS {f_csv_policies.f_income};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.income};\nALTER DATATYPE {f_csv_policies.f_income} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.income};\nCREATE FACT {fact.csv_policies.monthly_premium_auto} VISUAL(TITLE \"Monthly Premium Auto\", FOLDER {ffld.policies}) AS {f_csv_policies.f_monthly_premium_auto};\nALTER DATATYPE {f_csv_policies.f_monthly_premium_auto} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.monthly_premium_auto};\nCREATE FACT {fact.csv_policies.total_claim_amount} VISUAL(TITLE \"Total Claim Amount\", FOLDER {ffld.policies}) AS {f_csv_policies.f_total_claim_amount};\nALTER DATATYPE {f_csv_policies.f_total_claim_amount} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.total_claim_amount};\nALTER ATTRIBUTE {effective_to_date.date} ADD KEYS {f_csv_policies.dt_effective_to_date_id};\nSYNCHRONIZE {dataset.csv_policies};","maqlDdlChunks":["CREATE FOLDER {dim.policies} VISUAL(TITLE \"Policies\") TYPE ATTRIBUTE;\nCREATE FOLDER {ffld.policies} VISUAL(TITLE \"Policies\") TYPE FACT;\nCREATE DATASET {dataset.csv_policies} VISUAL(TITLE \"Policies\");\nINCLUDE TEMPLATE \"URN:GOODDATA:DATE\" MODIFY (IDENTIFIER \"effective_to_date\", TITLE \"Effective To Date\");\nCREATE ATTRIBUTE {attr.csv_policies.factsof} VISUAL(TITLE \"Records of Policies\", FOLDER {dim.policies}) AS KEYS {f_csv_policies.id} FULLSET;\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.factsof};\nCREATE ATTRIBUTE {attr.csv_policies.customer} VISUAL(TITLE \"Customer\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_customer.id} FULLSET, {f_csv_policies.customer_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.customer};\nALTER ATTRIBUTE {attr.csv_policies.customer} ADD LABELS {label.csv_policies.customer} VISUAL(TITLE \"Customer\") AS {d_csv_policies_customer.nm_customer};\nALTER DATATYPE {d_csv_policies_customer.nm_customer} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.customer} DEFAULT LABEL {label.csv_policies.customer};\nCREATE ATTRIBUTE {attr.csv_policies.state} VISUAL(TITLE \"State\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_state.id} FULLSET, {f_csv_policies.state_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.state};\nALTER ATTRIBUTE {attr.csv_policies.state} ADD LABELS {label.csv_policies.state} VISUAL(TITLE \"State\") AS {d_csv_policies_state.nm_state};\nALTER DATATYPE {d_csv_policies_state.nm_state} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.state} DEFAULT LABEL {label.csv_policies.state};\nCREATE ATTRIBUTE {attr.csv_policies.coverage} VISUAL(TITLE \"Coverage\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_coverage.id} FULLSET, {f_csv_policies.coverage_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.coverage};\nALTER ATTRIBUTE {attr.csv_policies.coverage} ADD LABELS {label.csv_policies.coverage} VISUAL(TITLE \"Coverage\") AS {d_csv_policies_coverage.nm_coverage};\nALTER DATATYPE {d_csv_policies_coverage.nm_coverage} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.coverage} DEFAULT LABEL {label.csv_policies.coverage};\nCREATE ATTRIBUTE {attr.csv_policies.education} VISUAL(TITLE \"Education\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_education.id} FULLSET, {f_csv_policies.education_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.education};\nALTER ATTRIBUTE {attr.csv_policies.education} ADD LABELS {label.csv_policies.education} VISUAL(TITLE \"Education\") AS {d_csv_policies_education.nm_education};\nALTER DATATYPE {d_csv_policies_education.nm_education} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.education} DEFAULT LABEL {label.csv_policies.education};\nCREATE ATTRIBUTE {attr.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_employmentstatus.id} FULLSET, {f_csv_policies.employmentstatus_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.employmentstatus};\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} ADD LABELS {label.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\") AS {d_csv_policies_employmentstatus.nm_employmentstatus};\nALTER DATATYPE {d_csv_policies_employmentstatus.nm_employmentstatus} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} DEFAULT LABEL {label.csv_policies.employmentstatus};\nCREATE ATTRIBUTE {attr.csv_policies.gender} VISUAL(TITLE \"Gender\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_gender.id} FULLSET, {f_csv_policies.gender_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.gender};\nALTER ATTRIBUTE {attr.csv_policies.gender} ADD LABELS {label.csv_policies.gender} VISUAL(TITLE \"Gender\") AS {d_csv_policies_gender.nm_gender};\nALTER DATATYPE {d_csv_policies_gender.nm_gender} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.gender} DEFAULT LABEL {label.csv_policies.gender};\nCREATE ATTRIBUTE {attr.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_marital_status.id} FULLSET, {f_csv_policies.marital_status_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.marital_status};\nALTER ATTRIBUTE {attr.csv_policies.marital_status} ADD LABELS {label.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\") AS {d_csv_policies_marital_status.nm_marital_status};\nALTER DATATYPE {d_csv_policies_marital_status.nm_marital_status} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.marital_status} DEFAULT LABEL {label.csv_policies.marital_status};\nCREATE ATTRIBUTE {attr.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_policy_type.id} FULLSET, {f_csv_policies.policy_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.policy_type};\nALTER ATTRIBUTE {attr.csv_policies.policy_type} ADD LABELS {label.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\") AS {d_csv_policies_policy_type.nm_policy_type};\nALTER DATATYPE {d_csv_policies_policy_type.nm_policy_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.policy_type} DEFAULT LABEL {label.csv_policies.policy_type};\nCREATE ATTRIBUTE {attr.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_renew_offer_type.id} FULLSET, {f_csv_policies.renew_offer_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.renew_offer_type};\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} ADD LABELS {label.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\") AS {d_csv_policies_renew_offer_type.nm_renew_offer_type};\nALTER DATATYPE {d_csv_policies_renew_offer_type.nm_renew_offer_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} DEFAULT LABEL {label.csv_policies.renew_offer_type};\nCREATE ATTRIBUTE {attr.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_sales_channel.id} FULLSET, {f_csv_policies.sales_channel_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.sales_channel};\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} ADD LABELS {label.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\") AS {d_csv_policies_sales_channel.nm_sales_channel};\nALTER DATATYPE {d_csv_policies_sales_channel.nm_sales_channel} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} DEFAULT LABEL {label.csv_policies.sales_channel};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_class.id} FULLSET, {f_csv_policies.vehicle_class_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_class};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} ADD LABELS {label.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\") AS {d_csv_policies_vehicle_class.nm_vehicle_class};\nALTER DATATYPE {d_csv_policies_vehicle_class.nm_vehicle_class} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} DEFAULT LABEL {label.csv_policies.vehicle_class};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_size.id} FULLSET, {f_csv_policies.vehicle_size_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_size};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} ADD LABELS {label.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\") AS {d_csv_policies_vehicle_size.nm_vehicle_size};\nALTER DATATYPE {d_csv_policies_vehicle_size.nm_vehicle_size} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} DEFAULT LABEL {label.csv_policies.vehicle_size};\nCREATE FACT {fact.csv_policies.customer_lifetime_value} VISUAL(TITLE \"Customer Lifetime Value\", FOLDER {ffld.policies}) AS {f_csv_policies.f_customer_lifetime_value};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.customer_lifetime_value};\nALTER DATATYPE {f_csv_policies.f_customer_lifetime_value} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.customer_lifetime_value};\nCREATE FACT {fact.csv_policies.income} VISUAL(TITLE \"Income\", FOLDER {ffld.policies}) AS {f_csv_policies.f_income};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.income};\nALTER DATATYPE {f_csv_policies.f_income} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.income};\nCREATE FACT {fact.csv_policies.monthly_premium_auto} VISUAL(TITLE \"Monthly Premium Auto\", FOLDER {ffld.policies}) AS {f_csv_policies.f_monthly_premium_auto};\nALTER DATATYPE {f_csv_policies.f_monthly_premium_auto} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.monthly_premium_auto};\nCREATE FACT {fact.csv_policies.total_claim_amount} VISUAL(TITLE \"Total Claim Amount\", FOLDER {ffld.policies}) AS {f_csv_policies.f_total_claim_amount};\nALTER DATATYPE {f_csv_policies.f_total_claim_amount} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.total_claim_amount};\nALTER ATTRIBUTE {effective_to_date.date} ADD KEYS {f_csv_policies.dt_effective_to_date_id};\nSYNCHRONIZE {dataset.csv_policies};"],"preserveData":false,"cascadeDrops":false}}]}}' http_version: recorded_at: Fri, 04 May 2018 09:38:51 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34 body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:qxIa4aoWdmS1d-iH4AZfjw Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin,Accept-Encoding Date: - Fri, 04 May 2018 09:38:52 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Transfer-Encoding: - chunked X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:qxIa4aoWdmS1d-iH4AZfjw:Qh96zdTrF3MAIx22 X-Gdc-Request-Time: - '98' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"about":{"summary":"Metadata service for project ''fmsa7k9ty8tvwg6h9v4o0nvg071kjd34''","category":"project","instance":"fmsa7k9ty8tvwg6h9v4o0nvg071kjd34","links":[{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/data","summary":"Resources for data set manipulation.","category":"data","title":"data"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/dml","summary":"Navigation resource for physical data manipulation.","category":"dml","title":"dml"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/drillcrosspaths","summary":"Returns a list of attributes available for drilling across.","category":"drillcrosspaths","title":"drillcrosspaths"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/etl","summary":"Resources for data ETL.","category":"etl","title":"etl"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/datedimension","summary":"Resources for Date Dimension manipulation","category":"datedimension","title":"datedimension"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/favorites","summary":"Returns list of objects marked as favorites by the user.","category":"favorites","title":"favorites"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/favorite","summary":"Resource for determining if an object is in a user''s favorites.","category":"favorite","title":"favorite"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/identifiers","summary":"Resource for retrieving metadata object identifiers.","category":"instance-identifiers","title":"identifiers"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/labels","summary":"Resource for retrieving uris for element labels.","category":"labels","title":"labels"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm","summary":"Resources for logical data model (LDM) manipulation.","category":"ldm","title":"ldm"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/log","summary":"Returns a list of metadata events.","category":"logs","title":"logs"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/maintenance","summary":"Resource for project maintenace.","category":"maintenance","title":"maintenance"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/maqlvalidator","summary":"Resource for MAQL construct validation and tree representation.","category":"maqlvalidator","title":"MaqlValidator"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/obj","summary":"Resource for creating new metadata objects.","category":"obj","title":"obj"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/objects","summary":"Resource for batch operations MD objects.","category":"objects","title":"objects"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/query","summary":"Resources for querying collections of metadata objects.","category":"query","title":"query"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/reportstatistics","summary":"Returns report statistics for a specified report.","category":"report-statistic","title":"report statistics"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/search","summary":"Resource for full text search.","category":"search","title":"search"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/service","summary":"Services for metadata configuration.","category":"service","title":"service"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tags","summary":"Returns a list of tags.","category":"tags","title":"tags"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks","summary":"Task resource.","category":"tasks","title":"tasks"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/templates","summary":"Returns list of uris of templates from which the project was created.","category":"templates","title":"templates"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/translations","summary":"Resource for project localization.","category":"translations","title":"translations"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/usedby2","summary":"Returns list of objects connected to a certain object via a ''used'' edge.","category":"usedby2","title":"usedby"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/using2","summary":"Returns list of objects connected to a certain object via a ''using'' edge.","category":"using2","title":"using"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/userfilters","summary":"Relation userFilter - user management.","category":"userfilters","title":"userfilters"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/validate","summary":"Resources for LDM, PDM, IO validation.","category":"validate-project","title":"validateproject"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/variables","summary":"Resources for variable manipulation.","category":"vars","title":"variables"}]}}' http_version: recorded_at: Fri, 04 May 2018 09:38:52 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:Tl3wZU5hjHvXwl3JiYOvXg Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin Date: - Fri, 04 May 2018 09:38:52 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:Tl3wZU5hjHvXwl3JiYOvXg:hpRTeXBULwXtFDN4 X-Gdc-Request-Time: - '47' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"about":{"summary":"Resources for logical data model (LDM) manipulation within project ''fmsa7k9ty8tvwg6h9v4o0nvg071kjd34''","category":"ldm","instance":"fmsa7k9ty8tvwg6h9v4o0nvg071kjd34","links":[{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm/manage2","summary":"Resources for model manipulation with categorized result.","category":"ldm-manage2","title":"manage2"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm/singleloadinterface","summary":"Single interface for data loading.","category":"singleloadinterface","title":"singleloadinterface"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm/attributeupperbound","summary":"Attribute upper bounds for LDM.","category":"attributeupperbound","title":"attributeupperbound"}]}}' http_version: recorded_at: Fri, 04 May 2018 09:38:53 GMT - request: method: post uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm/manage2 body: encoding: UTF-8 string: '{"manage":{"maql":"CREATE FOLDER {dim.policies} VISUAL(TITLE \"Policies\") TYPE ATTRIBUTE;\nCREATE FOLDER {ffld.policies} VISUAL(TITLE \"Policies\") TYPE FACT;\nCREATE DATASET {dataset.csv_policies} VISUAL(TITLE \"Policies\");\nINCLUDE TEMPLATE \"URN:GOODDATA:DATE\" MODIFY (IDENTIFIER \"effective_to_date\", TITLE \"Effective To Date\");\nCREATE ATTRIBUTE {attr.csv_policies.factsof} VISUAL(TITLE \"Records of Policies\", FOLDER {dim.policies}) AS KEYS {f_csv_policies.id} FULLSET;\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.factsof};\nCREATE ATTRIBUTE {attr.csv_policies.customer} VISUAL(TITLE \"Customer\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_customer.id} FULLSET, {f_csv_policies.customer_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.customer};\nALTER ATTRIBUTE {attr.csv_policies.customer} ADD LABELS {label.csv_policies.customer} VISUAL(TITLE \"Customer\") AS {d_csv_policies_customer.nm_customer};\nALTER DATATYPE {d_csv_policies_customer.nm_customer} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.customer} DEFAULT LABEL {label.csv_policies.customer};\nCREATE ATTRIBUTE {attr.csv_policies.state} VISUAL(TITLE \"State\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_state.id} FULLSET, {f_csv_policies.state_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.state};\nALTER ATTRIBUTE {attr.csv_policies.state} ADD LABELS {label.csv_policies.state} VISUAL(TITLE \"State\") AS {d_csv_policies_state.nm_state};\nALTER DATATYPE {d_csv_policies_state.nm_state} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.state} DEFAULT LABEL {label.csv_policies.state};\nCREATE ATTRIBUTE {attr.csv_policies.coverage} VISUAL(TITLE \"Coverage\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_coverage.id} FULLSET, {f_csv_policies.coverage_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.coverage};\nALTER ATTRIBUTE {attr.csv_policies.coverage} ADD LABELS {label.csv_policies.coverage} VISUAL(TITLE \"Coverage\") AS {d_csv_policies_coverage.nm_coverage};\nALTER DATATYPE {d_csv_policies_coverage.nm_coverage} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.coverage} DEFAULT LABEL {label.csv_policies.coverage};\nCREATE ATTRIBUTE {attr.csv_policies.education} VISUAL(TITLE \"Education\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_education.id} FULLSET, {f_csv_policies.education_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.education};\nALTER ATTRIBUTE {attr.csv_policies.education} ADD LABELS {label.csv_policies.education} VISUAL(TITLE \"Education\") AS {d_csv_policies_education.nm_education};\nALTER DATATYPE {d_csv_policies_education.nm_education} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.education} DEFAULT LABEL {label.csv_policies.education};\nCREATE ATTRIBUTE {attr.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_employmentstatus.id} FULLSET, {f_csv_policies.employmentstatus_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.employmentstatus};\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} ADD LABELS {label.csv_policies.employmentstatus} VISUAL(TITLE \"Employmentstatus\") AS {d_csv_policies_employmentstatus.nm_employmentstatus};\nALTER DATATYPE {d_csv_policies_employmentstatus.nm_employmentstatus} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.employmentstatus} DEFAULT LABEL {label.csv_policies.employmentstatus};\nCREATE ATTRIBUTE {attr.csv_policies.gender} VISUAL(TITLE \"Gender\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_gender.id} FULLSET, {f_csv_policies.gender_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.gender};\nALTER ATTRIBUTE {attr.csv_policies.gender} ADD LABELS {label.csv_policies.gender} VISUAL(TITLE \"Gender\") AS {d_csv_policies_gender.nm_gender};\nALTER DATATYPE {d_csv_policies_gender.nm_gender} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.gender} DEFAULT LABEL {label.csv_policies.gender};\nCREATE ATTRIBUTE {attr.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_marital_status.id} FULLSET, {f_csv_policies.marital_status_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.marital_status};\nALTER ATTRIBUTE {attr.csv_policies.marital_status} ADD LABELS {label.csv_policies.marital_status} VISUAL(TITLE \"Marital Status\") AS {d_csv_policies_marital_status.nm_marital_status};\nALTER DATATYPE {d_csv_policies_marital_status.nm_marital_status} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.marital_status} DEFAULT LABEL {label.csv_policies.marital_status};\nCREATE ATTRIBUTE {attr.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_policy_type.id} FULLSET, {f_csv_policies.policy_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.policy_type};\nALTER ATTRIBUTE {attr.csv_policies.policy_type} ADD LABELS {label.csv_policies.policy_type} VISUAL(TITLE \"Policy Type\") AS {d_csv_policies_policy_type.nm_policy_type};\nALTER DATATYPE {d_csv_policies_policy_type.nm_policy_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.policy_type} DEFAULT LABEL {label.csv_policies.policy_type};\nCREATE ATTRIBUTE {attr.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_renew_offer_type.id} FULLSET, {f_csv_policies.renew_offer_type_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.renew_offer_type};\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} ADD LABELS {label.csv_policies.renew_offer_type} VISUAL(TITLE \"Renew Offer Type\") AS {d_csv_policies_renew_offer_type.nm_renew_offer_type};\nALTER DATATYPE {d_csv_policies_renew_offer_type.nm_renew_offer_type} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.renew_offer_type} DEFAULT LABEL {label.csv_policies.renew_offer_type};\nCREATE ATTRIBUTE {attr.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_sales_channel.id} FULLSET, {f_csv_policies.sales_channel_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.sales_channel};\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} ADD LABELS {label.csv_policies.sales_channel} VISUAL(TITLE \"Sales Channel\") AS {d_csv_policies_sales_channel.nm_sales_channel};\nALTER DATATYPE {d_csv_policies_sales_channel.nm_sales_channel} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.sales_channel} DEFAULT LABEL {label.csv_policies.sales_channel};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_class.id} FULLSET, {f_csv_policies.vehicle_class_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_class};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} ADD LABELS {label.csv_policies.vehicle_class} VISUAL(TITLE \"Vehicle Class\") AS {d_csv_policies_vehicle_class.nm_vehicle_class};\nALTER DATATYPE {d_csv_policies_vehicle_class.nm_vehicle_class} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_class} DEFAULT LABEL {label.csv_policies.vehicle_class};\nCREATE ATTRIBUTE {attr.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\", FOLDER {dim.policies}) AS KEYS {d_csv_policies_vehicle_size.id} FULLSET, {f_csv_policies.vehicle_size_id};\nALTER DATASET {dataset.csv_policies} ADD {attr.csv_policies.vehicle_size};\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} ADD LABELS {label.csv_policies.vehicle_size} VISUAL(TITLE \"Vehicle Size\") AS {d_csv_policies_vehicle_size.nm_vehicle_size};\nALTER DATATYPE {d_csv_policies_vehicle_size.nm_vehicle_size} VARCHAR(255);\nALTER ATTRIBUTE {attr.csv_policies.vehicle_size} DEFAULT LABEL {label.csv_policies.vehicle_size};\nCREATE FACT {fact.csv_policies.customer_lifetime_value} VISUAL(TITLE \"Customer Lifetime Value\", FOLDER {ffld.policies}) AS {f_csv_policies.f_customer_lifetime_value};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.customer_lifetime_value};\nALTER DATATYPE {f_csv_policies.f_customer_lifetime_value} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.customer_lifetime_value};\nCREATE FACT {fact.csv_policies.income} VISUAL(TITLE \"Income\", FOLDER {ffld.policies}) AS {f_csv_policies.f_income};\nSET FLAGS (\"restricted\") ON {fact.csv_policies.income};\nALTER DATATYPE {f_csv_policies.f_income} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.income};\nCREATE FACT {fact.csv_policies.monthly_premium_auto} VISUAL(TITLE \"Monthly Premium Auto\", FOLDER {ffld.policies}) AS {f_csv_policies.f_monthly_premium_auto};\nALTER DATATYPE {f_csv_policies.f_monthly_premium_auto} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.monthly_premium_auto};\nCREATE FACT {fact.csv_policies.total_claim_amount} VISUAL(TITLE \"Total Claim Amount\", FOLDER {ffld.policies}) AS {f_csv_policies.f_total_claim_amount};\nALTER DATATYPE {f_csv_policies.f_total_claim_amount} DECIMAL(15,6);\nALTER DATASET {dataset.csv_policies} ADD {fact.csv_policies.total_claim_amount};\nALTER ATTRIBUTE {effective_to_date.date} ADD KEYS {f_csv_policies.dt_effective_to_date_id};\nSYNCHRONIZE {dataset.csv_policies};"}}' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:KK_QapOnS_XmsgRT2QimuQ Content-Length: - '9230' Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin Date: - Fri, 04 May 2018 09:38:54 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=99 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:KK_QapOnS_XmsgRT2QimuQ:F7A64uLUmEOwWaEN X-Gdc-Request-Time: - '51' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"entries":[{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/e45b139004192bb4a3b2b9d4733106bc00000014/status","category":"tasks-status"}]}' http_version: recorded_at: Fri, 04 May 2018 09:38:54 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/e45b139004192bb4a3b2b9d4733106bc00000014/status body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:KioJm-W5Vu2D7T0hkz1cyA Process: - 'true' Host: - staging2-lcm-prod.intgdc.com response: status: code: 202 message: Accepted headers: Vary: - Origin Date: - Fri, 04 May 2018 09:38:55 GMT Server: - GoodData WebApp Refresh: - '2' Keep-Alive: - timeout=5, max=99 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:KioJm-W5Vu2D7T0hkz1cyA:2j4grRU67x9OCwUZ X-Gdc-Request-Time: - '27' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"wTaskStatus":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/e45b139004192bb4a3b2b9d4733106bc00000014/status","status":"RUNNING","links":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/e45b139004192bb4a3b2b9d4733106bc00000014/status"}}}' http_version: recorded_at: Fri, 04 May 2018 09:38:55 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/e45b139004192bb4a3b2b9d4733106bc00000014/status body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:6kqz9F3L3fFOjAdqptVYLQ Process: - 'true' Host: - staging2-lcm-prod.intgdc.com response: status: code: 303 message: See Other headers: Vary: - Origin Date: - Fri, 04 May 2018 09:39:05 GMT Server: - GoodData WebApp Location: - "/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/bded231ea9227327e55c9fecae1c276500000014/status" Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:6kqz9F3L3fFOjAdqptVYLQ:o7KhwyplfbKMcJoJ X-Gdc-Request-Time: - '20' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"wTaskStatus":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/bded231ea9227327e55c9fecae1c276500000014/status","status":"OK","links":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/bded231ea9227327e55c9fecae1c276500000014/status"}}}' http_version: recorded_at: Fri, 04 May 2018 09:39:06 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/bded231ea9227327e55c9fecae1c276500000014/status body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:6kqz9F3L3fFOjAdqptVYLQ Process: - 'true' Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin Date: - Fri, 04 May 2018 09:39:06 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=99 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:6kqz9F3L3fFOjAdqptVYLQ:NpTY0POEXNXUPu27 X-Gdc-Request-Time: - '19' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"wTaskStatus":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/bded231ea9227327e55c9fecae1c276500000014/status","status":"OK","links":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/bded231ea9227327e55c9fecae1c276500000014/status"}}}' http_version: recorded_at: Fri, 04 May 2018 09:39:06 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34 body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:amdKHWLyYHDLShe8YlrLVw Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin,Accept-Encoding Date: - Fri, 04 May 2018 09:39:07 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=99 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Transfer-Encoding: - chunked X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:amdKHWLyYHDLShe8YlrLVw:RSY4DbxoirrewA27 X-Gdc-Request-Time: - '29' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"project":{"content":{"environment":"TESTING","cluster":"","authorizationToken":"","guidedNavigation":"1","isPublic":"0","driver":"Pg","state":"ENABLED"},"links":{"ldm_thumbnail":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm?thumbnail=1","self":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34","clearCaches":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/clearCaches","invitations":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/invitations","users":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/users?link=1&offset=0&limit=100","uploads":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/uploads/","ldm":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm","metadata":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34","publicartifacts":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/publicartifacts","roles":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/roles","userRoles":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/users/5ad80b895edcc438e5a4418e222733fa/roles","userPermissions":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/users/5ad80b895edcc438e5a4418e222733fa/permissions","dataload":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/dataload","connectors":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/connectors","execute":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/execute","config":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/config","projectFeatureFlags":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/projectFeatureFlags","schedules":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/schedules","templates":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/templates","eventstores":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/dataload/eventstore/stores"},"meta":{"created":"2018-05-04 11:38:31","summary":"No summary","updated":"2018-05-04 11:38:32","author":"/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa","title":"Project for id to uri spec ash_20180504113830","contributor":"/gdc/account/profile/5ad80b895edcc438e5a4418e222733fa"}}}' http_version: recorded_at: Fri, 04 May 2018 09:39:07 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/view?includeCA=true&includeDeprecated=true&includeGrain=true body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:coSEqiBVJn0Ze1bDI-d9qg Host: - staging2-lcm-prod.intgdc.com response: status: code: 202 message: Accepted headers: Vary: - Origin Location: - "/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/view/856ba1dacaa8b9f5d6c66c9a0b0cbb8c01cd752c176cd5d60000004a" X-Gdc-Log-Header: - '' Date: - Fri, 04 May 2018 09:39:07 GMT Server: - GoodData WebApp Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:coSEqiBVJn0Ze1bDI-d9qg:zfzckwG2vpCdPqzj X-Gdc-Request-Time: - '20' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"asyncTask":{"link":{"poll":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/view/856ba1dacaa8b9f5d6c66c9a0b0cbb8c01cd752c176cd5d60000004a"}}}' http_version: recorded_at: Fri, 04 May 2018 09:39:07 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/view/856ba1dacaa8b9f5d6c66c9a0b0cbb8c01cd752c176cd5d60000004a body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:h6gd8UJTyWR-xsIeIUb1GQ Process: - 'false' Host: - staging2-lcm-prod.intgdc.com response: status: code: 202 message: Accepted headers: Vary: - Origin Location: - "/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/view/856ba1dacaa8b9f5d6c66c9a0b0cbb8c01cd752c176cd5d60000004a" X-Gdc-Log-Header: - '' Date: - Fri, 04 May 2018 09:39:08 GMT Server: - GoodData WebApp Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:h6gd8UJTyWR-xsIeIUb1GQ:ekMkIJ4bPh81uLz7 X-Gdc-Request-Time: - '18' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"asyncTask":{"link":{"poll":"/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/view/856ba1dacaa8b9f5d6c66c9a0b0cbb8c01cd752c176cd5d60000004a"}}}' http_version: recorded_at: Fri, 04 May 2018 09:39:08 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/view/856ba1dacaa8b9f5d6c66c9a0b0cbb8c01cd752c176cd5d60000004a body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:eoBCpgMXs9x4jU_RvlnrbA Process: - 'false' Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin X-Gdc-Log-Header: - '' Date: - Fri, 04 May 2018 09:39:18 GMT Server: - GoodData WebApp Accept-Ranges: - bytes Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Content-Length: - '4907' X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:eoBCpgMXs9x4jU_RvlnrbA:W60fcOYGO8l2EoGY X-Gdc-Request-Time: - '22' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"projectModelView":{"model":{"projectModel":{"modelMetadata":{"containCA":true},"datasets":[{"dataset":{"identifier":"dataset.csv_policies","title":"Policies","anchor":{"attribute":{"identifier":"attr.csv_policies.factsof","title":"Records of Policies","folder":"Policies","flags":[]}},"attributes":[{"attribute":{"identifier":"attr.csv_policies.customer","title":"Customer","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.customer","title":"Customer","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.customer","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.state","title":"State","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.state","title":"State","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.state","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.coverage","title":"Coverage","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.coverage","title":"Coverage","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.coverage","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.education","title":"Education","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.education","title":"Education","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.education","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.employmentstatus","title":"Employmentstatus","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.employmentstatus","title":"Employmentstatus","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.employmentstatus","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.gender","title":"Gender","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.gender","title":"Gender","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.gender","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.marital_status","title":"Marital Status","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.marital_status","title":"Marital Status","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.marital_status","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.policy_type","title":"Policy Type","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.policy_type","title":"Policy Type","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.policy_type","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.renew_offer_type","title":"Renew Offer Type","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.renew_offer_type","title":"Renew Offer Type","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.renew_offer_type","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.sales_channel","title":"Sales Channel","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.sales_channel","title":"Sales Channel","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.sales_channel","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.vehicle_class","title":"Vehicle Class","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.vehicle_class","title":"Vehicle Class","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.vehicle_class","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.vehicle_size","title":"Vehicle Size","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.vehicle_size","title":"Vehicle Size","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.vehicle_size","flags":[]}}],"facts":[{"fact":{"identifier":"fact.csv_policies.customer_lifetime_value","title":"Customer Lifetime Value","folder":"Policies","dataType":"DECIMAL(15,6)","type":"numeric","restricted":true,"flags":["restricted"]}},{"fact":{"identifier":"fact.csv_policies.income","title":"Income","folder":"Policies","dataType":"DECIMAL(15,6)","type":"numeric","restricted":true,"flags":["restricted"]}},{"fact":{"identifier":"fact.csv_policies.monthly_premium_auto","title":"Monthly Premium Auto","folder":"Policies","dataType":"DECIMAL(15,6)","type":"numeric","restricted":false,"flags":[]}},{"fact":{"identifier":"fact.csv_policies.total_claim_amount","title":"Total Claim Amount","folder":"Policies","dataType":"DECIMAL(15,6)","type":"numeric","restricted":false,"flags":[]}}],"references":["effective_to_date"],"production":true}}],"dateDimensions":[{"dateDimension":{"name":"effective_to_date","title":"Effective To Date","production":true,"urn":"urn:gooddata:date","identifier":"effective_to_date.dataset.dt","identifierPrefix":"effective_to_date"}}]}}}}' http_version: recorded_at: Fri, 04 May 2018 09:39:18 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/model/view/856ba1dacaa8b9f5d6c66c9a0b0cbb8c01cd752c176cd5d60000004a body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:CPmMvDNpEU0d278tUCiPEg Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin X-Gdc-Log-Header: - '' Date: - Fri, 04 May 2018 09:39:19 GMT Server: - GoodData WebApp Accept-Ranges: - bytes Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Content-Length: - '4907' X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:CPmMvDNpEU0d278tUCiPEg:VRZqwjGA6LnxYQIb X-Gdc-Request-Time: - '22' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"projectModelView":{"model":{"projectModel":{"modelMetadata":{"containCA":true},"datasets":[{"dataset":{"identifier":"dataset.csv_policies","title":"Policies","anchor":{"attribute":{"identifier":"attr.csv_policies.factsof","title":"Records of Policies","folder":"Policies","flags":[]}},"attributes":[{"attribute":{"identifier":"attr.csv_policies.customer","title":"Customer","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.customer","title":"Customer","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.customer","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.state","title":"State","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.state","title":"State","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.state","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.coverage","title":"Coverage","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.coverage","title":"Coverage","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.coverage","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.education","title":"Education","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.education","title":"Education","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.education","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.employmentstatus","title":"Employmentstatus","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.employmentstatus","title":"Employmentstatus","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.employmentstatus","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.gender","title":"Gender","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.gender","title":"Gender","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.gender","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.marital_status","title":"Marital Status","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.marital_status","title":"Marital Status","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.marital_status","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.policy_type","title":"Policy Type","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.policy_type","title":"Policy Type","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.policy_type","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.renew_offer_type","title":"Renew Offer Type","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.renew_offer_type","title":"Renew Offer Type","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.renew_offer_type","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.sales_channel","title":"Sales Channel","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.sales_channel","title":"Sales Channel","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.sales_channel","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.vehicle_class","title":"Vehicle Class","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.vehicle_class","title":"Vehicle Class","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.vehicle_class","flags":[]}},{"attribute":{"identifier":"attr.csv_policies.vehicle_size","title":"Vehicle Size","folder":"Policies","labels":[{"label":{"identifier":"label.csv_policies.vehicle_size","title":"Vehicle Size","type":"GDC.text","dataType":"VARCHAR(255)"}}],"defaultLabel":"label.csv_policies.vehicle_size","flags":[]}}],"facts":[{"fact":{"identifier":"fact.csv_policies.customer_lifetime_value","title":"Customer Lifetime Value","folder":"Policies","dataType":"DECIMAL(15,6)","type":"numeric","restricted":true,"flags":["restricted"]}},{"fact":{"identifier":"fact.csv_policies.income","title":"Income","folder":"Policies","dataType":"DECIMAL(15,6)","type":"numeric","restricted":true,"flags":["restricted"]}},{"fact":{"identifier":"fact.csv_policies.monthly_premium_auto","title":"Monthly Premium Auto","folder":"Policies","dataType":"DECIMAL(15,6)","type":"numeric","restricted":false,"flags":[]}},{"fact":{"identifier":"fact.csv_policies.total_claim_amount","title":"Total Claim Amount","folder":"Policies","dataType":"DECIMAL(15,6)","type":"numeric","restricted":false,"flags":[]}}],"references":["effective_to_date"],"production":true}}],"dateDimensions":[{"dateDimension":{"name":"effective_to_date","title":"Effective To Date","production":true,"urn":"urn:gooddata:date","identifier":"effective_to_date.dataset.dt","identifierPrefix":"effective_to_date"}}]}}}}' http_version: recorded_at: Fri, 04 May 2018 09:39:19 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:kOrPQEYK5ctW5LkPX50YfQ Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin,Accept-Encoding Date: - Fri, 04 May 2018 09:39:20 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Transfer-Encoding: - chunked X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:kOrPQEYK5ctW5LkPX50YfQ:b3kbphcsaVpU9S8T X-Gdc-Request-Time: - '46' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"about":{"summary":"Use links to navigate the services.","category":"GoodData API root","links":[{"link":"/gdc/","summary":"","category":"home","title":"home"},{"link":"/gdc/account/token","summary":"Temporary token generator.","category":"token","title":"token"},{"link":"/gdc/account/login","summary":"Authentication service.","category":"login","title":"login"},{"link":"/gdc/md","summary":"Metadata resources.","category":"md","title":"metadata"},{"link":"/gdc/xtab2","summary":"Report execution resource.","category":"xtab","title":"xtab"},{"link":"/gdc/exporter","summary":"Report exporting resource.","category":"report-exporter","title":"exporter"},{"link":"/gdc/account","summary":"Resource for logged in account manipulation.","category":"account","title":"account"},{"link":"/gdc/projects","summary":"Resource for user and project management.","category":"projects","title":"projects"},{"link":"/gdc/tool","summary":"Miscellaneous resources.","category":"tool","title":"tool"},{"link":"/gdc/releaseInfo","summary":"Release information.","category":"releaseInfo","title":"releaseInfo"},{"link":"/gdc/uploads","summary":"User data staging area.","category":"uploads","title":"user-uploads"}]}}' http_version: recorded_at: Fri, 04 May 2018 09:39:20 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/uploads/d20180504-28712-cdpmin/ body: encoding: US-ASCII string: '' headers: Accept: - "*/*" Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 X-Gdc-Authtt: - "" Host: - staging2-lcm-prod.intgdc.com response: status: code: 404 message: Not Found headers: Date: - Fri, 04 May 2018 09:39:20 GMT Server: - Apache Content-Length: - '233' Content-Type: - text/html; charset=iso-8859-1 Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: UTF-8 string: | 404 Not Found

Not Found

The requested URL /gdc/uploads/d20180504-28712-cdpmin/ was not found on this server.

http_version: recorded_at: Fri, 04 May 2018 09:39:21 GMT - request: method: mkcol uri: https://staging2-lcm-prod.intgdc.com/gdc/uploads/d20180504-28712-cdpmin/ body: encoding: UTF-8 string: '' headers: Accept: - "*/*" Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 X-Gdc-Authtt: - "" Host: - staging2-lcm-prod.intgdc.com response: status: code: 201 message: Created headers: Date: - Fri, 04 May 2018 09:39:22 GMT Server: - Apache Location: - https://staging2-lcm-prod.intgdc.com/gdc/uploads/d20180504-28712-cdpmin/ Content-Security-Policy: - frame-ancestors 'none' X-Frame-Options: - DENY X-Content-Type-Options: - nosniff Content-Length: - '210' Content-Type: - text/html; charset=ISO-8859-1 Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: UTF-8 string: | 201 Created

Created

Collection /gdc/uploads/d20180504-28712-cdpmin/ has been created.

http_version: recorded_at: Fri, 04 May 2018 09:39:22 GMT - request: method: put uri: https://staging2-lcm-prod.intgdc.com/gdc/uploads/d20180504-28712-cdpmin/upload.zip body: encoding: ASCII-8BIT string: !binary |- UEsDBBQAAAAIAOlcpEwYdc+0AwIAALMQAAAQAAAAdXBsb2FkX2luZm8uanNv bsWXzYrbMBSF93kKo3XI0G23hUKp0xaGrjqDuJWvJwL9uNKVixvy7pU9ZLCd 2C3TSM3CUbhH5+hTbMk6boqCVUBwj3RfftiDkTV6KqUn9rb4FqtFcRyuV3VR c67GegOO/Eu3589x1I4ShzU6NAI/YheVb7bTcmOboIBw7jIUFXxHtRO+5Y1V Ukj0OxE8WY2OTbSPM1dtK4yG7P3XsmSzmrAqaPMJ9KD4y4jTNhuhpyhOiHfh n5FN2BYdPKXEuxaRkRCrIICkNQkRr2bkZNSNsp1GQ/29FHxK1JWojMRPaKqk a85lQEY6DU4SKJ7831wOykg7NDpOXZNyGVpIycgZrfAnt3U0TQ27FpVz5wSF nosDGIMq5Q66lJORtcWDFAq5UOBTPrKLOf+B1ctfKe/ipZg10lWUGgRdf7Xk Kr5Mk9TIW1DhZlCvCrwhnjQihqWjufS/4eC1NXRQHW8cahk0h0A2Hcqf0m4I Rrbfc+MDLGOMtsFQOqz1rFdDYdxaBMkWOVkeD6W4Gy666rp/YTGeHEgzHGGP 88w+oe+6399V1V3XzaNOq1NzMeJ5+nyNHE/TS3uEcz6L9+Z90+N06kf+rJYK Rzo+XRJ8O9bGn1/AgZ7PAfsRLOG7A7je6YFNxs/QC2gWqx6baEnWnQXbWW9T fa5LaYZBPoyOMWfy5+/++rg5bX4DUEsDBBQAAAAIAOlcpEwkLzGl3rUEAISh GAAYAAAAZGF0YXNldF9jc3ZfcG9saWNpZXMuY3N21L3bcl3JjS36fr7Coedz ZucNeXkkKVIU7xfxppcKdVltK6JccqjK7t376w8wc3HNRM5EzqS7dsRuRzhc riqKuXIhgQFgYODdL1/+/esv08+//fOnv3//5dvP377+Nv38j99+//63rz/e /b/vGv/0t9+//P4V/9F/fPn59/bP/fTLt//4+vu3v3396Z9ffvnH1/Yf8/P3 f3798eUvwj/9+ud//Pzl92/ff8V//PU//uPrz79/++fXn37//tOf8y9v/cjf /v7L9//629dff6cT/uO39r/1l6+//nn+ZOvjf/v1Zzx9+8f+9uXHt9+//PLT /o9e//jfvv/6+19/+a+f/v7j69++/eNvP335x+/f23/Y/Bf/9dPv//V34bf9 +Prr1//86Tt+7h+df+u3L798/e2nn//65ddfv/7SPNLv3+nMP//y5Rse52/f //Hr7+0/6Z9f//rt51++0r/5m3Bvr//Kb9/+99d3/8+7w4eQQvT47z59+e2v 3379y+/zV2WCtxPoZELC/3f45bdvP8//+/Nfv/7ynW5dpX8z7t+M0oD/53j+ xr7+Gf/yBP8L3gSH/3v55cePb/Pf9fSnHH3/8ffvP/Br/9NBvtFruheNf3GA XyZ9IhvdFLXWLuD/+fSf3/+/99+///jT0Rf6hZdf/7w78u1n5yzQkQ9+fPvf 33/9Mv+CkCawkJSl8/yv38k6/lwdOf6b1a9Hfvj1Kz+0wv/e4+f/hb6kRMe/ +frjN/zTf2HHtcVxtbZ6ct4lS3/iyfd//Ggf+OCjSzpG/HtXX//55c90Xm1i DJOz2tOP3mRLW92wTsINuxh8YDesVZSOXN4weD+5YEz/hp+evDVAH/XoC7qA 7z9+/UaHDt7BFL2OJghGEfG8zRu+3N1weWDftQn8zb/86QhPPT9yMGmKUVtH X8z9wyM77umhd8bHlQ3jvz/5ZCCAaMPKNm6YDutstL40iWBH7lfbOGmr4vxs ZIu4PopWB0N/wo+vf5lPGw34yeBblK8WBGvwJimzfm/Nw9K/9/T13+mokCb8 kMqZnik8f47B6lieFGxUU0zRzxf0etaj77/88nWOAl3XgG+U28FsxwOuwejJ d+/06CSC8pq5hWC0n7RSVmv2zC6//JbtCq9Vx67F7g1AKz12UvScyqTZHuXT vn9BG4mpvFfjtAkTKDd/mYIN+NfD4h/17Wf8ci++fvnn1915tVOzUb3/9s/v P36eP0YYOzRoPZnugQ9vEzo6XR442IjWHqKKwJ0uswUdBFtAF6i52SZ6Y/d/ //rzt4bVHv748uvPf6WnaWACE6J13QPfP4POxsacmMNTTykZZcpb5tbbjhIr i5hNd9MluGim1knv/4YeDs/5eOsx0Ib6nBH/3oT/VcwjFOeM/6Z8N5oVvlar nj/YG4GJDe/6/sYmO4cpfj403wmxg5ojbutppeKAlXcNQRnfOGLbUMszYvCi 1xVs6H/5ZwmcscwZoLmlSemYZsN5vdHTb3/565/uf/7r9++//An/oEN8a/+5 cwxKOH1K0cGbTr+33fYVf7zwHjJGKq8YCA8RRvBlAGMmsDiv6owYvWbvssQv +YTuXR1urULbs0nbDZ+AOAG8Yj7BofvDH7VBxgiyR3CQErtY78bu1ZmJnvTs 7eTznjwmF2fvugdihhBR9CHOxrJlFKVJtxywQe9dfQDRR5jVrTtwE16BSmQj YkS+Ptag1Oo92oTgDEOIV6V1c38B3bPHCJVVzxFPhMH88N4hnnVGzSGiNvAn xDuWRzsIWk3WYmQWjBv9cMtO6KgYrVxkR53DnnjNezNBZDaliA+qHzpOLkCF 9RXjD5rJa/wn3OV1XIiEg7zHWN247FE87ChTanyG16Dy+Rzxu7blhZtIrhMQ Y4xZejP5mG8/BMddi5gtaXb5AFMXa94/euPsKhdFiKox0miYwZ2Y2y1R+/23 3778+y/7u9Y2zKZXoiIRHzd8IWaWfTf4cmrQuuknl2Dzfw7Mbed4m1ju02eE nt4zP4h+B+GGSskL5y1RfT97ng1MtuQlGKK/s5jIets97eklQPba7DUamwxi +/zdCtkdSCYRYqjSEPn18UBjt6zh5B4BqvbM1+HxJ+UhyVjOSK8tBXD6Db6u Mt6YJo15kWrlThdffvyFTvxwHzEu6vqCMaJ4/H5MhvdSjcK006eVUWg9ZLwh te/31bGdXqMPt6n2EWDxrEl7CJ77iBKOaiOZA7pFfsfa9itWiw1jgmnQRUAr 7H04JocWmGPQlKxPiJq0Y7fKIp8yQtyIHmZHM3qtVRXFmmbUeDWE47OAz5El +9ZYmCyCijmfFS5WSYAuIKrl7yx2M5ElVsReynT/GMGDqRwuehOIFgT4U1pq 9cSM1cDhhBeLPY34YMxkklOu5cVeT/xw4R1YW3pcTEQCTA6jWhXWZDhhWmZB nwBdSwWcjZXrKmU+5TUgcsavnX784h//6x8//utPtRnfnDgdVSOTxp+1ZleU 26pZbZQDcx10zIwJxSEGjv0a28F1in4GVdxTYAY4IdQ11oqnFrMqwChZnbsf 6/ZFIZWLABX22Rv0OWUgrLjiEj5W9GjWydVL3ape0rtDr+2rcxrxnPQJXkuC mG4GH/tZ1MsjBu4E7PVBcJi7YF7OTtsBxmItM6bIK9t90LP3GEZhrhwg9w7k w5+/2KiCq21ZY6BEkInZbHgnxTpMoCS7cMaquiIwVBzC198sa74axvvLkJRm heJA5deEfnr+DZJHblVe5vuFoHjlJYn3u9SKEZV3042jy9euwBI4VFKTsk7P +aiM2vsOYunIiHGj7Mh410idXw/5dGQRiPECsQGqK1s87IjdCpFu9gzWzAGg QOszwB50aRrCZBEeur5Pu/1AaR0H7hgIEVsioh18eX28Vrw7uWC0zv4pH7UI NOfsTUzwLg9TtLztgaFHTwrd6lw3aNe4tGDL6Itn57AkHn0Qv2/SRHSsMXft xLN+vNDJ6FVZ1iZMABBO2+rxVVbdchTz81PKcKSZuq2a1yPHiMgt6ORancZ9 FLmzhA/fcbiJ6AZ/NPcjBgxcdHFo4Lypq1UXJe0rtsnNoe8ev5Xff1s3Qk4d Iog5BrHmnXN28h7htdxkknp3yeTeQJXdSY0Fbskm9THy6Qd0oYbZsDZUWdbK zIhkCR7vv//8+9rPrXIPXYcOOcFjEU9NoEOYa1E1Yjt8MMFa7uocQnj8CQVO rkgI/fGVN5aboWvXAAHvBgEq9Gtuz5cOTFUixGg+IbpUesR2o5w1GUSpceUo ti3XhSmkDG9FP3F+gzFurthyP4E2jc8Ow0KVkFYVijDojZOM39Y2TN1yzDxV M4kq6m2nSSXH01PEcISjYmI9/j8gnHjRqF1p1FZT99Tq0KdUPB0nfIXMWqwP KkzOeFsWhHgkkaK3cVHVzq1b1Nzjt4TfMoL7uLR1Xr3xzQvo5FckCjSMYNGq k5MKbZ2Ih296BkIFytjiUWQAh9nS1Oo83R36hEbwrgAUAWM0dZ2CKu9RjhhG POyuxlHRElpumJmAxvtJ4HP1s+Mw7hIov6oEuQhuwjTEe7mQqaW+pEk5ciwt XtEKSkdB7bKNouCd896tOgrOoP2kFPBrfSenHYvZFrFjLhGjyVd1K92lqezv OCIo8AZSk6eyxxMvOrjI8UTQHn1ywgywIlrx+pWU3uEtmAomJxm0NXDmRiJy cONDBnYVcwkDNOQqTxNLNDPpubLiQt3Rc4IRV50mKvKB7uP5k3sbnOYeGC83 IsI0ox3JBQZtsQDkdp7cYOI+7fICDZano86lNFGxYq7HjZWxooSFfPJVp0ab rh/mhw4Kn76PuSZau7qHQ6+9ZiHDKUCz8PgV8FpsmUnLh9V+hvLMF4+R8DAB 6Ufmo/eRPsY7jt/QLvB9Wy81PEoEdPf1928/FkcRvKl6Sf2C296z6b5fu3uI NsKKuYBnz81d2/NrSzmz7n/l+3WRv7wMlEdr3apTbzv54C1EZsd42oTG42Lo Mkj1aL1iCD5Ej1AAobrpnPXqCvM+WHVnDCIdzJwxAxgDas1mem5Fg6n7/mKx hXEd8bXRVzyzBlYd/0MbVOQleu8R3GGw8yCXXje82RKYuxnI3g374DFaoSW1 zPg1pbu/BKPXPSV0dWryGE1ceVwGKG0L+1zO1uTnExbllO6BM0qzoDYcw8kF hoWKOOqDmXRyJhjpmEaqBhoDM/4vfZiWMw3mxGyYK5druhj6Kc3Z2egqbcRs PtXJ0BvJV7O54pdZFTDFSiuDlc7DZCD6Vjr3+tY+PFkbPLteH52nboM1Xb9g +olciXfe4MQcNOppr2Z799lSzlM7Bq2Dwbw15Fpos8GIgSIJUQ0RcKi9rpi5 LZYLSuHlOrPBhL95QcDqOevVeMqUMSsaK1A1qcVz1ccqXcdjGQ2X8N1EPTnQ mQld2/PldcJAz3qi6HgpR3a55v96ZNZplvwCIsLKeuU4vJTfqS3jQDXqlfuq 1FMMEXhlFT/SFMD4JJ5SjL9zLoSWX6XwQzFtOxk6PTTKASMn+YDfgQnKKCk0 YFLRpp80iNpD50zRYGhIXmfScbM4eXiFcIC7W5cCImM8h5VhmNg/DJDdzxAO 47wTH/C3WvSjayMoWnPPxuZO7RIeIGGqpxChyzcrmquNKfIUXg5jPP0RItm+ r/U5hlxgKKp9xOfBryOVcaxTqZbqDkFn6DxQ7WuVf+emVX/U4PlJW8W7+Xjr iSZrohXAQmr3POeXppLnaXyfNTo+E3FxZbUPq+I6DS5hjolfbpWz8SReqpKg VRgObuQmBgOMGqZANNO+e7i+RIyj1mxo4m1ONEBSdooqMpJU4EOzMswmshse eHcYSz1mQfTDO3pExbR8sJC8qU8blQFqiFuI4hWXwGyDUSfaA0O7+CujwgS4 EygeTyNe5KqtBSGqSUeTBxEGorBkGxhGPZ+bEp3x+vGFGKaUbCaudmZnPkUI enXlTqNRo1vOUf/1M7AmjGQe1tnAGUAbqGexj5iaMPjlDO08MBdhwNhJBaXb 8TjKZUlEGnMQGiEorW/1lXsipj+3mD141rz3RM00iNpTBdi59bbqkif5k87l hoHufenPXIDJG2ugxT/ZEwBPYnTzuAVzaRhNLHXQTRoZ7uiQwRBSe54Ov6WP b42aoktbtevjTyFFvSpTYgT06CGTnSG4eO3QLvKQ06x6y92T76/dq2ZNtaAd HNndN8pLEJ46BUH5zqyHGKUxJfdVYVWmXC6JhkHUpkEb1af5HJ1pxBMMCBEQ JhfndIcwLPYyMLuu8jg5RjMHsR2krz/SXaxcMmK2MKkdlVgcrpNowwikE080 QtcYlvP69mTBct6zFx8SJzgjniAahzYzoBByzsVdNNMN/FY5qNC6S40oajxp iibAjBuFxP76GDMhuyIDYrACT4PFqZpgHIAVM9TEnLfit0bRiNeeGYHFRGnk nEqIoP6I8vw591psGQiWAPqJThNROjTx36q+3BiJUc9EErUxevd0jon43L4t nh6NniQI0OnJSdN2gEZVBb/+yDBLQsCkjNQlw7hyzq2nG2l4Zmb12sowOgXW 0emIIWLgXBlOG2TGT48xaOBXrYi1r5PpoWRxKikFW81VjY32OErdDLEdGud9 xRnnpy7GijcaLcZ8i6DNlE6ZFSnEobU8yBFi3eXq5iJLl9maCWIsO/fLxV59 RsQFK5fsMO+fvKdqoGzH/aGeqBWnt8q8iNIcTAobUeTuozGZpM9YuTAlZ9nA q9SDqcl1IVSuTbaFIjz7NCUaMtvoe+L95jbtAjkxb5gwQ8wdQCneNTUQZthm vKl4w0Pgh8i0Ct1raghi7Mn7H5J18x9XpXgIrGkaRUr5SyLHZm92jC5MihYN ez04TL5RCjaW6AUaeMtQ6GBsML66LSE2m2+8t6oPIZ7PSbGD892DNxNmpp2q mjz9EGa3sjSH5BZGg1JAQ+HoNbox+PjRk6taOQRr1WSjVyLs6ZBNCODVjbdu 3acYOrIb3uDhCnHjWsEFA5qhBCPUj6xTZktjYU3broVk95Bsy3o/XaP1Vl0X /DuTTw5Ml2crC+ToaLk7iN3WfMXGdkSpNqGp4bHnQtyBUXEVI/BqHf4wMXtE S1ZSALaYw3EQLJeHeRkCUxsgMnvXKt4TCjbM7SKACBPNILkRtleUzKGh7/O2 AYjaJo5voopm5dEQ5EeEzDHrKAghTQK+ToGtRikHOxpEErHQ1Uz68JB20Ljs wJgphZAxRrsmLHWzSBymmkmTnRprZgUq92NO1I/ATx8haL2irRKhbMJ/4qF6 d4OD+d5Wp46i/TKmbTNevL60l1v8xsO65AOkmIQQvRow6Yy0SxHE4tup+uCp n8jt5mJCv81xeYuuZE5jC8hLYNkn2SbE2qoJa5bqWIocGJurIC9fGeUV68SF gMHF0TxjZxBcytUcgGLV337tbGEZtVl9RQ5852hcsjaBmeNMum+DLSMZQeiq WiJXdzhdOfmJ/JTth+Ozj0HFuEKQGIkRffpdOB6QZBidpszV6+2MXqpeP54E A8CcmUM/RrlEdFVDo3PcKBQqEWxVJFBtuwXt/XyXzcy5+rzXzybm1mjBNorK oyFrW9d2Oim82AcNeea88GuD7SMPNF6Whx9k4YtzfDd2hdYwn0tTiLqXv4mD lAkDAet4yYlmOUFnPd6wUtp1B7mur9Ga13RmqxXmG4YEO97J0UMkBwfnq9J7 eEs1zViPuadRamN89RN+Rli7khSpvAVZLVCMfH0OQmEfA3QviBgIQsogUi7/ PUWqjdZ3HUlGIGBOwugdFc6UsmXnc5+6hGvdOkSt9TNh5MkMN2ms68WYPBK/ NPhnpjCpT44QmztDdDFmZF54axHcV7V4353CPrU+NGaDQRk7QYowwlDq5Kkm Gs/aYjoNUKvSroEgDOcfXzobZv5o0WhUaVZG6QhfNrPSPGIClQyU3GvkbFB8 Psk3BxSLws9phMQVw6w2hsrgkUs0crqaKNNpcv1vjPTVYAm7dm+0KFUcAORw VZzYoj0g7rQVfWJIEwNiBF5aEY2XhRLtLN5SCKl/3g/X1udSWDFSgMkwMdyi l4c2ojwDYXSsiqxztaw1A1EVgzATRjwJG0PNpzR9xcAGJo+IjFzyuuwsCiZR gQvIpe+hQewFyW9D0LtD/MrnB8uzkIiYRKE/NWXBnVWwR2f8+qqt+wRvCsTm 6lvBw6kHBTzxIL7ihFm1HdRoENGQcVnNeLjovghM2pkaKMSMk0fMlTzTSYZE w2CIj1WnhC25Mqe9buT7m3aLHoQYfi71uy+3B5iU8moKeEoInbGdvlyTM571 UF0lzdAfBK5qVjS3HGCDePDpVluXKrsIcxsSTcp3PLCYOqU1lBiagomGKOGI UnsjaIcPzkGt46kM6VJhrClf3Ihmw0ZjTtaaLAYpBQmlfcZ/72gwiF+wMpg6 ecxSx2psAitsTXQdK7GRzBCigSwrudL2eTAQE6vEo9eNE0L56Mf8hDitGlXW g6hb+psPEDDSJXxcUfYVd4dR+7VWoDHBTSGAY+1PHubaSfQbJkxYRopJpndU 6esYxf2zwSSQeYoEVBs0PpkKQ/BUSYLAKQTLm+J9ScOFIogZf9Km7yUOPuPx YqVbpkjtGWBjDkI0Bq8rTliUTIFDdiqWYSLRVHbds4nvow5Q1V7RE2uz+6Vt BNEvZQ8wGN3eLQSEsMZhytOZ17g+Sy53eIoOLQ2mInoAxYc1GJKUasRUM6ga SK7bhFkNl0zoW2NrfOviJrosxcn7R8RJwkds1GD/KEpi2uv+kRnjU6FfIpIo Ancve4eXR495Zqi9A00gTYijvee33Slhic07ayohF+3lYkVZYZnLUq0rv8R7 jVxDiSIzKJc1/4ZqbhsslD+KG/hq058fMKlwjOaKt6smEviumc+DMxLeZXGx Ie2L5QUi6p9l3WOfO3zwORoIq75HoL5SNMmA6C5se7NFQzipX3utCKMONlq5 z0c+xGqvAShNsz0aesxLqTdKDPxqynqDUVVzXHNBQp5COXJWOw7aMJ5HGr8z qYp3/8qAR7C2MuaBfRckLArBbzATjs8hQWB4COPerNPolFihEGVQW6V56N71 AoJUj7T94X20Ka13nnja6oHgOJZ2PJCA5LzOcR6FTPrgTZBm92Mvu3aA155W vjjihdKwvjFlqtTxxFLPMUEm7wzTKPYVq0A6Cx5MR53q5r0JaQ6qBZwne0CM D6PCnYLybB6ysxWzXxvRMZcdU8REzY7e4T1ViPj4LSYAdrIqZKkYmeW6Dx1t ph1Uai6diM21RjCZMFmsZzUlcQmqsWjIzBxGoi1J7q3jHUi6aBC/sfoaVYAA I4jpO4irOzyYNasjQ9QT0YiGiiud4SqTMpJ924RoW6fh9QneHXmTs7nFqYEO E2K/4CtowSnbUkkQdNRMKKdfyV7YHmiHKperO83eI42pMk+XgkMTprDXn8IW ayuYg1fEBPHApY8gAl3PuZ0fYLKceLpvY8AfwvyDddD5vSqheIm3WrkDWfOi PCfRNkhvwSbZl13fJ3Rdjp0Vv34Mi1GnjqaIVF4DEyrluv6A8E5jlgg8CsA3 SNmvwe3qPV6hXTVi8GmGiQiiY93+hdq6pT0s099Zqh8wtBINsDuCe3mRbBZ9 47JUNNxEdQJ2+G1WzezRXFJ1iW1ITN3RCiHjszLryvdeBJf0uq8YtJvQC2oL 4kH7KR3rxYxvpWsc8ezGpzgbVVXkcXFCrOI7Es6Lnv7ywrIjSHqwzMNnCTDx JW+5Ieh0egFWw8pyg6M9ZCnYutpTReC+xb5xhIBm+PqO9u5j2O2BKOg/AeMY xMS2hDBBJC3BhF2vKFRMmiETIKKE0y60Su6vzvbjkbZhvQjCJ48QQx7rKsVE Nkp+Q10MNLxuCfjwWKu4nl92BtQ0t4BHJhQ3lRWXQw+5AknWdD9W+SmGLHe7 NOFSCAiJvIfB6oMwwTqnbMqnKueUA3CJGGgrYtQ2bgwdfTrFNGBNZyRxejs5 D2mQ3Tq6UW2QOLrbeNM5971GD7c+t9PzFq2gS1t5yzRdgEoZsL/SYMk6nUG4 ntwGiebixgEA6+MTXrdTdEHzNlI5gK1FFVzyOO8qMbWubMNCzsWbcpQMdw98 exeDUowmEakASs2OKDeZxRoKJkNVl7kv8LTY8+RsVBsrb2hcMcwt8YXUoYmr 52i0WjSJYS1W8WbZUTdcxvvntBPr+J8rJXBwGEywKxDkvE3zojAr08xFEr+J tlon0mnUrU8e3aSMcz1ZmrsHRDEtjIlB1FoIbDyNN5Tk9kx0da9uKEMyGtBB z858tdbwnpbdVJVLCtaa3pxcuRSBcFKpqpa8xSSMnTtues7QZd33ZxvyprFq bQhi6YCI0wrOouTyD/SZt6iBuzazeMzT06RUWu9kURiyvXV8ZaQksVcbbgJX y2/KWkqNN6cVOjcbZtoZM909gnsw4NaayNqgW5u8ytNf4jbsUfeWVwoO4ON+ bD4/0ph9Q+mEtU/WTybkLSNyGUKc70muYqQY2TXwthfe0eQhxlQs6llXK63N kr4LbTuiF3cWb32MLCG2ZcxOEHpkcpXV1ZxCdI7BzPVWkF2do/EY1kdKiaCI ciHp3l2LCggecxv27v6IUZSDQ72j/XHic7DoBW3UplNHGZUvk5f1ltYbUsvl Xn9G0K7WFFaracwLs/rB6qRcirCcVd6pRDRWAey8GhcVfjjBuLVmvztEQHhk p5KIga0kEomRX3t+TJncw6w10E5CBKPNcvXzDan+VQGNiAbKq+52ys4WbFop VbUvbJcQupT8MJxhELAtO/hwHnYCt1VhPUSE6HktlvykpADhHUSOyMReBdel UpjE2ZBtpVOOeEwxL4Nc5kAdxpTk8VuRy9SdpSV+5bT6WedyYpIlSGgH/QLK x48e0d4aPqLToi0Gig15lVJP8rpHfAs1DpOWlyzNbwdpCuR+Wi2h53NrnVvV Iwwm1fhDOoaR3Lgc2xgoomyK/L8WUQQq/qc7osSsG0PBOxIb9yD7WXE4zeu8 ybJacTTQGepvNTq+TujYmEIoOmfMgRT0tmDL5d5kKtHF/jBaLQcoXOnxlSFO H3NeHvHEhMg2xRF0IFKmGpXf0bKqoE22H/28wMx+LvnxlcBE8yPVslocaXSP hvaVDGscK6hb9EavLC4RI3z2xgOnVCbSYlUhuLHN0Z12N+yGl/bvzYBMKFg8 hI62M0Ty+clADLXEkJ4AIF/UG/dooOHPOejiFIYGBjxpLZostdGhaJw6HWHd FcDf6WeB/Aqbdy55sC4sc6VY0IgOnVPUSfcbRE8Yuc3/HLmv+wtDix3r82JY cgrxuXESc7Gzkhv9eGArxDW8gbgYMBVy0afU6hndPWqXEdQ+kyABHJJkULWa oaTyVbWMbJ4+KKiKQxNRkFSzq/VwjaBB8WFVQ3uPwy7XGYjFooLTTh51SFVv ncGj9aINBtjQv/38TGtRVuOfGPWoau15h4OTr/s0qQKvjw2daYNPzoRgWxd9 cmHdbpEzS9Yw6hFVIzJ01rns9kqC1Zn7Ia+aoPRp8nFzVvXTPX5CvfoEGgE1 DXTxtoYwr7F10UM8UESW+IQwqwqtdXPPz5qGfutjmoTfDm0qZaNRYwV27xxw 5N5fe74gd0dK9Mk1NxsVXu09+oO1egv6IU0fNFOb2qMwohO2ptZxztu6Bsh+ SS9Z3F6a7mXm57wrcQSa+mSsjXasnyUCoKCzxjXr1cuLxMq8k1Q3msyzD5i7 reeq/QzVMNmo56oHp6I8DZVyQ+gO++7gjoYJwW5mPnTytxt8iHq9oy1GmurY 7QUa63xKpMoQ81agBUwMZfevyiICmL+g/XfrVrizkcqTATqbrvQ6ys3KdMpz hewuZBuXID9/Bpelc2oJctrH4YPvKgxLU2dxR+MoKMAyCi5ocpjyao9xVstX e/wZv7K1ujT4uRLhmBbDG9dUZPKySwwaZ7Li1j2rQBNkJvXjxfMVJjaJF6jw Z8yEOaXqEHqk+gnabt2W7U/DbHW+Xy/5+ZwWB7H+MT5EkodPSVeOQhA/rkt+ 3lcWEft5Ub0yE8EsPvlmT+C1Sn10ZDE0sDQJUz0zedogLUaMTouTVpZUvQuQ 8RorUxNlynrb6bV8CpjSsbKEhyySrdyw/NsS7GoIb1TkwS72hmv358ZE2GNy qBpye3tS5YvFELdqb0alaEl2smGEMS5CoCZNTcQW5eTnbuFRuyd7dO1cHgmq MRAN3HnQYtteHK1N0YVqidQYBtoeKrk494g9uTxHQkwKYETOdWfSOu3K4qNi oYVE7xZD5v2x0Y3uANAWVXwsUTptR+0p2awmVparusyvav7F6o0zv9wnl1dG LIPs3lFF2fuhodqexBqplVYuuWu9VYZH9Fu7KzJL3vnh3EfXGJ+zaCHo7zLK G5v+k4qxVJFmsEgWzOGmnWIPF306dgk4013raO2EWYgVX2BzwWpeSJmbxENL zxvp9Ovqc4br7w4i3i6rD3q0FprRzm0nUaBDqhgjjIqV+O2gOL1PW/DtFnSK rDELmmaMfAoSv31TJmmACsEnSOy8ySpu6KS/x4x+LvEUSjiYzUHSaSRiCGqM s5IEabyWB/d9tLlPmzFX0kQ57reRXh6NAahUDryPk8fINNi4F1+a0S5Ugzud ZigDnehi0V/ouNDH90NdD9q59Z5dlzyBZLBRkusQEMVOG7s6qJczUnbOBFOy Li/UEBHnY3SqUr4AUI5olqqzG0uNsk5CX0S/iiGbmx7vPpodPb+Y1gA1l32s tOqxM1fkEblyE+4ye/b0Lgp2SmfxQvHpnV8b76oZVWtIDDxCrsCNDS9LQc9p MFW6N0SSmNUOlMtDNB3W/keNds7RkIcwKash8vK2NIS2RUmCAYSJyU+hxrjf I/8Jdv2Ccv7Xk0cMuTX2L++IbozCdGsr9RxwU02tqAidYo6/ViUHSkhJNqlD lpHLKZR3rN/dQKMDugWVT8+063xNnAEdzWRC6kmpSSwUdIPVEth+iXhXulKY BmO+0CRL7DPRT07ndebVPpNAXSSbOTNvFtH33rm6Kmj7VcGld2fT5BDkuqU2 +HrYg+uIkHM9q6zwKyE0KaVGZYNxo/Q+RBXfJDQfA8R1qcrMsynOxQ6nUmQi eZeyWNrbZGWoUEU6Us1h1H0R8IQELTg2o3kHBJPWjJGvZbkWtITKNYyVh1+F 1IR3dnRFe0n5EGLUmjb4JBVk0R4Rmfk89jFClijJ7SlNKkJyLXr4q90+PFmj eFccL4WqlqC90OLapAGXSWcfhhUkifZG1f3szg2h8VWXiBoc6Gchi0SI3ClR WjGlSuUtdhHDrkriPWIxilhrG3i915sbRGLrrpaxNG5kbdbCkZIgYWHFumc/ SOhoWmsBw64xb1wP6FijNe3yU7pDBE7teZcZ6/q8/aych5LfV2m4Tm8xw6+9 9lUNGDAgEP0z64++YXdmXnKlVBUVZOzIisCbm4AP77VVlVqagUBFoRDrq/2X NYZGWD7rijDJXfW878m1RZDISg3zKnYiS+gK8lbgZjA7Nk7OMpmDMFTwc9q6 eSZJ4Pic3iGyMI0tNs5NYbdgsklVFEWEna1Auex6ZRWZTnPuwFunOfAlaeoJ dMpidiNEqqUKyFkdOoWZC8qGHQY6iyHMOw9T6Io2I/QFpVktQvvMT/LirH3q tMNt3t9cVv3eIvVl3BQj2kfXc9yck+wCf40RiNSkEViWgGKZ6es0j2hvG+fN 9FVC64bMTiu0Zri/Dz53DyoZVgzMVht5lk+k9+Bnq9Xo1RApAgNVg87+8cLE LGZclPco4yEqXUcSq8PuIlJc1QjoMkKrl+bdvCajSVrc6wm9AAYJUxrs/9WK /w8n1jpOsqReJbFZATret1PkSy5WK8SyBsLAmK+jxqVuzgwcnWjI7XieBCuF 3wp+Oi1RxMWUwiZdrwt/Q03aYGaREiToLEU8u/Qm9zl5dmkNbTB2q/W0A04s b1EAywt8MqLk242U3QASx5eYu3KFTWpUTCTG0KntSf2sqIyuwXo/Fu9zTDXh b9QbFNbbZwdp3dTSITo16ZQV2AWYNlzK6VaclkQTaOuea87X7+3hY9B5hxy3 YT0HNB2N4HSTvF5w3fkeEo+h66Eudr+ed/aQrElctUuHZBVJiXaUYcXVjTlO ZEHa0ia60hY7ysmuStZRbH/wPlNTy6kiCJN1BgY3w8i9TheqzqwM0lgavwnP Ho6szYiJZ53gSf3IZQHAAamTFYnOVlvx5M4gbwLE7iTBxVOykW85xyhtJtqa 1uEnWskkchZXLxTb2KT7WuEjqe7d1p+OCMADuoPArdigYUd0wTpWLVim0CJl cnaXyS1Jcn8qrkJkmCr7aGL/1M9PSZnZWZZ7SBE0g1F5I41QRZWIPRGB81tk 0ReGDBEEIqhGJWJfObmnhR/rykmcZW5jtxkrVqhJKZkbsJzZl+myUXOZMYse yBf8+Bl03rJV9Fowns/od4wZM6zJq/rKWBUt3+keQebho6dm4ruyPWsipvpe ZznhZvLZd8kqVirYslZeI8MgFXmdfDeROzhOUc/YtUo3IJFe0Zh/jlKj6K28 96UjLi2C/Ryc4kUJahRMtM3XcobaSLeo5p5gGsF9c4cOsU5EXukQHedxj05R 17UraovZGOoy5sh4xFZbTk5C+Kw1oOtzKqzU9fYzXy/4bsMKMWNGodFMoqsl lAZxKDrSWCm/mSH6sNeumTZdHWiT9zovnU7KRDCSO99+hGWDq1YvBVeN0flM R2xzAF+7nKSA42ODgls4iwPMOi2v/UTM+ycFNlVDdGNkOjRdnz9CQfvTonvj UrzC0oeCpXaGTlnzWI2h2lCTIZMLR2b+pIwvKFcLvctjG2Wx2IcpRkT3GxHl EmKKKzIHxl1Du2FVf2vQqIr+2AwdLSj21ufesLx/7tTTyH1pxtYDgjkqlAyS 0wQ/lzPsPJ5WSZBvs9M8hkAaHtBdtsTDdYoKWK3FI1IhARQddOeuhU0mq7uO 3TrbLi+hzVdR54GejtztEebsZtUXd9Srweib2KDBm8rcI3uPlvnVV9KleKkX t5qEV8tLBYzOJNytYZD+JVW6wUK9mHCou2RdWz1/n5McpKD0epIVqBGmbQbr QhlAWgphSTmMX++Y0j/mQlrpXJUQb/nqMKS0XrsSrfNTQjBmuWseJORimAQ+ DipX4pljxrQiKAWhf+ZPMamKnOTxqLSpMtbyxx0IJ/bHItS7WLoxuqrOhi1Q dHBClU0eW+a9WJhid4pb4vrEhO6pqib/sdS1zx8c0b5WPoP6H5jLJXEzurgr bR1Nxopbmzz4s1tIej3JGlWyiNt2OywGPMeo1HCmXm4DTkIOxoVZDFralnYc XYqrRggVx6bgnGemsT10mclVvtJXe1NleaYF6yx2J/UZzj6ByYs0l6FGhTCD WqdaptpFGRyRBo6pLlm0DoY1Xic6ZPO4PPJGrbv/tNEdgZWLo3M0UZaoCckl 7q9l5gJrric/GRI9bb3F19s+fjABLLttHRVFfvy15p1QQer0fElckJ/WmG7K XfDvIgmNw1yWFvTL7k6dsVVpw6WEbwGhv+jqytbehvKejPeXBq+nZQmR1lM0 LnY/IXFv0NQNM2Mq6xET33ERu5FFsfVslc8TWsM79apVgJh0Kqqjdjg4T4/B q4qHhekcunYVAlvJwfRbJXYxwpjZDji7uJUIMrxMhDzMwVP/Fd6dJ5+XBldT 8MnRzlmdRE8nVpnB5H5GecNDjGJoSixdntAsv6p9saEZV4s5spLqnqXY1pZo qx+5UZrNoDmd5nxPETwuMd2PFaYIRhHzVHW4bVLR0+kQGluQBtQBA236wPP2 +k/3L+Cz3t2isERhDlMTFceIIJv6eyvl4S0/Qclxvyl5d0KpxwpcGE+LykMI stmKHVSdKv3IP6qb8/EyuSxKUnBJqexldxXSN4DM7BBULUQir0crhMzQ14fd htpOweKjdsGyKhbRydHwldZjiG2xhmoMPvm64tbfsvlKe+zWvl/urMu7L7mM ldbE499tOG3Pc8gN1KSHBXt5h1oRC0mtJw3u7kLIdaCliR5jwAOajWVugkTK KgDHN3CWMFOYknNZFbRjC0fGqMZ6qT9+jcV281/aY/H0SDqEq0EIQ3TzCf1I 7FAU+o2DuiI42quJdqbeZ1dfH/fTJZHyGe8ZsU0ghd5YgUaeV0jRgZAGQwfa dhH67k1FRCPB7koDdcS99dEp3s6lmpT1Nq9YkYoQYlrsbZgLJ6sC8cAO2ImG cjc2D344gwQNuXSrMZdIngXdCiJIPsBgll3VeuRFfo3SgxAV9gxXDLuKj0W5 oBNiBKOThGiSvEfeBlWvthojaQeM9LoplbTH4wfJBcOPSqPO8wRX+bo6TVGJ e0kzIRUvbAwr0mqCiM97LvWuxKmeMGFYKwlDDGnSwavBJUfiZcfdKMtQladM LLUi16CU70vnvD+2zvGdu4m23CSFeXHpc8v8QaQDBeVXSXy3YbDWLcM0Ikuf 8KB2+t4a5Zgzi5S+EyuvkhvfzIDnuGvjSjlJ9edUi5WObUp5KeuOiS6w01rj wZG4dK+0usEKK3T2ulsqCrlxpdsN5lPaUr/2CQ5UbmmI0oWS3yV9p+qrN338 XYUydPporqb1yG4PdIC04rzTxC+GFhfqvboSqqlDhcpFoaJm80eIOj1/pEnV tUsgLhhGQR/6GEz0XyrbfxF9xYbL+nq9D00e9vuPVuVkuFLoNZjy0rLUMp6V L0u8VQyhMNoYohO9Im+EJdb25rjujzyhgnesrOSsxSTMelEoS9wliAky1CmC LPPGGD7eTNGDDsuFLuq8ngYE2Blpz+TkaFKovEvGvZf8qY+pZqaJ7pTl45hW EFkkbbSM399qFTyjXxtLmmvJJeb9JRvdKO/3GxKrod7OhNEtaFjr/AGmY1MC /PpF6qrQbF0XFd9QIp/rQaSi3pfxOiPNG7NyBAk/CIY5Y7tkEllsKhlfiR4P 7veN/Tt+une7jRjVukYEOBMoSaxAXKndWprcTW2XalJMzaj1+cA7z0VhE0mJ Jwe2njbs8AUGN7L1g8GueqTaram9P3jCW599ViFmgq5YY2LmpZ67oAIyz8mq WMkobkiY7JZmT/h8Njbi3j7FkNctFNz7ebSbhvik7148KQXniqgj86zL6Gqc mzDw5MWhnUrXkbNuvQGelFYcpY+919WpKFuXR7EHrKBR67CJ5OIBuryRTwi5 c8ZeLbnzcQL0CiyFfPOSuzfo2TJMA+0NuYV7eMBsRq17rCSoiOjCxUGK++hu vh6ta71hab2SWse0TtNNtG5CJ2LkepJYqjMO6gHaMf4I6A3Sy817TGKAofFI Yw60OtCM+7XRkRJ5eUZDUBHmieO0QXI/fwCvqpYfYFyebPSJbXkQmFA1ODOm Gkp9y5xkf5P95ZlPeS9q0TOjiZ0IzowZsdCpXF91Xxmryn5piQLiLtOlwXx6 cta35n8jPoSoEiNJcVct1fXAAjTqT9uFEUNS90TlbNz2K2p/fo5ON4T/DE3b WWeCHAWb8ug71bl6O61cMGvYNO2E6Vf5Pj9F5yopL3zGfqKxls42kHGZqa45 7wZMrJ6c0ltqsafXNO67iidWZVeXhUtE3QjpjknWvCLLiakHg5kpTaQJ5LpW /HgcU2hZMU04pzRUNSv3kG4MQOhuprzQ8QVN7A/HMYBad64jyUdoZ/UYVUBY yJWfoE+11FRXnKGa2UDgsU5Gb55phofrYRGpABAd6ZEbTuO04DFgD7o93VWw /D7qEFobgBGJ6hBhVOy/v+FmUHEoP0NJb6goAr9YalGtfNw8zoPmrGDs0FKx MrhcTOQMmNFkVWCvFg3uz9qa+Rfsk5QAVOOgcXOJuzr++vqZ9WYRYD/afoX4 q9K6pbFXom2ygbQR7Nlctrzr3vxR9OCCKX6od+u3+VgJGvpEzUPGK2mPANbC M+BjS4Zog35tvKKRxaT60e/8Ibqchix5tjNmmukbnXnQjrapC6be+foGFQlM 6QDz5eZa+QLznzoLhvUyLAk9Rb8bZdwm5NeQnyYP2alzSrGt6+22mBp311bl iUjOSQz48AA9Rv46hekY2zCLvONmpX0wpoFhw5RodUDfLm4vIGXiYIGcEYy5 KSnlhIyqozeN2ERVM6H9SdZiFSGVYNXmuvBTnRw0O/YUTTQMjv2N1hBl42gk KQKred/xuouQHRsnBmvazhMUX3deVuZFZYyYYjUP068N7GpHjpQIc31NnoV5 pAWYpj6sIW4uRi+XRmoaZd1ri0XXnTUpVv61Nb739MlDjCBr6GxmDXUSHxiU qBf5dF4PC6pXwRBaJYO9/N4x+KznW9AmaFDaoNtuB5MO9Rp2Un6sF9rt2Szv kBaVWJe7FDVsPrvQKe+nqXrj0U1oT77atdDp6Q++Pz1GRNDErmw1w84+e+3m gv3CniPCjE4apLy6s2WXZOKZOPrYCM+r9GJH9v+A1uOtuyGgEmZPwEkorHEv EcJDXLmG7gurKhfeTxBUaCaqrzZ7dYR5nWPFe+0tDUBH64QKUUlV3ahyvqEX uq38f/ueasuV+oEPcVIkB9ZdGi5kTI0KQLeTtzcGYbHfnux3jZiuMfRpqPNv MEpIfKTN8eoiexaTu/Kkmpa/O7UrrTIG5X6O4R5CriQuLQYqPM+20zlo6sP2 YDlnvQss9xe7aQRn56T4tH5lKmDg9obRaUdCWvPwNnPxBkevl/ige2Ht7irR Ei9mvpgk0Ra35FRF7xisuYFNsQoSsb8Vrdau05OjoloP8xx+xHOvy0LazIuc XRaMk0CxxEyBHXu0YM90n151bqsmUJDnbHh95ewAHZdaC6DS2BfJ0Sm5KW0k o5g1DQPUUilyK6SR8CfMKpXJvrajS3OGaeD8qcrHGCbnVGJE5spAxFwprVQE un5j10ClEmXeFi4f9egyxmTZUalkPUUHpp78HEM8JKfLzhr71OClggUTvApw isNxZymAWflkRzuEwCVZOVJIlbJGg681Ut5CWAB0dpgz+O44/vOj0X5NAIjK eiKGDa5M2xDTHwkrXCNF7djYbU7+5RHCh1jJixoinevdOm/hpqNUWomhQm1j rHG8ObwlBxv84cOLpMJahM1a2oSE/sR1Cm7iHmybN1SOa1/umqdM+bJ4b3cQ NN85BrQSBKK2vnQNZa1KJITRkGLVSRhLgrSJpDHS74cd3WAGNz+NkhVGUi/O r4Yjx1ofGPQD5wVqI01tcaKwwVTZprCmr75cBBfWNGEbrSGFKq1GEs1S9LLe cAQ6cfegVZcVtJvTmUP4itP8Qe8WOlZyWlQlwvBseGmqeldS9QF0rFbBarm+ yrJ4/Ci071F529pae/WIoYCTgmg2eTI+M3zfslaj3hidk8GBLkcJhF+bHLIY +SVtLV5VpRDdkF4EQvdew06eIsAbqgBakJcQcjQZ0gYW/nABXocKUUJMU0Cc o7u1VTHlxHBYsW9Fi11HNGIJWW8yK61TeT8Hk6XuyvnYSIlKzCFaGH4Q9376 lRBjb0R2mdbStPFHbWywubjACLKegjKOxrdM4hO9Y6wVH0ydYQzAMvxdU5fE dHjkTVbeLrQ5LVBqFDr7rEWtHhdrUVmtxYn0Fk1lDc9fLiHEteab8+gcQDkz DzYubqysk8hGG3wdGvqbt9faeqQjNifskmrvjVWezw6YSGeOJjBOrrCqbXWx TjMnppUYfUvNqUA7quxOma/2uXcHtK9jPShNZEyFmaYZq5uK+JxWY1dTL/3S ekF8JpU8CK0bLnSGr7yKgS9V1bRUWGtXJxTSVFQtomYDv+comm/le2m3nHe6 38k4O0Fvl3YWVQKIQDKtQUlL/EqGZiXmHXU9sKHEI5e+LKAvw1zC2JWMXuEe zjFjdqvCuo6UA1nL4A4DkWIL3OTtfxyVD2BIQIAVnXF92sHleaA1IPV5AcCS PEdgAjJsDEJidCD6SNWU3FhJXaNBRCqcb/Bfnyj0rovrisiGkHSn8CfuZ8Os 1VVbePrKocuwmaPcJyNDKS0+uEm71IrbhHKkZOIyuhNhxH+btF0idVKcCOjA oCcOcn1pnOZdcDTCNHnN+dAVA2yUltt1D4v6bbftdnsTXRbQq6amqRFAxZGu jpcYi3dSg2/QWFwrl+Abj01iYDnzjT7YMcY5LW+bVSxjZQz/wm5aor5VSt9p cDmP32J0fL5MJs94FWR5bSdlrGYLaqX5vjrlDHmp5WIeQ+uvSBgSUmyJcO6t +CrYoDhQSyqqydvkQbZjsWmPsblybKOLSMGSVVqlljTu9ZS3t0nltTdLc8iG oKYUfKUnNVJ5qlNP/LLY9rYN0LY/MGx14k4fEPPyJcAmkgM3pGrz7m05fW2/ KifIZULXleldFllsjVM9nyLcXuv/YSI9z1rHJJlwlCeVPalO8OP+UZ2Yz6eY e/o1FUJhlgJUj+hOVC7QuL0PwK8EZTvLErluoQdEQsk3N4YcfIikWclMg+T0 pxhyM3l7P/SGPOhs0l2RXr+5teD6JTjleYJswVKnMzmZSz7K/ZPd2DqH21a3 eX+WdO67LRE5qYTmY7OapQzbpeYQlXh41yJDxe3InBzRyNUMediurlefdn4Y TC5McbyTaAYFT1OXTUZGferkHrJ0YFmp7E6GV3GaJMUdqNgatvt054Pn82C0 hGKy3vM1qp38TiTwIzjgaL7f4Nrx4dOUMPhsTF1+OPGQazQ8U6J9y1N0YuYx PpfUFRuvEn7EiwlNdo4FzZ746SFes+Px2TqPKN6GOMg/EqtVRqmaVt4n9iz6 aLu1Xe307j3iTvDrUVGF3pSoPaNaHaPSwlpeHlLCIYST0+o5vl7042PYLS5a 5HBsmiV6UxY/bPeVxZYcwpNK8lH31bGrxjJtZAs7Duhq4uDCB3CNncuYaOH1 arYAUvDMNRsJjbChF7stNOUj5aN5Hlx+dvePoDIDcOkZwaw8BkqkpMlCIknH Bh9JJt5uUv5YTTj5tB4xMOTRlfWDM2AbIwYlDBILrmz6ZLPmen2Ajq1a7OdN sFPSOoaqbCUsYK62J+40cer9pQMj2nprKOLzSSTiZ2kQNiAeCQadoljHNn03 XHWPtzpyG73jx1OSxVulz3P7CK/U+06jXkbtoVKe+2PXaZ5+sEl5vvpB0whu VCF0ztuun6wHefqpXFV131yocHxpkuXz7wEh3IQvkE89CMuMm+uagqu1/eTw UKAHq/P7Yqq1e3GREwhZRL9cEo1fhnWKtTOY+5IKaZjl1qFBVowuUzefqEFg bGi15a8/ueAVOyMRUwn9Zk7Jdqd7K86aIR3KiFEo6l0/V3hb909WOy6tq0ma EhOLXCZ826I5zJzc6GK8EhK8OlVxJ9699dZwnxoTffH4jGF4dfHonFxOLbcZ ygjbaFWNXTmvPe/zOOKNsOwSg4PDhxVNRzJcBAdR1+L3Ym+ei28TKyRkqYdO w9s4E5nPIqXZyaPdBl6i7MTbUYXdDd3wpRq1JRt+cWTAptVYnwkBUaOJeXZF JgJLmqox1rPtxr5huF2DnoB205ral+1V9J4tyQcwm9aKmMTWhVrrnDUzZO08 W88VmbFuBv7GSQXIZMTVLuv3ifhwpV2EiB8P3x9XdNrkGWWKXKqFp7oTy3sX EfC1E2OvS467ezYuC1sV6fD/+c26270XabXu+yedMmG2cMCGYq/K/echtWXJ iDHHruomOsgz+AyTuba4z/EHF7N6AW/XKwT0Wrnk3irx1NhQ8wbKJGm5OIip YRSvmOHhJMYUVydGfEsDcSFrFIwLmmfVnIwe3zpY/TpMJprv+0NnMse+WgDk 0YQtIg5eZBfGDVdEuVi3kGVJTeYWtsSIzg5B5XLyAnUQNqDjc66mRzFEJjEK DOyqtPtIbPqjhvswkaBXCTl7QSMJK5IJgluYlCI103edsqTcgou5vFIAB5ls z7yBafmCT8d2R4ngjD50yxP6hNzKbynTDT+t3J3fNlQaXKI9EJmy2yzUHF0C BLW6Ugy4ROqNwcuOQIpf+EvrjmZfmWVppTTn8IoO7JUHzaGN0aRLmTCEdZkk YoMNv49KjkUelW7UdA3mrhSUeqIsH45p9pxOvQx4KxOnaLRTI7W7TtvKQwp1 7jNUvTMW75pEwFe10iJjv6UNkgwxAOnzBtqELldAyoWCGyO8Y1NZJOzgclNc uuPPL2knY8/jmSbxQHDOc/rZW/YVh3pzfL7h4bSd+BaNk7/ix49XOng+qTdP HQcf9aBuyIZAEi83bO9RQpxFkva60ecuQtwJEXUY4EkuGdq/neqnONLMajg5 We+cI7L2VtfbD442G5YHjIZSaW+5EHcHj/XN+K213e1O8SUJmppqIyY+wXlp UafoEP/NSt14H3ZS2kts647t7so3pI6Hlu/E5a0vp3iRa3l+F3MoDj0pk70v rgUVaOzt3VpnYzsQW7W1V+TkRVu3poF7zC8n9Bx5d+Ubs4qNjvHAovtX4+3J bKBJ+FWDLZK4CH4BUY3UzzsrXq21pnJvShqK5KBStbDP1QXi2zlZLiQ4XZa6 tn3iQF/XdHFi8oDQUn6MhNDBKdcyin3mfukA/JqyDLRONSQPsgmLtUgfM5Au Sufd8RseK9B/Jg2ZK73ah3Hso+ea7DYS9DFdhtzWMnBr+LRQZ5KFQUuPHsIk m0LtIIoc87PFTJKlFegzYHKK6UFKK+2bwdjmUsgbN80EpajM4Zv06tuX4EAz eQcArUgrKI2qg/63ZY/52KNpi5W8gp2ryxi9Z4DS0laUSOzzisq3OaE5t1GI o1YeNPUJiHsQiRiyKQqzV3/8jDF3DgX7kzpM4ycDXIqQl6XFY2KAqBKLfpGh 4H0DEaHzzpsOzfc9ImLDR+YD0EqdnQ8WAlrs2SzekGmlQwOUJ6fxkVnrN9ZK HL+gdzUMQlpM4CZwIQfUwh6YQMVopyLKFC0O1PG4bqdMIWtqforGhrW+n0qY rOqcOMuC/RK1CHMpqPHj2D7cZAnrIG4F2ZVdn/rd1jSuH0V2RTpdg7Nv4hJR jMJ82U9HaJqz+eLkdYobgrH35ymENfjRinqZ+E90JzKX/ezm/DxkgFlNlo1M j9g00T4U2zCXV1f38RqfLS8EY2KCeEJjnjHGexHnXhxGhFS5ky5PvOoekyqW jrG5RqFgfx4AJL2e8waEftGaLLLX9oOtoWlp1WU3suzAJt4b5sPWtYDb2TnN mrKYYoxxU5CWPZR11Q3y/YC0u93kTt7d6mQsFz2e17IiCAps/mJotgxom8G7 QeSznJP29YJHC+w4i9sjF5xlnWNDAgrOhuyTNgSDm8DHuGqeV9a05ZGvq858 d5CsV/WuWyK52FTnm4OUDNL7HtXeYa5sp70j7Xk5RRemV3mQyYohHmIn35SO Gq2u29wy7imbWJr2TXkdXf/pHzwkbyKrn1nMNDEzia4eln+TrtGC00z3vLt3 79sVqEKC8ghz/XqRivNAW2KSuGivU3UAl4e5hzZZcpY3jYvqCP1s/vMVQhu7 KrFrzCwCBvP8y7f5WavkLbfwWF+wj4R33kshRow2b02qdtR8pGU0a9G7mR+L 7oDB4JG1x7Ufw2+3GpHuzhUuSh9uUsbHDd2a43M8oa9EKKPREzVbtCw1L86z xFTthZvNbotapqk/GHdAusNGfnSQS+rLaUNAk9A0fzm7IUlIoS/n/4bhrCVD ppne7LXlhsa51VlLotDTUORdMCD6McW+zYrU2OwQ43V6agOjb21twy4oGw8x qTl6FG4jkWgPfu7uYrPRhFmmmjExGFpaSMKIfS93dU+dbYYltdNACNqKmyQ7 rSNEb5YXT/oxeQHt3ebx+UWKbsYXeyQWSZLAULmnbAgIZKP/1pKE/cAF4jEP AK2OfJEvY4CLc+JScmQjTA5ho6+SCu6DpRwf77Qi0b9l/+1M6NvJJveUdRH1 AKNzaVqOjC5G14ydN7rkueSOGLvS2hga9SbKJAKDqPs90M+O9sW9W61Nx1Qu RpOnMIVp2UGxKFncujzu9tzmxWfrFB85xReTHNFnjXjKJqiYRwC8hWpgujsB sOfAYGrh8Z1vQIpTzKPj+l4RTUyYwA0Nh3SkTJyNfnAkubxkDSRY4NLGfPrL cYzZtZWb8CJ+QSl61ooZ07EAsDW7a3BJyRaj+uUo7orCvG9E46ckqcrE5XnM EBOkuQyxazsOjnzvcBsi4xBIR6z34g4+RshQv/ByVBb0aBuq6nUyhp881Wsi t+TBQQCD90uDjhvL5Z7fe59n5crAbD11ukLoTf6Piv/GrqxJ5ZTRDrVPamOU 7OSFOo78mhHOqyl4BaqbjMqbjbyulo72u3ILAMJXT9o6qpc935wab9db0byi 2TmPnm+sY9uvnqQuJ20PgTZzvKdbHfM6v6WSRlGe2rgwxkIRBY0p+HAk1Jff qIeRhZz//IX29rEjm4D5vsW86V9ZlWp0FT5EW+B7fR1QwyJbktST+XSUaJvA yq+laDDcaRtGOkmCWshuR1eorljO/dnx8VfPVfkNqcTboxg0LwXF4NNEeUhn NFkigbmUJ70HyCfLfrlXAph0yUfP2uTt7Us7yRhFAD4TkkZYtiK+sMZlNtTS ux3C85leKYaP+8tg89B8QRDXlP/TDN/w0IMZ9BedXg1zGDr1uXZH5zqFuJLO hIipiCYmjSRNKUIg4lqMzkSybJT0M3wy0O+CPTxqk/VAK2ShaGrChiAiC3Fe PXi/mizqztjvTcK3N4GfHWGioXjmoZK3U4JghmczJJo4QF7NW1QrzFjxVVuT q6+MI1rkpAcRM71qix/MuzGoMj3g2sTFtesm+RgBIfNPRG3rDxGsYkk07ZKb MG4EXU2SsJaodLfW7wQx93H5LbLWm6nSw20MiZMQtJmFk6wdis6dijxCa1/P pQ/OnRINzHvdlAJ9vtI6y8UWV+zdRIMb9Xxs1VAUdzgYrzj4ketVS9SIxLC0 TRG6vS7PPZ4qrLoHnrgIxH82I1XYzdG+wdUTy/WGdrhbVsrh89KMPYEgxpL4 l05yI2mQSLVVyFwWeARNUwuzda60CW90gnnivKi4kuSnRozmhGpVZ6zIu6ga ip9bXTm005ljvZHi32EMceyRReL/YQYI4kRGktM4B6YSNtdKpgY3RAmS62vX Xt1GD2shY/ytpBEOkEa2IpSN2iY/xcd6IelQzNiy3rMXBOvW89tWtKMvpE5J QqqqUQ7eWnA+oJdn4xSMsbODqA345hCc5eKUaNGkWev50icWJcQdGbk973yF c+SDNgeLesIPNmb58b1LwCdDM4o+rzGQW4piXqR8pf4Qx5SinQ+YWGw9uqNH TD445DFAa0sx2Qgj5NUkq2CZBFWx2I8xlejooKxpVeL3nbtnEzMHdGG4R8o+ McoZcTWGUNrO9OZUi18ZGNoXrmmdyEprpbjjE4phhhnxLPToQdt+G7+7pFEH 4yuiie2qjBX00NDYkfrhUvvA53doZyB+FzvVvO1+UWUBSVlbzXz3ByOr+Z1k JtKmTj111efkGspSEROLSVmfc5r/Nkf0Xx0voTwuBRtjSxXt7tLp4FZtctI2 nqitm2tLAzmz0GFsHb6L3peRe2XwBAY2NkM/36FdwLqqEmIkcXxIY7hNYCo1 Nt11FRleqUq6P/35cppMlrEoCpno7KaE/6nnKQdHI3SEqvcRR/rmdqNQfP+B Ol48r3No7Zh2eFPt/5F6SSsh0PxLxwy6ZFbpuRYf+if+/GwoApYuJCTiMqA5 D73E0kEPLJgczPCi97QALM9SCFzGkzNwSTH4SZgVn6/mCQhv7IoVNmNVrcwy VK+idWUTmejc65RCyoPxWaCEM2wAQyK6PVfP/1WjtqLUlM5qcUOjtjzfJzFg F51v1VVeTr1y1aRioLZDNHoIJAtt/rmqgtkyk8/bWJtaadLN795a3Xd0nz+n na5HpfEWaJGYy9U2MToOlgZNJzvhbSZlaAWCyyy1puzFh2OMIpapQwJNG1tA uNeBHGV9cKPFNJSFvNYxpSzk/MXoPDJetMIUqCkarxm1jacho3SK/irE/Uyl mRBlqDn3lNe6HiBa0xWdBvP/yeOVmjKX7vg2cWGYz4JLI4uWFqfsXCI5Oh/6 rbvDRwCl2WxSoJwco0gCiY/QKWSS5XE6/NiApTL9fPr02aC/YR4Y78VT/yCp AVuoC2vogemuSgL5GNd1t3RUZlbd+mi44rUNJD2CYXnUEvZOoRI/CUbxCTXV 7TC+7i5q64gc3SWTM8B6Kx/NXXv3r7TpfE09yOC8PY+4263liaraZOLvNccu 0DX56nXRPsyIcU768qO8twoRHVQNuZEXRQRy5RGt9LPmu/fexGrji8fgN+k5 bZX962YLvxRof8O0Q5YnFpDN2b2jZeiluaK7oWFGp2sa+ZCkGwLlqmQdxtpa WxtcDz9ZBcCZERrhjJ+scdCvWvclsd64FIGyxxbS3Quo3iASNqzV6VMKk0LT 6Y3r9FZz7rRTRsgQJV40VK0BtNnW83q92McHzKUrkgx++YiKIfjE1RdGQFiT 4xPzFoAVG3ejrYwXN+0mvOUX9+kgmsQ1CUOkzfUqBT+WWIiS+CYmWzXmOouB GmUKjSCSqketyZ0P5wiqDSuqeDXLj9mUKovuZPiDUqB9VFZLXwAxD6zro4fr W/TAZj0QGNysOG9k6coNnc0hLf+WQoMcly+8CZzRGBG401Igy8Q6mKxPv8Zm 4mqkufssaw1TGhHVrjnafHYLPg/NFKslqWuLBsOEd5nkm5S7JaPrunZXauZ1 +mQCmlzvkg0OnmifAavC00SzmjDrY8PiI7Lt9YrRAJEDnj6l6lXANJqy5LqC kif4x6bVlgRHlCaH72+Q7yNuGY07bPn2pi0tRCZJgGaifPmSQtIcV2hrFe2J gs4qxCiFv9aEhKxr2qhfqjaw/HiIwcqt6CcOTJw19Xht6l/grGG6XfeT5hx9 q6S2peeDpkwr5UpTNnjlU1JEFx0yig11/Dfq+Ui6wa8HPv0YXF6IxtcaqYQ/ h7FbbNXJs5UqrlQluk9uQW+08MmF5oqPm+eg6q2YJG6NkCjUmpDbHLUZZdp6 qDJ1aYs7hwYwOd1ONgrGDPoHlepk3iTMiWmO6V07J46yvSLsq9eFifC9pCK1 l9fv1afuQZk1aQp8oll8MFbK3mOn1BBUddJO/7Oskmy3Py9fqGnBsA7pn0yY 1XMleQ4TpJMGaiFUPqB7qTsLmJdHG9/qJ59fkZIAHzJSmHFPyYR5ulSciJFo cxZctVM0a6CMjKDtimMryHhFQ7qsDuI0wRjyudLyPfn7Tm7OZouKQreNspR0 dSnd9Zr5nF+QODhfhQKKZGMgMozFr08SW6aGY7XYqfMlL7gFYVKkebGWFs/l VcKEdzXUafGDZ7AzKFG7KWVdeKaur1968tBkVJcSmklB4l4UKKh6fFlsiLoT n0IX0HpV6ZT+QeD79ByfnFv7KoVuI3r8zyBPTio6GEwvucquzD3itI1N9bGb q4iYcF0mSzSAYkx+4GPbiUTqSb77PDlYpPgw5iqc6hMUH5+IvbuSEMF7B0xN fZ4UbaYTUjnC6TqdyPTzkf4EguxkzK6izSgG96cAuVxdsq0xXk8IcvK732J5 bbW4fVdAb8HhIeOupnze5TVxddfrqtDXU5WXj5tV9R0JIVgb+FrDvH5oQMbW uylFZdyasXF7E1Xep8TAIT5xhOFUoJILp/1hwyHNBb5bYGv9xf2jhVwbK7Jd 6yY8f810qCZ8JRONIdMFy9jhhpY2OD8RULFpdaN3zxpDB2ucYYS3mMQbXSvk bevtzt87ojX+6OXd7pzAZfte6+QO3xKsjBTTMjURauzNvsmlXZWXG5VbcLr5 4vKgInF18oRuhzJyr01e+ccP7aOdVEqRTXoLogVbHkD1ZUKqKtjMifb5TALH 6PNDsLDWl6KFcxO63WQ78rVieuN3O2EXfwBdLu1y0Tb1VLifPjmr1ugHr12p eeXoMKuov9ewdLldwFZvgWtB3sdLbZ1luDxS7YHmgnVZYRrQjsk7s9bL3mTm GbtekmZTTgXbquZ+Ogo0ylue01Ad1EGeFRJUEyV5EIIWVZdqzAZo1U2yEWZy kAjJHo/Qla3VTQJNQOoQdBSKB6XgRtWe9FFVIOxNvd/OAOQ1fmXACvxgiZ1h fE7lNmSZVqOlsVJ/6I9IL2iRtkK4lPXmBO7pxwcX8jbqoqGGSAsgrKp0ki7T Rh0/Q5N1rauo3AKmZ+BbS7H37IprqnWu1W1oStMokzqqGhKKcTTMx+91aLGt Ji1UalP1mw13hxi+5iss6zKeBhZ8ctJ549ZCnAGJT/a8IroesKbdGtk3Kz8S 1Y21VUOaFf3xVY+xAOSWlMkt6FHuYz3hL7qEmwcds2ZU6WgjOtpg7GAfTdyw uRN5ZLn8G+RB8qRmE5DfPyF45hu0jLeGNraGJMeH5rjCDHNgNVUhxjB2vy31 jz0l/d5SuYsZRIgkuO2M7jevRRahqxeMyzXQpQIGUWHempUbJeu9fiF5hLlu yurKiM6m4PM0xn9j2yqpO9cBeChSQMJkh/bivVtH34cDjc6B+V1H8gV4aMWm mdjAq0T4xwfuGzPbg509Q3uh1W6WThwRu4Pd5FtRFEeTxXQiBOZ+/wB2tO5T GwrsQOvGwm55TJM+eHcWwc99ImYcmrpeaB2m54mlSp9DbxkGr5vvAnUwOcQx pp8OHV0l1ZJ7QEc6gYrWDs5y96b8XR6PGNWrWEacYCK+LjQ+wL6u+pE2pDNG SaI0njZks3VPf8QKYT3QSIGge2nGw0daabua2QTAMyuLQUZuoogDQz6E1YaB IXSxvej25ITGhXiCgc6cxB+gp8kk4WCdybcs1A0IqSJeay4oO7kHsA2ino3k DlW+aCG5EAumwetR/7bO06RlkUUudIUuLK446M4RLUdb29kYu5AY+LXq3Ssf 1vztt9GK4vQHazyf1QWTgIpPq4Hzf6FbDcqoGvnYoYP73QooWEGf4qmd00Ax Z8XZaNOE4D7P/bZ4LYIiRYNo2FkSyTvVockFuPgMxvh1SSfgo6TqfxxkOaWt 7KgAQWMjsMJc/6vLvbnETKixuR1B20SxRJUYqIQUnY4lhLVawuayjkDJvFep i9w/nyO25BtzSCJ7omnzNILWxkdrNmh7dUGn7GK+3u3tIyTtVts7orG0uCzo NCynMQx/lBfuutDYxiyU+pRNvbb90Y9JzIeVgEnibbI6KLattz1z3FCmqBqc shtmnoHmLlVq6mi8HvX6KgRflaMSZnMx7ETN20UTcTUcxKpU3c+XC+9Li04M 9APG3VU0sfJjzkTaGxqSrP8iKnw6lcvFpQ2MFSMwCmOmnrsHK878bQDPyf0I wTCtRszuepshh9mOHaTA/K3fEl0/OUHn6qtqCa1LDlFbhtFZy09cfGyVruFX l0JY0WAtqQcYvaHzengf8U0wAgF6YT+RVv87EeRIkDGoPNlSP68B4QxSlkAM 0HtfT9cm+Wo63qEHw/eVM9TxiZS8yTLWKmHdZmV1v1PEqO8bQ0qvadunC3QH ar3MIAIB3ZiFBIRhHwna0KqlStq+KxW2pJkIIOk4qt8QOv4MyqtKhRSviURq w2BYG4UNvQ52wR9Cb6YVQppWo+L63qasBbWUqfEzTo7o36ULY8FBmqbx0dcl iDest9zQ5zu58imsCRnOWwINXtohXPaG18X/qig5uHlma6Dq+SntRtH2IRcj MNG4QMGozva4sk5/pnVR1kmWJAR010V8eiDpszVVwPnkJ2+hVizejsRzmR3y xpmSVTaWT2SFppquewYqhBWJVBuTInqGwQGK5YLbahS58Vrcc7fg197DuRod PibW2yq5CIEU0ZzKVF6JOSAKj1qjoFovkt5w2GTaWfz1IXoBy3eVJYdmEJQP EqFfrFEjTLXVvoPZ9fYhrk3o67NgesfpPmA4MCyuRUVCfPje2CYtNhMoKmpj WKpxWJfisCeNaNpy6/NoeLPuf3RkdZ5tKwbtqICKTjd3C+VBK5GIE6AiwM6K Ov0RRu1p2gHddb/O8P4sYPbIEVkwUU/OqSF6+RuUSN4UKoKmTTzK9IPxxRX6 eLvOiCHNGm5hUNFKXGeJr/ZN6zCqD9HlSr98TCbxEg9iY9rpbW2mZ+69xCZv drd+ph7x0P1wV41kOksP33Y38F09kegEQz/aRp+Ij8zKD9td78yRzKSh4Wml gotsJqsoN977tT0Z7jgg3GVKgjEQekZLr5gvm34tL2YIqtZl6zMLF5KZmiyt 4OznmQ/nwefhH16aRkOY8AlHJe42FFubfkVFH10Bh9AnJMjdhw457iM+vMgA EDE3MClCtDnYSx7UBu/zIHbz5AomMCFtnPrlfXDJcQVoF0icLRkl8P1LBcR1 HKnGivsNub1ZqEi+2bi+WRwdUKebfi8DQTQ6O+HXxKn1I/24VaaUefGDCjWb snKvCPPwCQ0+rZwyEOse0bHqTMeL42teV36ivwWuXq2nKRpY36DIFOqIF05n rZGiZa9mHR5QnUxfZBdE0NUT7Gq87iwZEKoFm7nFwnz89XufsgZeOXVOun3J 2ViBjE77TeKposuqIoncNiw5tejoJmupE9u168+f066JwevvBj968Pio+oud R+urcaBnSGXSAGCbWuz7xc7npBoGq/MqkqwMUXWnxazkPNBPVqudjXjJS67v 5kXqznYE5m4/GchWsIz6k45BUkb78QFuSUyFWjvMa8i7G/hEAGkdBsirJoUK wMGTjqoS1UizarBKb+mHD26SHGuGvy5Vlx3HPWW/PIuijVcOdPQiY3Hp1Da1 CdA6OPB829RLpwb7qFMGtVWCStJhtBKt0wfvFyxGl0IVRAlPa9j0xn6l56eY 1BoepUjNJOKNG+mOZfntYOrZnG6PYykSmjgln8JGXvJyRDs92aQ8QlLaw2Zz d2XMjqWtVsnbGYPX4isDNaJIQjpgN4QSH150DKG14TekiXY78vxESmSXctxs 085UHGcTuuXkhY6iVE9O/u6ANo6vHLSZR2ZsMlZITDqjGgj5q6VboU/SX/Y/ TyrorBUvAqQP0eWuQ9EZnRc46OjEKr3okZMKK0F2afScATm0RsQaYOc/dDXU eUkznatRHaOdhQmNI46g/M4uHaN8tUtH9/VjqpKWaugpvF7w5R3pqHKc7wMt pwlpdGheJgq6ilPVZ7oWRO32MqvX4Pf+koSiVxIF816ERHsQhUmTkobQHuLL 9LcR7LweNyGBeGOs112tufeHiKLMig7kE42fKRrhfCdBpE6/1FDv6t0K023a tTPtAco9W/Az9cvXpu0ToHNHANuZjJA6I7SSefSWWcDe3FT99GRVqEYQzTwz jiGGLS1nLFJR5DoGUw3+d3eQDNvv7Q0NJXGdWm00hMmaNCgNLFBVZspScK4a RxxCRK+q+D1eGCi1ZgaahEcPHs1XYiyJSv7R2roxPaJtY7SeiIZmu2/twyd0 zLMLYtZLO8KnSErBY0xosZUD+C3WBJA39BoMPj40MbWh8Xh24LRPrIBk8ewT rRlkhcShTdbrntmGmH8ttzuzhBO0+BVXz4SFWLTG8A0TrSqFDmVQeoBEnKyM ozfr1Wg9MZ2Dwgkf+JSXxBVRLzpLGx8763Nje4N1Fk9UVYxOY7FO4xFJy7xf cTm6IqkpvqXGkn47AszAC7XVtI/kJFzMm9zKenKfXbGoR9gt/ujdgY/RMUNI JCOcQJlaFp+nIYN7XvJ28I2SRaLh3nd1zfvDqTPKcCUxRPmTVphfyZKpYm0Q IKS3UOyKb564+iYXgWsLPXyvPVi+VxQhz7wpN7LhvuotSQQwKsz8SwRsY/Bu HKSN6d+z04QBjD2p/3tlM5/OEadF1iT1xJ2IkELUvcPKK2nwm+TvKfY1n5c8 kxpwmGS38qCiFHimY0MsCqKizA2crCAmqvWtC4FhcEenc1QL9M3UeD8g8zFE VVECiaqAGEflZt5ASjQYw/pcxnoUDfpFqs8nTvk15sXQgPHaIuSQG2OyRsic 1UOs9mBu6PXUnCBELdFH3T39wwe7W5rBT4+IgdrcLnSl5kTr3q2VL/eRDA7d IlJD/JmXQK+mvs7J7tk7tJQ000B7t7Qtrzp0tmYAvGFdnKFWadIpdIPx7Z2D TIgpvIdxk9e6w3M0bZGDhrD5YBh+HeMQz3l8kSzY9SJJWsfnnDFMILxsnIuL OmNMqZLlmDth2/WT4CaFUNB30/oPCElmGnadbGoSd+KTMgJsqKNecLpiJQwN 2xq8oqRUnt3ocEJuaFnVKpk3kTafAybzFZbs5BhKqASqTI2ofPTAoiU8ggkR mrs793HwBq/HrfpLQKRodCJhaE3UGxRn5LYp9xmbcnSfzr0K1aYXR0QepTHo DFJZpIpm8maljzS2LWpKxgW1lp55f2VS5iZUdoIACTMOueoqirUbBKtpfbfb dgE6biT59/eQwDD3Ni+JJ1fd0XAZ3vQz1CB9LfbIraQP3ld4ExSQiqXPksYC PpaWjTgdKzL02P5DgzmjUd148elIu0yaKHp1ah5Rcxn2jfUZ+6ItI93REncm 096Ue/weaDHuylbR0c0ry0fF3sRJFJNfwpu3gQNNaqSdLpIUQz7cOBXUqkI1 b5v0NoDYs+vQE0KqZ4P7lIrXbVVb5cqjmxQdb30lyukpalsx1skq0VrV4q9j 038Wca2PxvuW+OvVM5gsq8hb+lERH4DUdEbtVzy4tXnLTlE76SZ6heZiH8gf YVqleQ6drE0ThjdIwzrGIikouUpuscPI45m/IUWZoGxzg+OeQPiBxhXZXLMB o9DfWFan4Ah+dH1OkJnyZbjwFnGbzaucOjO4V4m2D7GbdvNysIRYQmg6b053 lChzjNeft55KF3p8CCkruJYLMckNkwKJ7BdEHcVgKnL02EQzVUSttr7fWL47 CCS6Vp42OKq8oQnb8aAhUtB3swHFoxOdBW8ZuXZzoxCiudSY4Jvy5BpBjp8C DS8K9ywkn3MfBuIcYIe2/TTy5jCrlGZeREfhGGGP4ovL0VzsZBVkZCAXsKT6 tbO+og2OLSkSVqkUEO0h7DQ8i0ZXCPjFeKu0TBoUO0apXqkj81J4pxagr3p7 +N5CvoTipAhd3UTTs50NNfL6HzCJXWoe1xswXBqV0z6GViXi6qNznoPeFKOa bIRaInZwmVLeCvzmKR/qBzhQulkVPn6yNhcBK/FSTWtqlWFjaiPax60yFbEx 6/SnHyyqymtszSmdPruaUAyBFIF0LhIKKk8SkyMSuYBbrFSIYLzLeYUi9D3B +wvrayEth3FCe2f02HB7pyRhbEgrWeyh3a2eZmqCMf15uzs08LUwHEn0TDri B+Dt5cENRpjhVGJVHWxp6jMDeaXulV9dJXS+vHM/b12iXYepW9uWXiAgPqto rgM7ZoGEY7xxrWL8K454fkwAXNES359VE8ToOg1ZKb4la3QFzsQO0sJvDW4C Y/OSFon9fIGZS6ggBLUb4k7q720hLc85Z4LCqD76vhyF2ZAKJFjftYPTW3we itNaIyQSlqBvpbjbzXpl1gELFS1m5Ga1T5Mh3lY3q3+6QxAX+VHxR9yUaGGX mL51UE6WuBohwbOb1Wly3mVFjs4L+xCN0RX4JVugLdyS0faSYp/3yY7WS5aJ Dj1LqjZpfwV149ASaeddXQs2COYsVSHGanx6kN8sn50Re9AGCX/rPjq7O6bp tPV0NqaH5CIyPU1ywSLPksgub2H1LLhnR+sRLfnugfass279/wg20oeP0Vjg wx1AkxW0ONV2euR9o3jjXsntOs/jtfF55dEyZkBxJgXvQo9tsnHQZfFhlzG1 iM2nDXb+o8f0mNcpqQSBP7ZjBsvxQprdsDbW/OvY18Z/nXXGvNykPPzSSTU/ eQdrhhf6RI1+GHO+svbAVNIlTldY7dAZLf5jXqwTBrgWRfjoBZTl4+MaD0eU z1AvbebhQgptgWQp2Dll7XkmPRNnLWNoVZ6KkvWZUbZe+URYDmGkCWNZhkhF wbdQaRHJrLnCIrZ2DB/fBPRaa267UphsgvLSgMmmDufwluGi6e27m7/Ozugy 1wRm9MIkW5g/xUZ9bzXooFxdJJF5+Mu1UkgyqUlBXEj4GnLWufdftF6WArEy MmOqWXrKI4q2qjYMyiZhZjo5TGLy9pFypuv1qAfXwYWwamgmN5e4Hd813Une RPHmEE3NmhvqZ3F1yNfjnt4iKLPrBZw6ETIzakiqt0fyM6l6aZm3MCgt4LSa 9VV1q090fRF2e+gX7oYmDdmYwA3rLnYUp02lRh668sh7G3GO1nK20qKiM3BL Q8WrpoYzhhQ2NJ9w7qBL6d4DBqX63rtFqkU2Y553Vs0gcvVZA/ASilPztiyX xxwlTNnUSd41Pe2bOt0FBYwo1H4rPj+fY6apVtUIIO6KBh0lIYS0VaOyqWoi hqHo124QFDHkzLkszbJkSdrhHdOepU5Xub+i8w+RIi/AxCV1nnhwxmPT/LXn e4EqkCalnl5nwRVWkupiyiK5CJOivZEtPvj1I5rrWkDJYf42Kdp62mUu90X3 lnTCycSHIqdXpq1CdHYCwcwl3kWeAQPUBG73hmUO2uiX3qHK8TcFpQrrXqPj xYb89RSoHKJVEy30kdrZnaIIOu3VEJx4wHItnyKuStjVWZsD1c83tCWSdX7Q MhB+aRfldaYi6xBDY+We5raE/F3vo+3kqVLQrzk+XXhEwmvyFq3wxu8+E4Hb fZRB05QlAJnP39yvdXFFJGr+4LWic3qVw9hYrBXJRMrViv5GTn3Z+/c6Z+mC QVzeAELvVRmH6j+T0gaGB3zldc1ehSqEWVnLpzQS4tPuNtYJpz8/JZiw3nuI xjxhWMh7BcXMTQq6oJKrva2VpvU479qH5lbRl8uQtF+nE6T8ExB5ggzSl0Jv vbw7ZfWRkdIpXyU7edhN9cpDkHdzHlkfOJIwIEUHx4UBx+7VkSTTO1ZoGqSz hzjhc8qC5yKd/YE2fayzS4efg7SwleyJTX8NvVOzEyrZDkOz3qC3lPHPL63N hO9i1AWoqbmjzrU5h2KFWgfLLjjIEw5FR8VskTnvPgKmGFxZDaNNnLyLed2Z cK9d0ULMnmrq7x/kjq9PSB+rIp8aQMOnSe2R1KH0xcW7mwm/OutCDwSRRdTp 9cyCWMjLIdqBYzT7SBkmqfUEQSu0M8DraA8hd7lajssNtVtqXcXo9LJEtCAM HOgQG6qQ0eMj9ZDiWAYvpmboYtxaNGtgTAcSjQb4uDGsee+sWWeWVFVE9BRD PQo1tmiSRBsa04UDGgs+tem++01Xh1rnxQxLbUcBGLzrlHr0DIlXROWXSn9T ntVjxR2LwUrrPM7IIfDDh5BcWmuc0rcx2eBqCCQNXqwEppOtJ8zGRMaTmvAR bPQyn85pxJIPQEUE31O0CE0lt9aZR8dwHqurHSMOhDShx89q16sVDweYhBtO e3Loy2JSodZfkSYit1TRo5yh8bJpauoHvVbLjk/RVIGzDPFhwWSitUYilnUM wIDho5tyebehu4kOVEWIG9RIxA06U46KQyva8+lJDPvdKP6ViqnG5YnaEQWy tWaFi5N10er+bOfpISKztdx0jHZeDOutpALR0bMkvnFdSR1qIM9SLIZEYhvW fHkZSOqhfnOWJA+tlWGwqCgbd9yMMbYO56uvd97tVVcOSSifMYzw1GFyVL3u bJnskFHtTku5fHZvUKAHryenXd5cJu2cvHNWr9lnJCw8ea8M42dwzN4e8V0n zN32Si0Z2+6xlOmb2W3nW5puIRLBvlqIuA178qC3s9WWM9Fgy4wIkVemk/RP e/o+oZHSBfBW5hwxgg6mKkYJc0JbOvl2zHjNrJCh8+6imsp3A2AToxUB8Xsw 8TbsjTHA0J4RaxDT5a4Vowco/B6Tj/3W+/EHPFJaw7GEsEiT7PFIK7OzxBHj h69onrI+Niv2RepTGMx0Wzf8eE+dZNZxM5HGPY3KgmJvXO2KlluZrjyJt1T8 tsfwDi6TsY75MU2jFZgQZ67RWGyTbteHvNhrZDsUr0Fgjqs8bBjHh48+NhaW awRnNISjWBe2csPioLRWkfPj+ntWXqvT6EHR+fd3Pp990gglVh4CaGI6EOOo LEF0rvuPXajr6eUTMOuJYT/feZerfYtBo0ebLHjHDHqQXJ33/Y0IpheFCLxj lQvKUqf78hxTW6hkVqhXFbRhJDmhVVXTD5W3NWDP1fP2uPQer0cqooVCsLsw 2hu0gbXRpmSoEZN8kvXDSkXYZiUKMUhViZJnQgqh1c2BkIMbjAuwYunoQCML pJI+RjIraalbYU7GktVMYejPL5zfesjDsEXpHbEr4vegpD1cHbgOEGrJqCxg vF2mnAe6u+2X4zOdMtmuUnc0ZkIYG5R4XiUaRpZYrYcZQm+tQoXTEonSmsz9 l23k9jAotS4JBxXtNHMBurBYZNsjpnVVetSlESxuDXMG7XN/qHPqJ8Rn5n+K +uf5KQYZy/SOIUaK1tRKlGxDvFtEI5Xa/9hOOW2o+bPL4Dpl1iuSK+GZMy04 1iTC4qrWS4cc062+I0yp1lYYJbePKoFbcIh5Q5yLRuzK9/yem+SM4x8B00LE nmg1SQJyQvVyNmfj6y0bb5mE20yZ7h41ZLy8NHAD7RwnxF+ReoTIslkM6urG LKz2tsbYvhZ0YMDH1RJKKsxPYI0d3KssTsR5/F75lFkaNIuQaHu4yRvZhId4 8xRoVc3K2ZHuRqRt0v8/dW+aW8mOpInuJRbgII3zT81SKDSFZu1/Ic/MeQY3 cxqdJzLrITuBbqAKdfNSfkgbv2EQ3T6q62RNl6RxTDFAKi21qdI2uheJVLFX Ry+k2VzSSuL9H/RuM3XL7PxjY1mYkd91Uq4m9KevBJVYsFg2WYz2mfK5vhQb nWD0V2LHUecWmvX7pZAdyjJWE5lnyvj3jbZWy28s3JhJkZ994r7C+0Iwtnnu w4joDi8Hx08F7FmxuTGJqfKeKKdfEYFFaFDpsY/LsW6gcZ8fsCZLbD0GlnpA otSKoCcyuBqnSxJxurpy6IgKoSXsylSSrQYPzRHiO0npr0km2KdgtE4xRo6t 2jYPqfpOTgJBjNoB8HuRN8gFN28ul3XfAtQ9OMqSqmbzRr86Cq5bXId+Tff6 6K0T8l4kEEkLlNRZ2wx6FHbchTiyrum0sViUXtEyZJUBC9Yvs2VO6KVrq8hN gQ9ZlMtjvz+BEfDSVzEs9RI8n9lYbYL/32BGPV6EXOnMC3Cgy2R0U1IH8KEN Lgh6J0SGBviIgMEgeAMb5g+Pr1gXw+qFebwm+I/nXoWvftkY00mN9VJlymZT zQpX1c+jzcFwvIf1xpM3K6dXD2o3Zbw6DDOxwSc41mozOxlc7Ovo3Rdb4+LC ooK8H+3OA3QLniIVDCzIoXHRywaWyvb2lE0t/9/fNkJeNaMQrMeIYBkAc8Ry dwX7qB5ePJJtd3shkqxyaRqzLyD5n9guu5VwU8AeenL4Cvv8M12xsMAcbxjY ri/MuvdJw1qYxJVba8afC/B1tLeYExZsWWijoO9pcme3n2AGohwdd3SW3Lpc wDiW8QW5fmL7/ut8bUsE28TRa3Vm3A9LhQYlMjdkV1uXcmJJ2W8ZzL/FneXD kfsAKRIXOAJHCw6y7vHRCyZ7x2J+3UuT10T/c5//WCx92TCZsEET4A/FUPqd t9jWDG0Q0+pedvMxhmSbCNLPB3K3XW/4sZGd6GJo69IlQXGzBx0DWmma7Y+3 hCRmOzEsj8PkaYWgFrubPILlAfXKjNc6phXK9lH45dJlG1m28B4/O/nA/Je0 z7vz4oO+X1Pn5vzBhno6/kP7gm8pADfV+QfaFqnocFiHOipeSFmQsLGrWKkO jfo7FSMk0YGUgukf9kpxk7dExo7rLn3vvMbN0IaxX55ffZCtFQfWkQzKVKoc UhNXVxaTPzETLtHy75qHsm8g4V2MOLY7FHm7wkvFQxU4W6bkQtEsVTe3MQPi CpxKMAMAsanth9XP74JZRkJ87Lz9yh1Yh6YnhfW8F8sNr9zY5YfdK19pYeD7 Bhux9YASsIaarLWJCcXwgKUSB6wVTrWDNqTEiMxxw1r3+h6L2rUXKcnTkkgI ZP0eqMWXSxLarpvH8eaX0uROyVdBAz5eRWOFuiP2vXhpE/ZBnelHc10712D4 e/E+MoypoCWC8/1SR6Zvjy7KHSIWxNlMGL6CemPVvQtZa/DQ1bVkP2J6Ehk5 2HkNr4aC2xvngjCWnEWDoivBLLMDC1sqjTdE0evoeIh1mMVikmbpqSkbvvjA nzZVnuHCrJic5FM0ZmyU3qRQzwtbKCD+gBNgddtkgp+n7Koq7REZ4Wh56K1l 6CQBWOxXhgOW0Ayihg1E8bH6BnQEa29LqoLyLKZhbIiY1nz1yjzBPmUuGEzV /ZJinwMGkxgkQkzVKaBz6A8oed31kHTWVDDdRGXmv2wqN9wnxs7rATMGCTT2 z/vwhNU28PqRmKEY+71+VqvyuLIBzicZqh43KMgvP9lW/4BFA2xLmrDdLmqv sOH0cjzif+QHd0gQ3yG6eWNwjArZ0I9OzbZyU5djxjbxHOAUB9ejoQAZlnnw fbT41RnsVmi8PI8+EsnMDgoTqFLL0VupEa2T5PjUPJYp21zF2fiW+/0NG7HI 9ieJLjv+H0dN/LezOwnkAsEjbn91chR3JAxzqbjrDmbjIhfB8ff4z2CxmxyT B+/MPzQ2KpEmJapdP3wDhu1Ss/n9c2a9nwdZxyxB9nEmQWIwxc6daKBNZgRE qp2iSHCakiYnnPUkoUllaM3jon+y+JwYJ7UzARkNGf+d3c/Fh9vpjhyrH2cz CQgFkKomIsNpVXAwRe5UxrS3sTgkn+m0gZP5/Iu1DnCJXZrpYbYxdaajSSwc x0srEmLO9X+9MN7TbgWDbeQt6eI/50AEaHkvIDgzJRPsqVySuSAuVdKVb+G1 Dq7eYIwVidwE+jOH+88Qa5NxzHPZ4T8bQk81cVi7or9d24GDnTXrof9CdOGJ cPerThNzBh7TYUDScp0CU5ypcbmyUNkFGAPO4c+LNbutRj48Ufx85Z1AyeJ1 wYzYqUqai8e1dA9VO7ZkakI9Ts1PaC5IsC2V4qEfEi4/oSShtR0g2alksEM+ Zh1OCdYwgbPs9YKd1z62x5S7eMuuMnvZlXD4d5CSTeVyjaHntKhWXBDSUlUC Rhn0HTsN/ObJbMgGPb0Uk9e0DczagfbwJS4bjSFaasEusvwaxd022H4JJosJ rbSGqjdPKYHQtsYnQKQzz8StFcztxmCyGyMOgz5an2IDFxof9uA7/ImdRViz YQxxwR1WXZ2qWLW/dG5FkNMhtiwZWxcZXHV1C97xqqwlF1Ikxdu8mwooU/8N 6UwW14YaovbQfzGd/kmlGnMuRFRJbIHgWvmXnoTVzhgLPCdjcBzj+8YWqej6 rkAdHPGgALYQM8K4YScXp6l9Yl0tYGU6cm8dkBMNmaC4Pi7uJpNA2q+lmGrC Vh6Dmgmjf4BqTgQAglmi2wceq+EEBj8gwbZ7J395SNJiAAMEkDl55YKe6pC6 Kidyl9t3XAlsaKDd0Sae9c2RDGucdyAlAY5ZWtXDWm8C81DH7LOdDIQKw+28 u8dUjF0vtIjZEXK0rAHt5DltgBlsRYUOExQFwTpGzBs7rWwtLl/fRZvWOkNA eE9PTrX/oOnmcuSAgrE0QjIXxMxOfazR020I1VlRYo3ilPHnYDOgZYJWiXOp VP0dlqB1VRGWSPYsHhnx3q4tNsgsVuBXcbOAeOCCicuLrM6CyaZbyiV2y7Ud lMSSQkFVuOnAtz5p0c5t3jOGBwxJYAeH2H3zp2N7dNJIwjgCHVeBhU7nfB6y Tyz/zdidjL9i0WugwTH2SW8OE8QUsLC3vTf3eRcx06zmE7lgTQLZgFVvsHY7 CBfP9ac6ox9GVzVhIvjFXLutsvZrIqND9l0JTpCdB2UarEg4VUOEILcZY8q7 2KRhCZ03JE++v7BvtOwSOF+cpYZQiD3y5axGw3A7o4AFPacPKNq1zH4+BKsr D2jve8gZVqELIiZxV8BpZpwdMxpsQiUrZ0zx0RLMO2In1a8tH86DBbPmTxYT sRIuRcBmTymEF5jZbn5Y7Dq3ZPm/bkg6k8M7/w88hwe+7ojp8PVNsVWyciHm RVoWk7GOuZUxo29VcTnXP305AO7uC49JzNWR6kpE9aEUZ6TXF7loEOxlUIq9 JQxQXTycsJ7Rby7nVLQHEEsmWUxhHV9dsmR3b3zqWKopco/zxMeBCAg6RZkh ChyWCKXUNYV+d99/pwKBCRoAgZWn7I00c96OYLV+NEHAS8ZMIkvA3BlDc1Ky n/M8P5ZcJ2BCLM0bEktLKatHVjzU55Y+e8tWhqAr3izn1bauYhnnbf/M7s6b 1yED/i7YeZaeb9Lh0ypK0CvKSrcmE9UNQxvuT/t0RTyyNRYGvJuwNC5DoIKi IfrWywv1CjcUm/ymrexDCZW3JCB+FLmjN1GbsCsKsXNY8yCUOMYYyVS/mlDX aqrowif5ba83Av+3+y29LBvdcL184pXOHNYzl7zYtZY8Fpg31lujAhdiVuna wqD72/36aKNpuE/QwgCvl2FLUJb1VGpecSIq95XUdn1RakPojq8wEMd6dU5s +MmvuDCWLI/G2oAquCzlWYaopdonXeS7B+zUPRObguTDZKFkr8M2VDsP0lw4 4QbsFHs2j3lzjh2AW4+AQyrEm05WCw49PxcMiKKpGKMbe5qRF6ibJYVR+vCH bAa4iJcp2I6kbHq6jx3r25irrtWSnNm9BQLTFdxk8w4kt3LovMuhchlFngth MhGbma48yyCF0LqhCRp5NLTGIpdXkC0f8JHw3ISlfZS6Coru+cpnxFbHiqMn a59js2DLlykSLe6YhPd54e0DQpwrGD6vDp6k772uxzPe8gyQ7zABtWdL3xAr vpvXt96REJqvSp3aPlP7js5kK3odnZfNep0yTwTiBmf06TwS5G0VUckIEMvc yno9gdNYX5NJHPKiYzEkHLXklDfGYmfnzma72m57T0IgWNG7YauZDS/AIcHa 5dgmeyBF4Cq7Ja/H16O3lQomFB5KpGFg3fpqHAAt0CZr3WjzY/mnNlOIrpoB dSqavxgYw6rs9Y6wGdiFZ+XJqT6L60p36MsqctaLodifWJzQzzSJVNAyMGVd ZvmmjspTqm7Lx8FdV4fyOCvPWKCmuhlUsN93r86AkJuwPjriLdUspAOK+rXh yj5gMH1pJgI3fyNUDiJXl4umTAa7TG2Iq1h1VzJQksbt/bZhge2dNXKqAIZO z/4TSmjYYdsQA1aIyfeMg1XIetxlwVHVwUU54ydMCrH0Wvafd6yVgYElZ+d2 44PpuMaqDrdmJ5jNJuXbrXqeMHI1zYMXdcJ9Ib2h5VGJt40lbc5M6/VEF+yd WUMQQEndIevYMlC7nm32piUd//7iTGzE3Dm7WZc1LGqn7yUHAjHZ7e+kds1j zJNPBL3uxtunv96YyCkszoGbTAEvK0VR3GolRCKUMDuxjolaDMyxcciwY+V3 sFD3DqqY9VFADLueCfuO5EXB8w8KLzEW0fR0UvHx8BFyc3J6fUa+yGyjBhiR 5uWQlJP7F4e6nRv88el1S7VDK5m2BuivbyXmuNL5JGQqRmJTVOGwZemwSXYd gXOWmawWXDmS4Pdx7P4O31XgcSwELMlgx6tu7s5UIF+pbk2nyaY6rBMAG7HS 8b54vPQ70dQFnwmo27EuMg2PzoVVhSeiBZ4qOojO5SXIqY4dm7PS50dsiYVq HIn9TNmnbDuGm9pSIsPOn22wwOEFA/nFQB2qKkXO9TWAi6v9FEbBRNZfllFI l5t2FUhEXuUNL+ZBsF4glq0ttl/tnv3xeHPWrXrCahefdkljQ95mfJhTnANJ 1xyTpXHBbESI389EkuDGPo7osyRarBc9m0iiEbPNxbQplY1p088VphS7nuC5 gO8PQ7HVd62HmyH4TBCM8A3Qp+ctPl5bVnCB+H6n7bAw94kOq57oOZR6aB+I rbXlOoK6UAMHadkepfT9HVtnWFW+gT6sLRCLFiXylk7V6G0VI2dakZFyZKt+ 2KeMz1csMbg7IOnIT8Rw0N0BVdS/t3H+6ZfsYl00haEZLHkAOLsxLfk+96U4 AVePxU8kVlS6vZtaUGJckgIp3YQhlz9tqeX9F/66sNHJ1bvxGE4seHZ5O3sU 9XvHalQ2wOvnw4cwFefNBtPi63eJyXPeMSRfAsViSQ7orNxUzfBUhBa3Dk1l k7WtLcXbQ8lVMfM4TaXREOSdQ/tAfaGVRS5Ul7yRYLcsL7QwdyiKHlwJeTVa BXLCM6Szs1xYMGiclrCxpJKS7H0XxoURwgTEqekDDi8fEv4LROdBhHZji9O3 3B3jSGzDJVLDjVlPHPoNpRp6oxGAuMmhGOzqYlW4HniEWvyAnZ3FvxJGtMjx 9OVitWgVQtbBRRpyyXDXeYGafEWBat626ExHrdccbZFDaeH5lnpLBKLjlX7G 9DsRjtaI7lTrppsa0SkKAh/oA7fFECAXPLcrdYehKAH/eaSp/Qq+XLDkoJkF RF0eQrvYePnkaMXqbq4sVEeoW0B3dB7Yh4zfF1DqIFNQcignGXOyB9Rc5Zvk 5Um7A+Jd3RkJUOvrgnSlcf47p2rrxvcyOc8M6my0c46DUbcovYd7azOmPlI2 ahk5fL2Rdhkf/kRyfsBrM2oi2dfeGkzUErDeVjbaB4q7L5LhEipMhGCcYu54 oKrwvhSdWMbWVaBCPz400HHy0YYNraD3RyzzErdzp0aaACfaWdsaTFVKIc6d rBxnb00Dt8WiHv6GBGtSbJhlgD22omPTVtUad1/rLor7IUTXzOI3xm6wpv/c Y6E2l0C8nPChTJasqwaPry3sgUxR+R3pgoCl6n3/9Jdfzpr1uA3mRUkyhi2U xmAmBRuEUZl+pmCAHyyFmJomNYtVzR9y7GZqANaR8j0GDscJ34wcqU0yi/VJ xmF9f899wvyEZVRKDc7WPmK8PmMSXjN0fAHCUVgW6wa0G+cUZ73U0e2OC1ey 66pP0UPBDoqv62AmablQtUROAaI1vVRinLMxB/9p4e74nW3BnEeKGt2b8faR IZq1KrjP2Ei5kjpzAb3Pzkbajg6KxWeyZ42mcm2ao87z8wwVkHhc5OIDmPB6 F7kAWfYhKs83phrZl1b2YytHiFMJtoqJKpX972esyzjHhejjUyGxJo2j1TEL c75ykJfvbgiONrPKAIJvFRYf7wH/i/kQwGWXJkcofPFRR+YAzZrYmSBkm8ZM GvbttLp1vPsMPjUKTbxGMJFUra6hufzU7UPXCcPoDODQ8JmEzVuIoTVQ3oe5 v48p19nOov2ggG6d7rauIACrMFaVYh8bb3Fw/iYM8O4rYP+/jhMFHzsxSiR6 ie/7VXMr2k4tY5u+euRPr9COwaaN7ePXA1YSINal5DviMFXPc8Wxi619cVI7 F3aDQ+ppgXAgpVSLKi2z3FzYUG1YDjkbo3GYrIeOF7QalAM4J25H0lVlFr2T 29BZ/sKmM7MZLQbQmCfs1NhaT/PPFSWzL/MY+V/szqC10305I8tlofqYPd4B /IyjQ4pxUdjcL4OO4gtmCnYXzTuv7i82HmIyhG8Ga2wMEUVjQHTqTGcrp2IZ I8a+rjWmCqb248TZH5rKriXlC+mouZ0uygYibJNE2180HL4xmZjbsjEnfLkI wZnG7hwz+7SrjsduiO4IvZrgd8l+R1NSP1mbTezzaD+eUvZzXud/gMGONyeX ZVXEgIOmW3mSwiO73F1d3uOq2k7Y8aemz/lhOnQbIQtLYEsgbeLfKaim0pGp i5VKKxo+rUqWGmrYkmCZ0b8o13fYQwFf7lhvgKS+qgzstiFlB6qZd6bvy9JO +xMWI0Msfb3Lpn/0r2ss4/LqimATS8hoMgHRrkhn1RBMHeAfbkcZE5W1DsMX CYv0VTs+Il6gtV5AwciNf27dCg7AybR0CNa1NAM3L3ein9tUycpOULl0tsop CY0JbKpiDD0nPxUy77x08qswiaEprSUil28SEL5v7E4U6zjyAmxs6EfSYrU6 sifz7FFmR0MzyaTu5uz6KrkKljyyxVOhIr8iIf/dRW5eNySw/EqULhBOnD1i fgy1Aldv9esn5qPCsQLEVyNsQ90AKZdCtw2LXk4Yu4M6Ae0N2ML6ipbv3Obf 3lR9lwXCIWPdjxVl1IZdHQIATRUEImMIg0oO7hhz6nJCuyO3D4lMz+XTK4Yw PiZA0lkg2iYYdhK80tRoq3TWVEYe38KOoL1gKGG0Jy7dHNc0HXJVZsRVCdPF LahuXgPOqrvVZNMf6PndW1eY/evsZGwwV0YVf7GxGzMgBWUrd3gsVbNPepAp e8qx2gUfz2mwCqFIO7JQL5ox5poBZLvYofq7Y8k2+fUhHzFeZ6b5lhLNkAqp MQ6cUgFHz8UD3fl/Drs0ko00Ce5GgY9vi7Fi7fiClfIkhA80xaENymrSt2Ss LsZ/oYMCG6ucL+qfuXcxVHMLU5e+Tbyp9oWdL+UE/dgdXxU7CJIO7jd5r2/e hcAkQwORyIhcCXqhoLJTSilCUnjAUYW2eI5M1/tn/X6LJYcVDiTQTtfjcXTd Kd28NSQjKrExRQnwxDMJueX5sBjBfuFPkLlAQ8LOKpB5vT6CbXJX56/rVxm3 zwg+Ych2+5VyFVuTW72IFYIZ9SgGbV4FPgyT8lvVGYnWpS1Uxc8LUSc4y93G TK5slUqtq9ZpK9+InYoAgnRf3wHVhC08rfA3IsXToyuw7jUAm2fSIeK08WX7 DH29/1HJ98VGgaTGMMh2592v5zYDN6+g4h5bZ1PtWJSZUN8tanmf+8XNYjfW L9d/3ghdvMKc+kRWiDlyc5DOdT7kZik6HezwUu8Y6bSN3iJz3HlbyUX8BmPr B1lDIJf2mHjulIMT2+gOCoAv8bC9h5hN6Tqw/LxiXSE6OJcTPtbIPrGYFLcA 03OUSEH43PUB04upfN+C/f6vz2VtQAv4RCdiYw6ZmJe22l4VfoKTkN6rg6tf +P5vhDrPWhIsClaYECqa8D+AyZJSnlSAOqHxJB3fY7W5uBW/0856YnGLncF2 mSi7ujfT4KDb7pym23wgIZztAmOvrEZr34Sv4excrLRJVzL6juyTOpZf1e36 bIqtGjeG2xfvWCXntWGuxT7axli1XUamgPpCLGR5F8ygNEbZ4lZ8/lAc8uxC QAxlKtmEqFduqrQWWMESGqOS+oBJOVVr9s4i4SzZKE5rbSFQXqlzGm1gqRaa KUQxh++iEvaaM6Zv+fx2iT9R4QUmVpwTvr4Vn7iT5AahhDqzmO2fy1ap+YdM 8XIRp/YTkGlvX2lt0GBDL9GYkdSGudHHl8OGg+di0nicPJZJOuBDUdCv3g8S EK0rNnPcOcZZU8qG+v/bc7C54YpHM9hscrTqckOFyruY5XJDH/z6xcclck/0 UDbq35eXLDXsrIH5vFWqQCWH9UUclkD5f9Cf2ZeRV3fF+jVEiZSeCW5XRssG DQGErb3wczwFLOhJBbTPKH25scELjFgEMiMroXKyVMU9VdgjxCxKyiEusaVO MqcE/Tb/+icEsyJPzDq3fEzNXly/chgRpmKXd0OU7P4dSo0erJr878t6jPAN tnU93h9dMsIVxAcI1PDV9eEWDro1TcV3GhmAZsysjUTnMPyD6Wa2j/OcylqC EZtMuvJ4c5UiUpETfqj/rHClHcRhAgHYInZSGxTdc1KjW0VfQj2kae9RM5aQ Vb2EFKwo0aBvvX7UXMoT1i4pt5YCb2cYh/hSAO9FnnIprOXsNBgq6dwaoWGn AyjY+ISoMCWU5nZ539SdvQQMKtzYz0TsW8nGIvzqFBKqajpGJ6HQmfV811hq YeBI3hnXXcU9/kCsEsaLtWcuU7Q5DREfVdOmf7Ua80126QEOdu5DWitxYWKh hbiHQZ5YczZYZ2xBZsF+kSF50hMQ4LIxqNjflPOPVOoD5GorBS+LJdluTTtZ LeW8r+oGy9nVgLw+JcGMMbd0L8jTuadcwgO2x0iP3bnrYNCPvZ1AtqW63BuG XnFnzQ4d4bUkATKGQOqBwQZGWlG2nf9qJrQMFVjzdq01fz9Fwi/I397RCLGU VVjWzNHWIiBS6Tvrs0uOeMUYEbAf7A7WPn+88fOPxLcdxs9KcsxUSmRtvZYH d0oC3N1Y66bgfCVdaBHi7ytRahmkCm9qMJMFw+FJY0pRhM/i7tZ62mD4L2ea A6mPN8x8iXf0s9Y/EBhHHUgp/eZ6yD5mTEB4ZYs5ren1sBiyv4dYhQ+P6NuU MG64UAHlyuPXtD3iTv5TNBkDPVyhUm1n+63e1IdHMGlmVC6WnTR0w4rWqjGg WQnPGdgVoRvY2Qmsk0ECLIet3RAPvP/jXd39L2EliXh6JcaxoeqG5N0QuZwl YWdjX0nw+8Vi3OAEFEOKVgbLtQ6sy2tl/LzJyFkk3w3Q8xFJvu6X3/7mXNm1 S16BCVOxZkwbu0OCd7li3xaaqEO1pCeFHWx3Gse9wP9K7oMWyLAtYrVeAaeb A1V1fNaQsQrbTp9YFqbJ4H/gqGK12A595RzW2D477+ytqz2e6t2mpbLsq0Le 4qRl+MpiBYjP36fVt3288oR5kmclRtlkbKxw1jFRs76mvjGxMVPTO+e9z5HF YxDSuh8ovqhnYjcE2zmCo1MB8EsdAW64Gy0bOD0WcyDl7Kkib8TFBbZownDD 4uclnsmKGDMi4bA5TRuKDRWnoIwjPm8diWjIm5FnMcFEM1c1lOl6DaTp8esE MOLuFmBFjcGznyyuXgtesfWO3lvs64OoxcaSHCZyAevTYYisHg92sn5XtGrF 2OUnhruyennYqfkpJ3Ad6ImueWddOcU16NjHewpnNvWf2cMbuDqoXagtQZjo Vx2yjTkFEHHCgtMXLAkwusUuzuf8IRYjYCexkKcf+B4uadh52ZyAq8V6DVNB sr6lOvpwTlYhnPqQ8aDeBpCWmnzcrnIVq6+JF9DrVJmpPVt27CtIpqxJ1eAy zwAr/gAEkuIxrgzS9XVhTAhRIA7GSEm1NdYNNP9gyT5nokNV7PE2TynvRj9t dWIVPuVqnSLZt6ODKZJooYYsrsVSnh4TNUfs9s62FYD/v+KNWDaI46Th2MAB DtrGYHCcYkylyT46IDqesRnimFbACsvinwnDtZsiQbpGHOjq+3wTvmkp/3ZX IGexW4YIZGoMKgy/6BQvrKdmOgtzCT5BMTOYhkDUkSqVnCwvgOzxSLMyLJ/e svhpwk2q91w24lp02/q1bl9jabA/6/cVVmRxNeOzJJE9bzo6YjqqxS4+YqlF 210nHnFeCUvcfIzB+1N+nDnjAo/ARM1xGbP6WIOkG6T5KsQ8CIoQX3dT+OX5 I2CjwWth2ubEnPgMZQgSAaUO5RZvbMyHkLtg7cPB+wVpF/GRKcRIxIZkNEZ7 R4IvkDbw8nidkXQDdUQ9J0Du7wHeXoOrJPQjLN/Qosb6Ds3aDBos6/UvqyjJ 5J781LsgtJ8PLNlhLVRVMBI4HwzDfrI+SFsMkQwTn/AZnb7MuvnimyO+63Ms qQ0bjoQAecJz6zpaPTnDaDLTPhnzJMavsSHaevZKQ5w1Qc85/OVLSHOcGkpe ahwwYWXGrocttiYMxMcIwfUjweeZDUJG0mEWClMONcyqZaT2tSFJZExtjAcr hnZz/HoWTJ2XHaEE3ucp4MWwnUGqCvIMIBmGXaHnvaIWTIH4IBtavr+drQid ZSePd5p+kDIM5mpO/+f7vAKy98VcD+9NkXE9JLQ/Lrl5V8XnPKQnZ8rKO0bM pAZNoAetY+bpmSWISVhHswN4gxTLLbsVDvAzYydQ7PDERCUMYCMV+Y4+n5CF IZEKH9nXdC/L85fH6oKTOcO8XjDeMCFXTo9TYeI5hkFnjvXjw76GXAqq83sn 7j1gfTbX0cc9ARCokjT7+eBym8s5o+l8duzQdr4mGi54wQJ3cSrOVt9JZUj1 98pD4dYnFp9QwrQeOp4G6pDVl5pOBi3jRVBuMQ/f/mZbrcj4ThvLKjxkrGqc aiDWbC2SARkm+nlZrF+oHCitYmJ/7IvbTAoN7MOSyRDmvlpGtH3udemh4ISC KOjwz+V2i3RQ7N5xWVE8fX9O1s8AlqUhw+yahr3MGHPSjg6m+ttYUa1noutg 3O3JX17dkIHqqmqL4IgcmIocwWtqAJKkgaUK1+bQ9hpsXeQS9kShKmx0eGgf eWd1sQAHY3wg2mXprup1y0cCHfIr3S2NmW809TbN1fdiqHaD+cQzEqUjnlEi hTYBQxobD2P5nzi7qKjl2/oN2jIFAmk2trYHu8ILbIvWtruAr6FMziVm7qSN iIV1rStcT2tQHu5gHiDFk55igHU7H4yFyWRXxXjbQzTVGDg7EFP37ix4UVdk fPG5euQpce3qPMYKxRUwE/z7csh+XM1HJxnFqu3Mce4DLZPpIISf3gKYtaOx y9FPKcXUB9Kp2oYkfsbD8qCEPXbrk8MDNb3EF4svTCOeW9jiqwlTsjZX6pVS TYRGVKvmF1LGZ6cDur2aw8oaz+ychU7ee34nfu3aBcOSgmSCGMbWHBvGkMcC bkzNLlNFgwVcae1n9kd/vyMn+9UCjJTsJnyIsjnhj1G7zJiFEsd56EX+sZmi 7XF0prQK/EXj9wdLjPUGLGVHVnsu2LHMPcwx6HAqFzR3ctxLkJuqqAdN12dr JfIPrzWp+2LDzTlemoPwxjLJD2GVkm0jqV7vyNqLDQHtPBAmY+UOkUvrPLDe NJIDPBbVtrCJvx/Ji5n+u44bGBKASgkDXux8Sdc2nWksw63WbzDZJnpiGElt D6T4cY/dG/+sIVg7eWxJ9XWRztEo1byBDwO32QRbiotXF8nWRZQQzyYMbiaJ m6GHpcu0VM2bioIeSdPs8JG6s5Q2zDlefaji7wLMbP0UbWI4qn/QUsNnWhqE qc1uJNIAIhrTr46fzgoWGazUTB7ImNyFEzwNNYQoVrrCHF2vO5lHUU4ES8gb mqhXD5DK2gL1fxLZ/PLkrfGcmIY1M0kZ+66qb7PA2HHbpcoejA4ASmjWyE8f VA7zIqjMCPPMVXEUFd//BvyaTLEilgLQhS4+/3W2OtUeT0oMJMCWsCc0o/Z0 kIVyS52mDBPX2/JYz08lVzwPi2/YRFvMG8ZIbyc+XStaVKuGDN4IZkl/gX/E UpkWLPQwBrqnheIaE4i5zk+73vVEpVYCP8r9gR2qGubJArZmtuV28njtbLUx WlqczsL6zo5Uv1nv8UlgUKCGh9Syt4VxHm9ty3kRiCCFdX/K/aHEsC927s4k DoLIUzD1gnaSxGsKlRUuOjqfJ2yBKzZvDHmpfm5Y6X2X/n70KKm+5Rf58RZd 5fcdI28hnQ6fOlxF00ZyrPuibpMxvsW7fbOx2nkLI45iDFGDO7AvlVOEjY3h Y5+O5tt6JugzxtMcq0xME87x+oNBOAsiKDkUOXJ0GVaQ0LBUqQRhmmXN2AwI 3MYr/Hgo4MR2DAKUyn0dAex39MlzqTTKAQ8iNqpwJGCYTN6wZnz8jcHJC+XN +UJjQcF8OnjnPHij+4FuIdIRN/Adnz/OFsOKyxwJHmAMF20Z0OioxjJOWJFV iMfoLoEWiNEl01KO/XvjjBfS71iE5MmFqkfZHP+MU8+srpPdRHvktg7OA4lD cqUL/JMCaT6P8Tx1RRFfUV6nGlw6rAo8YUC7iNaXF1dC4dIXEGyagnNVamYD 7/zPNPz1NfBAe2Rv+yDt69tg3RpUHhzEiVTcw1hfp0oFppgE9Vp3SVqvSEm/ Du9ltdbQOKq/gytC5Js6QhoaWTdWH6n4eExVqeFctl19WlJ3y2A3JHMufrAx 5ToeOeBVS9iQB70E1X18kpNSrTo87FggRY+tMJ72iA876Defg0scLpozxW/n x1Q8unP5BMJfpnoDjpLW8JZOxyi3vxCPJM45N+CLhTnVcBjKXQdV3ljQVAXG YnniGBsRYw8x0ejabnkBOHKG+CUKopzjTFkIjNi+LV5X+xC70uvt+4YcR/L4 08b9JrphuxiBa3n7EGZ1Jw54PtnN8MQx/LH+2So3n+88cUCXR4bgDOZmDHv/ 4mZZPAd8xP6Wfz99n1IsYcMd+eEyYRZeb+6AZLCJ+67bZ2vbpID3ZzT6CpT+ Bqfy/auA4YwIbGDJz7TAoCOyGRSCs/oGbB0SSqgjHwWY8H3jd5TsxXjKWAy4 UGvZNv5H/b7eFrn86vvdStYtXkXyFgiN5/Z+64Pj5HAqDadiQw0qp7DDa7yV qkmd8QTr9r2ZIhke90fEf7/xt/frkYoJJk4pVTKTrgs4yqUbBLUFH4lIVA2P O34990Qj4JqLHgsH/MxZfuYRQoQUPMWkKpHwQxMWPPjk8ffZsol8IUOr1Vge o54jwVYPKqhNd61w1Ul5IOEte/95mQWhKr+pggd4RWCOcSzbeRoskqKZ15m4 ygCgnjgI3/cqA7W5PcjGTiEln7qx7usyhwZ9GGYHeNoraMRLRQdlXuOWOuxb Ei8H6wqDzbPPTZLP0a8+hsTXYs6EMoVgHIh9R9tcSH5hvEqCgTIC4cXE5/eg 4U4J9BuT8VoBCozDwFxKGmn5Ojk7OpDjIdMNIYepLEEqwJiFA+NB2ue15Jx4 0+HAFVpzVLcQfbTptFARdzSzA0xl4BNjRbtRAl18+lIF13mEiNjh4f03ClWt 48yais/i7uqGEGyYou0PHr6dhTVPggC9kyHDJk5MGzNXDB5ca/G8rYzjNrSF 329dsMA5dIEgIaYDHu2IIiXMEvykoG9l1sjtRb3Dw8DnbSAuIr+lBI3Hj22l 0OkYzrXsFM/EqnMATBVsyxP0cNQ/WN8KBQza/RMnd0XIH8VSJRDVWV+KdW+r UCbjTDHdSc/7RfZmLZROxgUU8lzVAmlYNHf2RySMKS7sKXjyQNZA+BeX+hSb 8Ozbz7iTuF06R+UJP7LV7GGWW+QRKO6I/sWGRfP5rbWOo9QIADRhCWqZdjcT s9RmUFjPcIhlB3fEXxetM5KrLD2djvaFlUBkgBlCypARoNU9YVWrpYDlqJDI H2NWk0YagZ38xprrnir5FfHEh4SBIYbqsXYC6at6VFbI6TIj6ErN7Cpk6uGp BuvAyT/fAHMrm1pnQ8mZRjMDsuiyIMA0JLAmXQqlpJpgdsAqN/ZBGzc3+FvM MYQvumZwdK5cl1MUcP8TvcKjpXR/k3F/kWzk4A0gigG4mGGsqW8+wmpxY0UF GfVX2PjqBTbWMI9/HUS7utfBEzOUAP1qe69z8ucsAkEYNSU9yvFKPWztbG9e aUc+/0RHPhJ4N2UMd2zVIR6iGupi/QQDppqNb0xj4OjShujI/TNZNK9vto2k a+kqjPgf14pza+R9kDPsQaVkNyVsBUtrmnJ/Ca46bjBHvDgF76EMthj6lsMl Ef/6/nhjl/vQbdwn7EVW8EE/6xVhNBdagRqUQt6V4AMDO1ozlmgiaSmSeFor 0Rx0rO7xwWdm8Eae70QiNWwTxloONSlGY8S97gJrFrvm2K00Xu49dvCryxwt RnnsjUDq1Ys5sa4uYYQebhpS0CZlcnz7qdt+fD4nZznXh/4ZLFWK68wiVNpM tpJ6WUnlGkL3uBu3s253WTTIi9H7K1Z5du3qSG8uhliJCrplgcrx8VksFPsG 9MddQZo82LpK1G7D1R9acPDyGJszGrmGMpax1ecWcgVcDAIQdn6U+KtaX2sf XUnyncSphJ6zpzIF41K/ddJ45QQy5Kwk1x1GHO5vggl/9Nq3rNREL/JOt4ED rPxMDPQg2zxW3KvTSpPlIE2fm7DKs1jaYsaNmujjj/N1+Lfo9QseOIexPKfg UU6AjbZ0EnQIwpWF4FYf2QLGjKkEy1TXGFNU00El2IMcYQ9hhXfi+mw5+/1k scBh+k5k5jBZn3IaBtipVSb5jLAZmt7xLzQNY1vC5TCbuE6uSpIsZhMYD0id M+oqdirey5cit3JdlYmjOE7I0ffnEm+/rY18L+fxEPgoCYX9Sx+uKz1+g73R x6YdZ30KOO0AqvvAJw9rj5A5cmHF55UP27HlCtmJ3KDP1Btgk81y/euS/FRX 9M9sI6n5lOoScMqk+j/71LsUAa4Ncv8uoSI/Dy/NzrOemOPYsv6IimkCs5Pl T61aoI2uPjUPtNdP0sxfxa+caBdAstPqQmvjs65Q2dugW2zym2e8O4tgQPYS YRb8rvTNLRnOf+3ml0Grn7euf8AUbtA2G4CTGeqY9l9zflI5qlJ0ps8HPuQu Zeq3zw2ff8mbj6fa2Tk4Q30J7TFP37sa/1whwDk4/IPiB2hR9+9xJT/jHYkR l1x9pwYqBE3sCTs7LyPCKXJae4n/Jqj565NKcS4o8f9DfBiV11PCw/Nz3hV8 axHc4PA/Y5hm3c2PPor45ENcrmQnogOXjoDv5VvaKbkwDmiZsF42fMMlcvOh zeTQNOtBuJSCvjBYHtYSsHLhIS+/8uUXFsZrJAexMSeIqRZDKpNLrXucFXVP fx8jpTibfJ598Hi6DDEIgUBayOZiCiMVKGDx1e6oAj8HujWuZOmpLLSwYcr9 9BSdSSuslyesMCneqLL0y36iSQINECUUokukPNZrSrK7ugWfgQ1ywGW8tMnb jgWEqvOU49w4jRS/PHn0nYsvvkqpJMklbRnrMsgpKZutZegVoM9ccRKL4KWn Dc45dGlyZfegGzMRQkP9Wo1OieTuQlYlvE9wLhq8p5u0hsd3B5Fn4wBAYjSY UfVsPKqzAOrnZBWYYlKz+KTvmGjXBuzkCUWaSlXvRB+ADHI69ZHCOnVtQzJ+ /oJZjf3JMCYnn6zOlexsDYv3YvBvoQv8XtwEII7m7r63M9fjtQshcVavNRhd SXtvDAWuMEgayv7q7HGdE6z1ZGLlqjLwKotdx1iEW4kDusMmO9URRpF722lm SZxZX2L8KNYDU3RYW7T4nd8PpeQoSCNYU5L7Rmbc7hFfMxlud/7BI7tOxuSD tnzhYjB2G8GsCZ7WOfxjsQJOpxa/GwFjqArLZE+Ro8/9oPF6BRmCAH0SM7Vk mzt0+g1jI+mioF3ivmzEvqJ5uMyxJotjB5foZyErpP/I7m7NhVPvBCsRfG43 cIuF5rVN9S4vFE4JiuoT32fyqGbWWXguwrL1vFaok8dttNFMPDcZ5kJVCWrX 76X49VYtJvLKNLHWYEPjSBV/j9lHyizoInvrTEL61o5k/7rf/P4Ji04hLYOJ Gyu0khhFZ2CHvJuhlvBrEJq6jsl7UoYmI3oXQp7x7ksGYrakQKVZ3Cvj/+q+ HrIQwB2EzmlYxN+/YTcqXSRn7NDI86ywwmcJ6mpuAqsgtnQA6auL70WP8OeL WIB1h70fFxFvB+NJFj/brceKLtYXl6qUCcDw4pKZgsfJYWXv+znj5TFi2GWb S5qsT9a7KOWwBrfY+NIFqaHfVB7hUiFN3hvTBFIv2p8/BYLl99WCJe2YOgJU SzXtxJ7+ef6++nIxog8OW9ILH38IBcbps/8X8NQhibcePvX3ly2Fa48T2hOr Bxs5flJchj5zaIw4fRylWqy2puJ3UkC6Xc0FlpPAhXizxdcWU4WcDNCSdeVK AK6a3p3jLEiG/dXV3ZkN1XCL5zgME5Ws0RNm0S2hTSjstGVo6jTbO5AxfP/6 3jxm4x2/Fd57LIdT9dRQB0/9FnkRIWqrswVWxxYZ6686P+noM99SQdZgh4RC jPFeBtYGZcEmMdfr54wlT6snbPtxE7AsX2ltYpsP+JemCCPNRtaZQ6TxzJwG N8wfDlU7BmIH/Vtxdo3FYFhRBDDbky+sM3ns7EcQjNSxxOwlQTBjcrdYgEwJ 82ZY00S+74gkxPJdIh2DnJ2DwfKyowWJD0qYMPVBt0cviEKy7U09nP1dufmL 14K/wpINHh1KleRTKETqctanKg4hBN4HanmCUmOI7j/D87+YStbwz5gNdh82 1LutC+r3FRiOge4EsSwtUR+UTc/xz0pclI6U0slHomhRYzle3xKLGArKmPQw g+38hjtjtp9comM3GZuOMJGLUhq+yYpvwVpGxHUBEfuzY5m74P8fD/vnA39u aSyXk8eUhym8p++umgEDVKLUspPTawvWNUesERJxsOi/Vq0uzsgSvPCRBJDb Jr7TkPSlt4qY9F6ICun3Ya2JtEek6lKxNxiw5+qBHZfgtKBq6C1LitbywuYi MeIn4DfsrIvn3YZS+sN3NlVvabFlxtuCJ3dsM67t4FaKMlW+YYRjz+qLPcde hR29BkzWvBH1lKpJQSuoN0LhUTfIOkN7F+sS/gsLbNCoH66D82uOrCMhluIw uw8OrJRNJyZXL7DK/TX+QQWwVGmT3IoTly/4fT2v6Mn7CiiZn6qs19yBeyem 8v1CbmHWtdXkXX356AvfIaQYifOO1bMo6xnGWlt955Qjf339bHeoJoBYvkSq 6QWMj0+geZy8IDZiVT+ReKSAA/+DnkxIWYQPfdjGccym9w7/3EIMkSNpQsBK O0TjeZvaGXNrrhBY6lspIaHGjyMakHRXeoe+/hsw43GIkrWJ/EJcmOPVmJKh NhPAByUlb+uodWRt41PYuN0/36VUPKhYLiRyhXIJ/NB375gakAM8d0VPY+wH LN1JeD5Ba3h48WpDNRhazGKtwwbHVqXXvifoWo5agJc6WigsfniLFX40cTF6 EX6KD9mHeX0vZIfwHzSYh4f0nBVJ5Er3qkNeqUE0EPqgFarvzrDYWyNSMHoQ 5ydVY7hTGOLVmMxYoQwwZs9MuhEdE6TnNyyO3KpXJb/YyZIg/RhISZ0PkLKg OPdYqIaAX8ubqtakYH8e7/F7rtWmbSE3GcB+O+hfumOPVEc3SxBm7M8QD+nF TiZAaREKnm5tSMnKo2L3RLzxKuipjF7aSMy19pAdug/YQC28NReA4edoDffn 9hab6JDxN7DK6Truj67UlD8ExWc9dGgd7+fR+er/vijincFolcDoFSb0K8yR 6c9i05HLxqL5+isEKfBHKYD8PmvJqXxFVbXJeCMXXGpsWvdGNEffKbZ2EtgP uT2x5p6IbxPWg1zSjRkAaw++RAMCxdql4yx6jDAZ4+M8clVrs9szjAj8sNQS zd4sDJLUKdxHR/JjMvMegPxVcu42oX+uvKuaKfz9p1mgsGoJjxRnCi67YSg/ AMxOTQGkhXLENSHneP+ZAr65kgMjEPA3p/rBhFREzzyGACMeOylk9Bf6798+ VBWNxYrGUBVpKtBwAFolRym2JPH8ir7VX7IjffPTHsy5brEVX9PLCoUKatIl aPVk1n1jvwTdUv04AjLtQdXzT/ECtOoxMWB+IJ+x3tdVRURCjF7UBjN1f9Pe MWUzGayKF1b3+y97/U3umPTfwopFzEbY3WOE4MX4stkcflm62ed6A5pjbn7N 21c8ylrZAl9XmYicozqZ99oEWHnXjtkP7BXy9QnaXcols8VywjCM4doVYeg4 cNbr+nt4gYUwXem2nYRUnAyYKvLaQZlcB5PWNW0Ah+VMcrVq1+fr2lYgWRm+ qmbvFj6ClvfJQr3aEsHxZF1YQ0KBgJm0zmPCn53W0SqzKBIGHIy4fDuXMeBm 4/qt7+3vVBKXqIREg24DkJddmWKisZJmCRJ/AuoFZkELvJmAgAT9zcD9nc3V G+FYnmWT8cA+uqQVuQp3fpZnMTEK0FTMSgQ73og90V99b1d/8HW5dXSIOZD3 cQy6kIymDGyiEd60OlCKl2UK1fAwcrrKvq7tBYkXZvEuwzhmDIakgU7AVugq 8zYfIs7TKMFEiI28cHFlwWWxszCYRCZPYCDteyrOrmsouy61zWT6ApBScir9 AHZ3jk0XrKQnHY2AJ29GheV185eUZYc7xhwCvIDJE7b+8IEPAJnr7DLvH0mO GruIZJj9z5LIrZrFuxjlHYh6LGBTdFKwNxVJrJVf34/WlLwa2UUScQwlZjts 5DksN5a7zfkuU9i00V9+f2GI9JyWFTHtTxjViijCxmSBIRqpPOj6VYNgEMQd NLE9Xvo5Dxh52NqCeP0T1RO6ycDGyGORHwYcdUgkDy9iVZfu5LLnQNXM8qTY V86qqaZXjfXt7RmTdyzganTCmwuLvRefgFjnE5krhajPFppArmqH6oTBlv45 +TZww0Lw+sbHunAVSC6wWNy60llrLwcLzbVrlKvi0peL32dcMwWLtWp373P5 5G2tvBdiNSmSicvoymcJ/+23EXP/PHAbyqYw11vwPvLtmvXOlymHOrlTsYmq YydRT3hQ6HtXiaaH7AptnAsMnoXP3xKm51XgDTlhrVAKaLrxHelUrDNEiavT L/gtDlubnZcHlyusecl2oR4k+CGzkZ46f3RyTNbtz4X+g7KPX8ybnjMY7sYX ZkEWGudqTj+dYBF26jOjqlbivIq01aLkvQ5QaawLBEEieQ2wYVTzbFSsIqpv jxU7ZSsd39ziRYA1ryiWNC8vgL++E5WYdtrbAolWaSab6lwFyCgsxeMbXMS5 Z4iBa1QCsRcJ7D1o76riKnOsLLtTFdnzDPKNpj+qfn+GkoVQSCFJk5JL6SD9 VA4BVrJyvl6JONtgExJdSNjeQGdB9frqsTtaZ0KgrJ2cl4auHOClhjyThXtu 0ks2jnEvbgppq61/Og/BBFbKuxm/ZmuAVqkaTluxZvKyWt6Koh94jZba3sE/ PuMtCKsxClkrT4kQt7q32ajmlT44YWPfTa7y6y0GhsyhlARWdZYP/RSChpzv mLTq5LoyUkfBq+Vg8sB4eoQQAsdxJWyTp4h1V9KPN2wK1oWbHY17tz7i33OX UxHZjVwoMApIxMigV330QsrYuqHDhjQlfBe5Dq6bTdDL3wS1gOK7H/DUHmPX Jx4V65C1yIXpWFjv6SXaum2j4OVs8dAD5rx9Ru/yagxF9nsTZorqBX2C/HJt 7OtjPJVdv23X+f6E+W6tYpwwzk7FFK+KHSks6rkQDiCyWReYulDjJuI2dtYb jijXmN4DB//in0Cik85mbR45vgTc4DQsyLKlxYM8uJRdY/OcVveAtMon4nx2 mS5WCV3YzAoSg06GmydhuwVAnBL4stHMf59jS7HGZIXZztNhF60KtjVTWFUe NTMK5Hhxux3RcTs8AX6jFqB6/3mfb/Hjzs47RzkQInjjX2DySJuxHO8MjCm3 W6P5h8XINK8sVMzvWfYpr/hamJHwn8ZrDb/USqEjvJPw5vMGPw8Jy2Gj4EqV qekQL+6cd+ttS8JcMhXIqzMzzUmVhkoFFb/IXRUbaZOskI/fX6JzpXFWGmc5 EojWw5lK58SnKjaEYxCHTCrfaaNsPP8LDswK4gAhk3vLTmhVCWj9KdrJmGRL jvX41+bWBV7qQvhgClfdIBw7jScNIzJ0np5qmxSkFmlfZ/u4zDIEAkhV+04b Yd9feoyDa4yyTST2WcB2Prbq5mt95Eq6fVrZce2C9yP6EI4bzv0tfvi2Lrm1 srKjjxwwP45A14su0eTBCPqhtYO9EBg3uQA73QUJ1/vrcx1QHz0DCW1W8P9e cogYLErt2Ug54Ndgz7au1/wUbSXQddq29wjRrLZGNmEPSnKPTm+CdP8k7DTF gvM/87s8rA0/yWWPC0EHLEcnY82GDpK6PqaeYB2IR+qffig+f7HghB5/iGTN OWQl2pGnxGCTOKRAFWPhS9nmBP4AqL+ONqY1/zRbZyeb8wkkuP/KMFvMAktb c+pQDj1E69Z6c9nkhF1H8YmDesXlGO1EOxDvRVlB1AkiCne39eefEMDxptlm TxqrgqfMJ9pa4kgAgonTL9vqWaGq+eUNR4yvJyARKvl1qc+ZyNpOXXX1TItK xVUtl7X6PnxxZNIycDRM733el5tgC/edxvI4YI52Pc+izmZZWHb0yae7oxai Wjnb9MU9yET/YFTg4vakxU9Ge3Ju9g/GHS6VImgK+qSShbfDjlZC+r6iqQwe YWUHGA6jK2XUUlT3+DZZ2jXYfr/PxAk7Pen5pydhY/at8fuQD6kxHXzXUpeu KUqZsxAh090jF0BawqWFmuGVA998Wm8bjgKZRoYY1YwYBf+DICzmeW4eZufd hAanXI5WsF6sXcxq6/yMJRas74jLJBO3U5wYkE7z6ynAzDosUexzOzSGRWCO XVLL7V/iCqwroVnvzYAHri4/wvGU0wCs7YX27qhveYUfKqXG2x9sUM2qqc4l EXDIuM7ITfeux29ceHjuK9Qxm7YMpQ2dOKjZ/iFBpHVG8UQesdmVsRJft0DD PmeUULAunMkVz1cnDzXD3L9hnCoNNHaAiUYcZdDsocMxS8HLlc2Q/EWZkk/e 98eIn1dY9huxO3UkKJysCbqgsBZHik1SmFdX92d3O6VCDChILQrPn5voU1n1 gjYlcKQgJj/zmKoa7GhVC8Un6K53j7ebKGYF46/vyEs/XOad4d9xXRNMmo0z mWzkmBxRNAX4RG6MDEcIbWOr3rd6j68fg6meajx4GCgTVt0mjYW9TjuIkURO CIbUfiLMpJG4IQ/4ch12uHCuOYyV3hRyqmFsWxNMpJiUhIpzGpMVjVtsr4d3 bAAlIgurDzMR7+Sf4Hh4PwQv3LruWmc3FidJefKub72737fOuLX6aQw0ACnJ +GGyiWodT2Bf/gjzEJ6UdGewU3Wt+HwAll4lW5fsHAxLrAXvQwR936cs/ivE KYpqWj/xuofFTLyxkX69x7QZVx+dilb86KZCCtVTD0r8dO4G055xrWvxcRNi ioJR6RO+NMh+aC7XoSuXEAVupT/8PKAqrJ8gOQPdlvDxCrzjzkGRnJnI7aP0 1r/Q13QJzgjUrjoeb92J3i714Rzvm1vF5hID9t2p+PEaw7VRTg3GlxvUHYE2 R+nnmhy5uUx9IXYYdiv96NYo9ufvC8WIYeJGC3s4Yh9l/HDrjbHS5IYsXEgt fGxGp6ZsKLV8HL3KYtoVZ2iH2RjLfP8uJc3h4vCtUwmBnAtSGGmxlvX/1g6l W3LsALOb4MizG4DKaTq+weLtRLHNij3aCI5s49D/Yr+hvcWf3xDr6OiI86V+ 1pNbyLKmG2ywIBRhMtRfUwmONpn7pVzBmp1d1ZOLhksnO8wwE4bq1NtI6DSb DJ4rY46hv6PztPVvr+APn/il7EwSJeSFYGSx4tVPlqON2UppBn3yzHdqKU34 oEqfpH1x703dcvKdKyncEzQyjkq5KMJW6wSuGggso1/yWwL372/J+cjJuYFA ZWUHYG5R+Jt6bDuog1ikVEuRPqvN4r3AiOBca9T45y3gh2UYB7wKYcok/bYM 0Ez+yavlZv2VRhC9HJcTpoi3z/XbkPMf7xMw40cbyeoPOxA/6DelqueWak8u Nj763IgL8OuaVe8O6ix3ER48hgdjwCp96jj4cYOce4wNxPDA0BDW/LCrm7KT VjtWE5XXb5hh2og7qazl8ccSk3HTpVtJ6zG3UEQ5nPe3d6GsQE+YIzxBSquE 2MBFGBQg2WC67sbMCVtScu7qo59e7lyqfToPY2TtAeSZrgoQLYfLQnTW7qye xxWrRVKGMJXoYxNxuJ8lvn7FkEGs0myifE6+5b9OpW3XhY8XTii6MBXbYOO1 gAC+lTIOxnRPHix3CHDFOUxxO5bTQNmmrQGxqgChI9i1NthNApInjlXVvZVR +PN38hX7dmTjEVoLExyPwmLxp23cARNyg7C9DX2KZMa9I76rIe3uJubELQOc J9M/R4/w12iFqW5LbKpZbbv+YdsSksrNMTYJpovy+IKsQTm0E//ePJmCbZDK N1YlicnpQhBiU1+UaiGwRriVVN0+daf2p+LrVGIhROtoQxv8CuEp0COjfrwb MrRHPNEmD/Z3LI5L/P6/Ms46fwAb5qNzSkh2MGGZVVIHN3kC0r6MEeZ9m5d1 0H2+xJTN+cYh5XkV7jt0AA3u4mytAUfiBcdqFYypJB/UvRUX966YwmqgEG0h v+MKpB3aZfdNnhbpLwyE49lUwuB/oIUye/mwpUTOmQ8keJ4Z440BzNQ054oX E7cB1Iglnph1ZgNPfX6NRUNZoQ0jluGYbUwZUglU4URrmHK3qZOXVw9p5xbM 2oDVkmEiXqfo1Rusa4laK3epfd6m5LSoh30+9zvWLR8Q4g2aioG6+T1eYNbI qZ5OLknxxb7j0FFpve9gefadvedxgRqNKQf8F44xYzfGmAtZwxPm8hlMc5T5 +yWGYBjpKtMkvpTkHUe5DOLUvS/SzGnD73iHXNi5RKr34OkOywPgEg/kGjiV LDBEHE2mwdMdKVr/kmXO9lSYVBo8uLrgU0/78JtAYwyclT2B8RMWzh2uYEed xMeV/mbFw21bBVdio7LJfbmL5CouowHWv9SEemCat5qj05bonj5xZ+OomR+c k23uyW8/iqtktGMaw/9LWhNwS3kmzKtdVHBxGPO/7o0z6WVDHwDydpZL4iqB /8NkvLsrTNzrHbM3kRK1T6OKW2pPlH2UfXJ3OHXIEMmScFZsagr/uZqtFFnA 9Q5bPW914aoO7zlkk/kErQLzBvn8+NImA1A1BeVZr69jrvLsS0EKY80U6J0p h+0o8roYgIPERnzp8DFODi9i6g/7vr9KAcMmkxZI9MqELKS7NeLwSiohCQ+y 0fEZsTINCSp24Up/frDvXvNsMkVsajGZhfSJmgMz5t+deIMFtdR40j5YWAwd j/52FqNLbF5CeM0yYQnq9TystBTVfypybXSY8YTboocYSmsmZnZviwX+Rdlx SxZaceStiAflwxJl9ylReC4L87/+Hu44b2hv4g7R9552nxx0XPCY+BtWNYUR nOOGEccxwY2x4GnfOZFtdPMS/FxG50ODJ0b2R4Rk69CKVat2V4HXo3Ysx6+L +c1tWPD+nGVX5u0Kh5PiM8TuKVRbxjFwt44PBMOuce5XaWLJvPEHXL65nffo MXs4R+TdqraszIJVMRj8kdJJA/eFWciW4fjHdSZAoLwd1viMyd3XqY8KnFEn D6aKJo7QStmBscuZUtgJb3VG7s+xyMG1C6RFh601kycXSWR0aV9D8HZYwwc0 eQymTRH190+XhE2zLblgG42dZ1fZQ5VfwqsgRjp1q7w1pqbBAVYwc6JRCvb3 2wjAZUiAkGATphDQptUnuLf36+Bj407/k07+efc2lBVgG5+bpbE6MK0lJkmj VTskDiPh2qcoO5DVPWAj3u3bLs8TFnyrTbcLNkzZ2SyRlksm9LFzb4OorEAw 6nN1Xv7CFKnV6IeHtwf8ry+r5IEZx8UJW/qgF8MqONt7zx1NN9QwxWKLBnaN x/b0TayOls0U2V3TR+4EMl2HK4MA1s3/4xaEIJIgBYkut5DkB07mI+n+8/CQ aMTno1cVdDreH55cqH+tSh7trEJYMpMTe+pvvd9+8P8ksOKdXKYn/P8yY7It YQXH+yt9NaOZF9fDRAnpJu6mjP/xrVRx4Ij9Tj4YsRfKkUKwh6RHNV3/LlZl 38VHHlLcAoJrOEwV3Tjx5wqLnDU1wmcImNpM3TK35tR2lNHf1wdbAHhmZfw6 retAsv+4XVIRwh//s/OIqzuPxUXDgCflyZgQO5lO31+Fkkb3LH75lfE6TNni D94b/v65xCfHZ36AFX3Eir+6QvxnpTDerSikqgG626xdv4+vd+qUE78/8Zco a58uP7++YMclPvXZDz5haWgwprhycF1oX5I/zz7BPMpfNKMO6AWDNF8YUYnf 6PJgcIyJ/XAPlvt1CRY4d6aAy5Mz4QROlaKwu8YoQZeoeRRGbPsfXX5i2zxP p44INbIVnqCYwYmKbillqzIBZ/1s0aPLZCP1Lb34fP8VfDF8SoEhI5IxWpBQ +GURp0+vUoocmdQTtBe1J2bAQmmhH6S/PrKLa+0STItAJr3VlUYFh6q2t6ZI gBIMAX3IGzhmlyqzaXmV9zOWv19YyITVACDXqXxMbFsrJrCaUGZM1klq9BBF gkTKM1kztG7xz+0ekMQZVBiYp4wXww7CFzXQDP5GwrejmphsXGWHF8PnAM3s fUDcvaUS1pbvzhJ+JVvTZXaoxT04I+ujbucv9h8kfejMBuDu5hZrjpkPzL96 wWBnUu7c5003qkGJjUPBsSkXfX4RYxBqFTFn7KpJunUwKncArtnXolCQaDa9 1ZrsmcV6/BHAc0EeksmYCE3F0Ae8ouuDOU61b9hc4n9cQqoRmy+XSEoYI/Ku r1R2zeoVzvjTyGnQP+BbtXd3d+1yFQdaEMFsqLZmJ6Cp9FW5pNrpL7AhJm4x Dca6Y1a/+88FSR+xlSkk0ggodmWiPnKn+5WGzh/lChbBd8FV15eYBD2bygKE iD+WzUyrqcMzUCkpzohtgz7tYh0AfrOcqoWlImTxdobJhJtBBfIFKXhqM7I8 PaE51FtZVoe6gnc1WNPCkx7kCj8iQf+Xx3bBRKApA8NjjohYrGMeh5JupPJF V5snIAb6UXpjf97vK6zsufc7FqiOZPKrn4qOhB4UbSp6ld9gN7otTd63O5+y WY0UST6JeCiRseUZdGFYtr27fFqIY23Ymf38eF+ZiIsFNZBdfUym8IVIp4HV uK/eVA0TCQ3aTN6Jts4ZqsuYxoa+xHK1cG1uRwtUW+RsY9BiNGHBKKxKdLOa 5XE1mO4+UPx8FFfiajSO9T3GRV8q/E6dxbTLogYFup+6xVAxQBsf9hpCgvVK 0tvZPjIuIW28GzHKLJE0nwL/qn2tTWnw0JrALH11Ivg1xQMIAxBzCEMy/kVz TFjXRzpwe11v+Ax9iNvtT/IiW9OJscjPpYPCUkRC13FCH3ZxET1FUvqQ6H6n 6CI387WYMcoENvUWJE3tsQpk8SsJrzG0Ank8kYJHaTV9Lz8B21cOYbEEhSSX q5NjQnUnqQCTUU3b4zdNWK5hDNsQvv57jQFg7dBIQWGKzoZlqhiTdQsQxeht DESMoXoiA/gNR7aP395XNVQuEWSpSqai7Vc7t+kCCUbqjHX8oRpvzPkJu9K0 EsE6IPcfLCHCZfAla7TJu8AH95wBdjhyUx8NvNRHG6LNgMWL4bBJ7nfSj3/w 4jlmweSIzo09qxFFD2//YyMOz+tIX2VTR9aR3PyF9uhQA2nnvD9h1/Ada/hM ft8Zf19db1VNxi5msT3tl8BHYz5MVHHnKdQ57gO2okIooRQMvRmvUtHVdXJb saYiCaX8dfWQ2V5AUcS30SwwsPvL+/cv0WHYLNZRViE+mBFVQ2dwrCszW3En 8gnqAsRz9jRU6s9Znq5TzvO/ZkENLHZKQPr16pdWtI7nL+0rV+RkIiPt6jCm pv7deL0orvLqFlnZUhJJ3i8LILGE0qYWkTCfPCKf0PZbT19554Laofw8hB23 5/iVozGYK3dk44Ea6BDvhLdKsF7wLwf1VAq5SGKP3Ko0X868DYHD9ci21IfM aNrLhXVTmqQiNYPEdo/BsCyGqGBz9a7SbZ8v485c7XjWjDciOhOYrm2n01fV J7ycaemBbs5iO1mS9nhzX7J9PGOOsavNAiZCwIdH4NhfajnUDRgy6ekvjw8m iFxrXJXP0w59e41dkuM8V2xHJ+r/x4dXTYG8OaX4YGV/N7ZoyLkro3L5bnfq 4AJD5LCNNSnNawh12Dm6i9xg1Rx659SUi12UnPfg/Vyr8IKIxPGgxBJG9uyN Tl9QVTqdEmc0RpiMTzF255pfL7ZU3h1zxaPJrMt+eFh/vBtcGg9MZakzQaah eiO63DQpfTrfm5YsZpoGJozjoH5fGOUP95WapcMRbBDuXmNJayLI/yLG+/eV dZX+texEXap4IwG5GNP4JINWPqTq10ALNjlsDQKf/U5MmBsxAY238KkZfVs6 ilDoTwIlPm9jafPnkn7tIOMY1niJgLFpyAikM4tPzvlhtPQSnM6FSRaQoXuL hRFvkow3EwSXpUjGyQTM1YQtDzHJSy4Tic02+7t9xri5DMGsacT/0xaOj48x 27K6zSTuQLtdK+E3Y/KTgPWtVOtTx4NMy3Eebq14Nb+dcRwqPe9k8AoHppE/ 0IbWbxpBkMm7heUhkMGWUtXbWQo16Ql3B/BkW1Py8rRskqKd1WFTyLu5jijt QtE/uIlQKG7tUvx5Y0P262kw1b4+YjOkeyToGnExCaOaPoftKM5uNqLXE3bF jkPDEv4vJnxqvq/bobLco8+CN67L7zUIYJEE7QvE/k24fQAT/GpCBTYF4o9V 89yNCdWGjMDANfCkWI11wIY+49VNiIarVznAg9po5djkRKmf+XvjxxKmZ+rR 2QYG4xeZsPWVXT6uAcsHPqOiRQjVvF6velWliQwrB40BpYlN7MTrnbV1MiJQ YT5PFI/YDOJEq6g5ppU6jzhej+4+5tjDNVcxB/DEfSl1YCn4H5a8KKr6xL9u apc49IpN6+nvuVS6mg0fT2SJGFigwHeOdTwUx2qcbanqCjz3WZxSx3Kvx2gu ZbqB4LqX4vqVUgIrdSh1ToVEdMbqsg1LoIFowQatZav8/X3jdkADrpWCZQYh O7qyCOMYXb0qO05LSKzX5VClDPV399tjIGYTKXLSmsA4N15NquVZciCMz/pC 20fR6ikCHqA/f794J/67UMvIkUSkPTOeYBo62n6uhCBwul2kzyFHGxIlszb0 Ya83bzGIXUHOdCmCqYiOJk1MtdaBilZeYE7UhRdf0WE/ROarlYrTBG6/P7pS teT55p5YFARPYKfVDLhWBVCU8Fz9wMsXtzcC4jXa+0sOO6o3Gz6ZFEm2Lzqt RusoPWNry39+q+uOsE1GIKmUUgVhlE/6fZ2NbVQ7BtviCW954lRt8VFVUcYQ BDEF+uyfhUNmbLAlDo3aFa2J6B9Y8Kqw4SGzLisaHo2ntMUxGPTmw4+WsTPw 1rXmTZdY2wTP6VSYmAiWjTlNh23kxgetaik2ydR7wtBpX613ssOfUAKXrveR FGi875n7HKlJcr+ZHNc/iH1AwcL+EoNWIP2jXz2e6HUh/Rd23Ez7WKiagO2v qzpsVV3L6hbHXaoH6jCMW5B93tgIfT9h7wZCUy3jz+JLJbK1Wwp1xBuL8AQY srbbtrB/eE7Rp/X4cb68ZmcVNlDdqAM+jGZy6qQ/Ob61iIVYYMkcF1iHXcUT 9eirmX8ms6eEsWjI7Elx2Z57C6zqBFb4BCl1j9VsiLlAA756MGL4AW8TL4Od wbsVMB/Jcn2wErZVDVTW6wN3WqnZF9f50ucyL1kWAa7QEBbyoMKs7WsMLIf/ +lySkQyUueTLuU+1kuG9UC55Ss7F2BcE01aFwVW22PLzdkOGuBTW429bTNO6 cfEer7E2b8wmsY5MUwAw6jjihC5uaJS6X3KqQfnqOdq6ZFkMIyyGc6p8xQh1 RKN+pbKfRKWWuwx+gddPU8b+Z2P4c/XossS+O1KNgbhSQP0HnyofjBsdYDEF uUI2e77C79V97W9Lg/ZV5DbElDe2MOttBnTWkgwkqU6i58T1F6fhucHg2//i f15LdoaL2ruCt2anhjYCeTYqmc2vFqEVA72lS7A3cuwQf358qlqzC+priXEi Vta4k7GacbzNooROp1iNYJ53xKfqK3a9OXAN0QpbsiUHuty+McuuWmBTSGWD Xxi1l2KotkCVZq7oVZ1Ueu+MseyqhICXO2Lq91E5atP5vF7uNEO5lnOirpug KKl3aP4O0uqMMn5mN9uSDk5IVX5FkzdSadw2zA9leZvD0HQoQ8SiesefVzrB i2+/8ytYQAbzTEGvakwnzluEx5Kp88pTjSaxqsfWPofQU3r8udsjFpbECbIn IdaujhHrSM2ZIFCwphuoF2voQg+vhBbI6ubJ+sr6XChSFtJez7aHytRmLdhL Jgnm/y/tw84vvKt/BJd/oO0dCYnnQcKuFpk99hgitfTJ/Uf0T5zoLvkeBOjs Ltrqenx8epjLMKhF54b3In1BIYCKXzrylrpz+91aJ/QYj+/XjtzD+T1OhATC mtoJWM1QBg8+ygQIOp57XaQmcrgMpaJblU3081PZ2XsuDfsKhseQagMysB2B 7qcOlUQ0TFo53nPsY8zO1qkzAf1OPgqbIkN6VZZGoL+UcYJaqDpfay3WwXRp jsfNf5xSKjGtl78PX1g7cmNxIBF55zAKdJArWvpLubKqpWL4VmUEhNrFt+u7 +jxvF9l7YPuRYPwseR8HOaSq5QQ1GWuW9DD8ys/MxtAHHd+9YPVl2bSGwDiY DJN1yxvBfKG0XQO+Aivvb3fGfDQuBqIYQGgMww7W3Hh5c1pRQIDgjtFRS948 7pID0n5z1ksMYZ/SdpRfwa46Vapp5wvfEUhznWBonJZsSaygY++uUzKbGdA0 aGK8mOBhJ56hrmE73La/+DTXzkuOHDJyyUEyAMYQN9gsiDpfzyPHOV4hKfNY rR466o9v+NwMVzz2hQTUTah0iwFvBJVgESS+pY9rOMS4QIwbt6Gnd3ZOvcRq 647ZH0+fI0htU0VeQS7SHCQ44WMfp9JE97em1iy94SnpIa1kvgDrampoYw9s 2oD7V8Z8FCZi/eXfsRIl6Sa7I3V0jnyGtTO3TLDk2j6Rp/bIJrsH463i9SwP du/IUaOANOtsyK5lT3LzAqYKux8t27LzGDaML+r036kWRjmt0NIntNrbI/XP z5yK488wU8sb8ae1+pWwrfVa3QZlK6bRp3D0wGPVgI30Bg7qOgVIHFpkwtxt Byl22xmF9THUi2/edwZaCN+2rYH2ddLVW/RmnVc8iTg5iz/DoJxabjMX5ile AhAs1CHCE/aiLQGA/cmJglPxXseX6AiCjfGuszZWUd/Or1i9eunPGcgZK7Xk quX7Ckr/U8ADU0/DGEWsKBuVWbTyLeseCyLfus0XVvXiWiyKsfYlQ7nuJX5/ iKU4Fiqwc5yrZk7p5hMYVUIhViHXk2UinWlyzw9CXi8WWw1gES2RzTKY6kKp byesMolzRUphb2y2DxQK6xcUikOV+VWyXT8r6wjU4rLXrOOW2WFDvaYraXoY zNLKNMfU1L3ef86v7wBWWMjjL2BIzDSD0tAVvaEjqayGYOzAHi00X/wilZ27 UjfWHJRVQdJYAIWxaDXuBTNGM67ePDp089a7CqmXUvlxMoDV+8i6tQMiIo6m qC1HDIn3r0yPB/c32dooNKVoOkoAHa9pNCs040rBM8P4aaap4ibsJaorXKdy eLc+eG51T1vwZKsYy3GCzPpQFSGbVxlBV4Dh9ZgLU8Gi23dRkV/nBOBi0ZZ2 19RdcS0j/nHVhg7rDyEqvaGAfZh352kGoKyAT4dt+3fOgc/mXYA8Ge8hiOJm zObOQuLzzNLdfDAh/y4O8uvK5oqKk8YDjuBEvr+9PrZCzSbf25ROOPXR4m5r fvz4jS0811gFPOuE98ENzY57XdxuiCvWkiPgItJNNcFt9EQfb/iviKtPXogC YIn92rWEUZeR2fJSx9qhshEAaDyRm1SAg7H9N/ZEaS1qVIhHkHY10EC33zbe XttC/3dIIo+P2Bg3ZUEx3LhkVJHpnkmqjUL4QV9acwAq9DuLj4vgDZd6xAoZ g7EPRbNsXKonbpFIexnuWPZachvB99d/fhdXeKS1l40PMU9EG8vqeUelKfvy KotG3k806Ct9fcqHHKoc6QIch3kDazY+3GZpTpO9w+dd+IB4YKJGgOe8M7Lr 4ENusecQZAVaW2NN6k37oB05I6BJ9C+e307QoqAhSWehe31H02rOwMIKLU2e +IHLdMwE8lW+/g7YNdr7HOZ99DtiB7vhVPN6vlfZXVwBjHzYEwfd0bc9XVhf 1kHw6SbE6fM2Wz/3Aoe6IQUScbCuRP2Yg1G1I8/IQdI2x6kk8HXcLf1pLr10 04nGYCNifSr/MLhZAeark9vx4w6K1Ea/MSf7+rEJOLqblADyBCLAapNTueKy UdDXOtbkx0iQsf8t2H/00R1ff0uq0ii8BSL1NpO9Tyqmd/TS9mVpDp91E4dy /pmziasFEYYtN1nCCI2saJesTAn1jpUg/Y+ejXi2pmTDxTNGHG4g5wPJzeGR O64vzZ6yYsEgidc2hJWgotX44Fa8lH3pdfEQIMwp5nBtsQLB0AzgwqAJwtJZ Z4D2Pip5GMqmY/2zx7NyhjbxhkjFMXGQ0lJKUMHurmUw/UDqJcfDFEOa47y8 BveX0TXsMSBiWknYtVtlT9iZ4oXoOEVJf2mNcb/y3g50xouUqtKYkBAkFIcZ 1GyAwc+rF2FrvYnsMPM7Wst3L8TZgzMVoyTsSCz+4dS9DUYLFVOaHXD5qtyF Ruxi8vziFUvM54u8M7M7lg4+2QnLCe/GgP+6HmKIYgQxxse0lrh+zsxcB723 f8UYARy49n+fq7dzymaq/n7wzjesJ7FBAkIdWBXfuJQt2pJYGppFJNeWM9+3 bee34Crf+TiUKtZGYmSoki/jMiT9pffRSCekibyNXYcC8nRpM8AKYIBFjCUU SJAIsLENi4P6a5xKdMW8sFFYfFwRQIqBfJJ3MEEpBcbe3XCg6z66XQfn0+Sc C02fs8XM4a/diX4fq8wCebI22CG0WsfrJTor9En0RQHDfWEyw0OA6+yILh8S XoLVUIqAa3bKqVLlNfiJTn+FWugK4eptRERJS3vB/SG/vzHwOb7DjKQ5YEyB QdK2MmWtrspJksfckLuSDYVc1GF+rbLEOL9MqU7xBeWN9MtDBtYrDyxf55VR kXuBUStabLMnMhtu8kq/zlIwkanvY5i0DoPZCiDKITGq9nOpMwKmtTYE5ImQ e95gzy9YK3CxVGsIAwi5utaqTkpaNgvZikZDj2SLsIA9fSmEfm+EhX3ofTzL JQrziHlc7TMw7uCY4Bqpr4xqf7O5eqZBknf9JdbZH7cTTzgqI9BhE+nH9qKA ao5DwAMBQut+WUH0KRMW7zE3QIoH6aInUshlzVwiaL+JRNH8pS4wOmJA2J4U cXH7COzjlGdKCSoitzNBPQsE21xe32LB4Il3Kr3tG6F94eiy2A9tgDGkKomh d1MXF3wzf3vnbbVVPF7dSCaNPiY7WP1qUSxiphSL7zktD7mukcdUrAZzagF8 9k7CVWzkg7eYTNpdZocfEqhZt59jJaS1ibj8oTS9yz4vXAhcxMwTuBb/X2QC 6zyKqZtC/ItFZtAHEQ3aKFHMbK4Otkro/f2XksIahhhJKiGbkHRKjNPwJLYI 6a2k8zWOfZsmPHAoeW+xEk8CGmfIYxdc8Xp13tQzqxVCyILzXO0otmHLDv+1 BZ9S6oCt31/xEfKhFLaaeXbb6yyrmgTF+YHhbyGPqwOgGqE3Eis/VYK4Hsyu X23Jgq2NPRBJvWIF31GY1eQdINgiw9kJ1NAQYwNj9POcd7jOxcKCVGU9DR/a huWdyiaV+jyHCX4LEVzyi0zQ9yB+ug/GCvNT70hwoDhgMgkDOi9zKYYlIlMC 27BrEswGrLKx013HhQOE6zn4tPZmwa7HTVhQhL4lh/bgHAlx/GrUj/qL24WG gj1XMVUnVsbc61dfHN+14jPzUyEAnn5f1QIHsHaUd2EIpwP4ezoHaQMxcPmS ii9MK9uSJg1ZnSTR97Btm9rplBJlpzM2aShmZuh532IgPj5E0vn/tRY3LJPH R81wpiNOwxsrjDF0ZPB+cli6biyJnyBEDpJM0ZKCCglW/zqx+Z1LyJykncwY rg+/VrTYcrXApwfb0OfiKv96kdrIuCCQ9VjPStaMVjfQDQ+jdsiXL34nfbPo 2e0s5m28ssVSQFtV4KWuZwZ0dNgpCZ9dCMfffWgvN/jdOVUP8OLSxo4bFfAb oGJyYiWyDTGz1jN1S/6xDtNM/9DfZ1jTeD6gzoRfxq8MYyMnVU+H+H9ShaS/ 5TyiJfHVFbMlMfr2aWMNbZyJE52bMMT1pFx7/F9Xt06CiaPXk8IwzVLESBUf q9VqzyVFWB/chzTZ4HtuJ5vqjItjd9PITtOXHL1IaWZjMvnuIQr9FOKmYSHi jO0cVjX4xtfkeIAbmphsTn4xPWMzsZqYuZTt5IM0AOBPUeuLQqrOeycHYx82 fBXPH2IRm2TSUab9UF1n6ej6/qp+WFhJNvNtdaWDkMu9JckqeXEDaQJjoAZW Cnem1OpGIIMddbBkASPjiyfgd591+PhMOGNGHALjCQnveUvXiXajlno6F46t MnIbF77/4K/npRjOrc7OlgnDu2FqrporgBynlSSCW6cHbWSVgG/eY6O5gVL9 zFB9y7islcVHGMFkhrhmagH6SM2KcNFn0B4zSeruxH/fOJO5MYC32GOlUmmg bcpQC+A5i0vamOXE2ur2JsdhxF7URxbFZxcAOQk3E/z8WLwbyONbC1VesAoi WhBjn3lWu8VpINsPyKEsJn8L85inHKpgxHGsGmhbWBIwX9vO7E+VvMOGUizq dZQ1W2a54JYSnisM3VuyEVa7YwfZEL8eSh/QrgoLOhCbet2a/pjrSCM1hZg2 3trTNbm8r7S18F+Jd4o8yQeZstqsIkYjhJM6o0tWNvtAkCisLo+SEQt60a2z VTpHDAIzcTJsYIS9f7AUJk6YLJ+7W65d64+JJOK5fCNtH3yx73KpaGuOMDCz qTZW3H0Fc20zU9yKAgNDOLto8ywl0vrMd0+QEhdPLcaR5FKqn1hBQqj6Q7m4 +fJKSN3AFDPMzCIDoTd2vaWEF7nQTHABJrtzTRwLeNpTJAE0cXynH39F6wzF hNIKd7cvmfIaO7bFsGToBQBXKh6xO9hor+1Y/UmOthviuo8JizbWYQNe/8kU 70DZIKjESU2/ceRuQNtZeBGbX3ysRRpX5SjYbxF4Re9COvLl+DQCx+H2+dKM Phm9Lc27vDj0b9+ifJfsZ9/yaEVCYUp2mrdewcDK83XfnW4f2XKf8fJ5m5IR UmXeBVJZMtVKdvsK9z411VX85ekMv2XSxqqxWSLvI8b1HSHcOUMDSBiTvm8Y fHlq4emxP+AfG/pe78d44XYGe0298DO8zpaPZbEXwE4k5OjG6qNRXq2OUFoU oHajU/38iMWJPQ2+R/zKtD4exhKPRriidyXr/YKiXrAoRn9Twl7FDuc8xg4M dfPfpYoYq2QeB1540HQhxWIpgnVOCLbp1nDAftzaAo672IHD8BxIZ669dlK/ 8f5ejLZQLPFhmK06xd2mLxduLOGwOajiJ2N6qUui+xYfRZ8kDqXAfYP9+GF9 9UVZYIH+t0Vmzh8ivkVeInny/LHRDprMNrXX5voIpI199XDfnMuRA+TOmkae 9/cn+DqsOLJ+MlZ0xtiia2mN3oT+gGihORSx+CwV0dHRzr3JAA3JMiyaJ3wA laB/mh4+GZTzur6PvFxJNGjR4e9nDDuHZYaHzyQQiA9Ek5M4AUHcXZLtMgeN ZPH2mY3tyFMqtRHhIRg8rfpdxbcoGpKqel0C506phOSKhBAKeCW6u7IL7ytb fyHTEhONsRKD34lNelc10pZq7roIxWP4sIRZw0cXmludg4LAJ01ieSEXiJRC AuJsqcNbvuG0MYRcgk2Cz88jJmDLSwosfvCcYadSuz2pX4E/TGLeHv81V4Hb nxAjhwlCwvbOEjhzbHSsi2aZiv5d9k3dVd8ewdTumfap7ezRxcpcWjoLh0hw YznJYvWD5sgY8U8VS+nBSRDmUzJX3CD4PJ4HH4U4Dok9Yttty5g1vVqs4RuO a+b19irSBlKG8FVxs6NVd1MKACvnA0lUA1iry/oYP1jtzKqiA4clT29PJC/6 mdiQ8xAcvmjzCDIOU+s3GWLDq+xrtUPCikFoXvRrs+M0lnTmqJTtftorKt7z OiWnQkPZbItOblYF1rFlEa7TQ7jy+cXZkpvm9Ite6akE2zixw5CI39iUwS1Z WdeVlZtfbbyk5vDQCA6zLSGMNyS234OrMM5FZCYdQ4fFUdYgmp2xG8Z5t3I7 6H5y0Sxhqi51AS2AeffBV7fDxdwNE/a81Y68+2fDFY11End3bTnfHJrCWlMm soCDvoX6M1llrBaokYAwJcYoGiUxOh7dPdox746yg8Aq6JuvSygeuP5mwBCB +blG8v9gheOzFTqRVs8lTLPB7TamLLrtU97TM0S/Fi2rGpwlVQJWe6Spogih UvRG65+Fok+7ANpf3a97zC2ZpWdrZuyNsRKY9w8A+bBTkVpOuscolth7Rpe8 bbF8rvBOlLAiAhKflRC7pofY1aJxJMgL/8JjJpKbVgEvb9knYAQEyMVOCWLK neJdS3VYRUu1vcH5dg6T9bG0gsPBKuIW63q7+rS+GDPhxbU6hkzdR2NFInyJ +vKxx3oYEx3mMNdUmjjomV4luie/GJqC7DlDYeSDkzWd1hzL7our1XDC+Ess 1g3A29/rffrjjDpvaaDvXVZgheOjqcHwoKnF7sPD+at1NUcuBq7RGdIsMkWn SYzvZvri9As3Z7oLxm6o5Px+xn7a8+LdwrxrhCpNqqhlqSkCkwxDa24o7ImZ cFmSQBdN5zXkMA94jki2XAiXTEYtv/Tk20wQVQqwSr2OUHuWmSzObwxc6pe/ 7+/FmbQW2bPJ2MnEknmRw1t6LeTS5Jqn34pQ2K5yUkyT81gjLWw3VoJJP3G3 NRHwRgIumRzHpUObTcd8OYyUS8/qbWageTeRqHbprgtu/0RXMUrHq0yCCVNK weRlGGaiXyqoDdttkd/GpsA2ESkKmvTQpagStnuFLwnmqcTkTZFr0RPV9Of7 bQNwAEg1lh8Rg9rBu5ud6BM2GVWFZmnOMjMvMefpyU79zBgd+Z3uGLsuF4ya Nuv+oK9fpIbKmWABSKoccjZ6GdFEelTsa00zYvw3ZEFbyKrZdnhgf5+dMYXx sPH6YalEbrm6ZbKyb67wJSM+bF2aD+tfrBYY98lVwxgeHyzGlpxzkkzhwUAc bZR486xjO47Li5nj4Y1J/Xd28VpclQ9eRIVMJBwLmmjhkg4oWYv112DLoaH6 HEPQdFyzHH72G+uKX8VcrCGwDSnC+VQ54cYyYEjOYEuq8uemYKnFl0FAkwXy /ejzvPrDshFwHY+uBQN69SDRZO8f8aIHHllTcGUiIZysboI2oNmDsuILgWPo bjAffmzMwCqabAP+6M5VjsEI/kEXZo6V7Szhf8O7eRLs7wTXy6eCzTm7D3hn QySY8XidoALKMZaI7n0Eeok1WR0tduWPr17izjJKoJwNrYc8dIkRo67vaQxs EkJbaujAOLlP+EMKMTXyEcuZS9YtR77N+emcwLwXJcEptiRAzm0umQ1To9e/ RBVciwNidTBZLMQ0eFrH/sy7qvA8pGrKvm8i0AXGf9sCWX5dYekRudpQoFqX CAnj0BjVhyk6aa5ZRvDZlpT6A0aw/sr79SeZuB7peFKkxkoijPjWDAhRbe8D oEALobaPc3++aH+/em6z8qKJEHU3MZ3ibgUZoiMPyVbz9O+0HkPU8TocAtp9 yVkAWDGiRTM5dbjQcXQpDVP6UzQBSQ4di1TXUhf6/WV91dhcxF5wYcKKSGM/ dADMWB2thES6qXhMbfPPXQ6+cFxRwpItpFSlZk4x7NsS5RhaAyVIi9nCgUry nVMVQlsMG+d+Jml+Lp3xLRZDaXSqsGCu+zhlHyoMSH7Ij6sQypz+jvO6iB+S 8ClshS2moSotDmvm1khJf+n/H3Nfllw5jmS7l1wADfPwKSlCsxSaFdImev9/ z524uqQ74U7crOpn3WbVH1kVGRAF+HgGTjbzUO7bOOPlZeDhHTx7RpGD0nly xVkOGlnrgMrWDSipRa+pU3F7i1Le/ONuov8TStVS447gMirjj7PWpYwFxdeM BiVtgswoWi+D27QlxtgR5vmE6G62zQLO7ydj2xhPpHSK+pmuoXhW8AB9On7A juUKtWpoPtkyTwsn+QxfH2Y+WXBkJEPPqkvcDw6YeUjdg6q//822/ebpjBni A2oER0OJF8TFQyq5UnWG5QE7AMzzcA9Rv2CP3/vLIbNh/cjQUxDq2BIrq2BY VyYtUqE15o3DmCAeWsemCmVeLxlcX6DUIJluuHnbWyrlQ+6zWQ4KlJxWqLYH 4+Cm16vsm6ETk7YOEPSisw1ELsyaZfpKbe0MCQdDDFnncT0dndEJCxfnITQp x/VQzlTslAvBLQyy6WNtiJ7B9cixdk0ZyufSdu9ibnh4RpXPrWYIDv9DPYA8 BqKvlOFcMYzsNAiZjrnAAQ66K4r6wm2AwMdwFmj2g/b2aQTKW1YYok0FYRpV aakg5MTRWaBgOQaNh+9tUd6eZiTA+hl6CBSoZmgS461TxJMMyTFcBkfWL6BZ WYDJrj7z32pyJItKpDAjQaS6kU2l0Jw1r9nAil5dEHZZq2H3XQ/tlexW/exd psoyqVYzVZuLkz+0IkPmIBkw0V2ZPEt64OD2PMzeXtEJfNNKelRk9QUOPFYN jU4kd9qLo+WW0FicfzlnuOOarxE6tdxw4mM7KnEhUT1fshldme4IzDmoXAu2 9m+3UC15kq0dgiEgvEel1RjU7pFHOXTiZMqUjbc9YeCjrtfvZNtfuardS0bz nJDEXliAOW0HvXLVtiqAdqu1l1+lWlr7BEQ5QWXQ+AzSclXaTcZSOMdUL9VW YwU9O398oj40wbNk1IwJqbTgLnRwOm5s0NaDydxkJB1DO6nxl94fcgpUuxaC WZ5yhLgnAtEFCc1TVNhJH3SYQG/mCq/JGS59hAoFxSdiPDKo75iheWIK26oH wg9zBuqyEkPX3WlZmuAggWSB4GyGQhIF/QZiqqga9J+iV4SHf/EL6sXKxFNr mhy8NOJ7MCivXAsT4Gkb/FHZknpAigl4hcs/tbq4AWXCPUAYadZAmWskKWN/ IVjnHwZ5VQmvTIgSelvowEzUo9fdY8meTZ0yuoZWVwlZ6V9IPwRkEpHPPuhX Z3F9YssOcOH+rVS/9U/xAe1wI1J4/xkFQY5SV2SM6epFCg6SR1Lmt62RjSJC QcqVyTYOeniPey21QcK+q4eDuDqr5fUoeE8vwZa44XYjK+NAJtqjMe0hju2Y hTOUA1h2N7aYgDu+v66uad+Rri67iIApv3EfYb2zuLRCeio5dBkjB0UURiw+ 6iOUvy8lVKq0gSZLEYK054CGXVe7GXicoicqNzK7eBmm2YTuzHVvt3b+BBc2 sMbTQ4CGbiMZkVisj9HXt0E86oo4GHud5dMX3I1AX1e0GTqenHxhHc8IspSn Es89ONuAdcAnpebJoSpikq/u7zfnXCK7+Bhnw+zCo9l6Vj3qwqfQgJYrAFkW xeP0Tu3PZYD31FmuepycRAK/IrdVJg43KPBmUD26FEYBewvlZG9z8XkeS6MJ cdQ5RBPvw6ipt7QS8GjCQC7FziJjBY5NOwor7x/FtL5vpeBWUOjBedE6cNx0 zVoVNMRqiphUX4wva5KhuMeAYpoQtVt9JJTEg8ho3Zh1sQ1UURe3N5g/NoNV B8UKFj1NcvQUz8A9Hb+BqOtdmTwSrvU51Pn7vDMm39ejelMqqXKPlBM5jnNs M81rbEQCdD1uQLtulbX0/Ar/4rgR1Zy/ObRQze1CqCCkdqkesBi08xh4ci6E yUG5U9Rrcv/LpUBNW6ER9HMHIrbK62/737FtTfMXgiZdr+IfvoJv1BLmpJ6R I1kCLyBGBFY2lyMZKpo3VliiPdjSPh/BGH9yjmGjOoeKRlOyvhoBNCKAihpU q2FC+Tp5D+byE4LFq3D1FWOY/8ZF4iPmWWvHRBkRe8IcMug+DofSzGQ39Yrz m/OAY8f1+SrU5RPiJJ3mVjc6JwljNrjWHORqN5yJ9xxCIdP+PLs1wymJluOY sVcy1dGZw5CUJ8LG4F9Y9Hf/eJ9D3hIss3cBYbCuzYwkjkf/9XdwIhr+atU4 dEYkq7XEe0ltDLbG5PnJ+DKKGxDJMzE275IRhB4lqlnU64lZb3aeH6Ha25q4 W4f0EHjHBE7y7wyny6A3ChSOFtuWZucjTHiuXyFd1O2isKD1KZpCjgzRlEmJ i57BTHXRrXVvCWWDnXeA4kW5uS++uWAt27aAQpXetDWAKBUu7ZGDqwwIqdNn 2GrQ9hHJqz7osuQWu0glmaYYEil66XE7Dj8Hr1DD1rBSYlgHjN3EcPMBsSJs NEhtRg8l4xPXICE2w8P623VEADikOjlXzc4C4Pa72NafL+j5mgs82VrMeAEp Rg3f/i1sNzgw8CvwjvzB/0+5Fn+CsVzPDB7fBJVkCPJCQFxx+0b25oKTe8q6 FXK/C83UQxrzfb8EU6nydpjpNygNrQ2Elxa5J/0DVSkn09gxeCw2YShU7rsQ jp9jP/0ptdGpVys3gwbPpWje5PpycGQCTPtigQayGrr/jdCrbSYQEfcayDwu SpEuO/40t5AhkuvqPiQ7wWdt6gByZfEAgTpTpgJUfojrTZqp8I4jzeoi6P7N y2MzEbeTB1YWrcvPL2puNmELxrOkgIjeJmPQBUiLPRo8Vu7gMSaUAi8MfoXB 9LaDR+LKIzxfrv+EDg+z1qByV0f3w8oYkhCquoPIuy8IE2brVGfwZ6upzDeh +ytXLKmgAo2sklRJQMcOvfb1qX5e/f1FCDVs6hsPyRbuZ1Nu7AEOyykzXTWy rgpIr65Pri8gimY6ZLIJIdU5WwLYYmFV1NczlUmJ6GhOInKg6WfdQBHTSIGr UXQx6DVfXFxXjOQxiQpUpfkMD6l8UZ2kipIrjcKnJNcnyMKBgANqQK+kfDCs lI1MR++AXCR28GO7ReLrOQQlQ5dSKBUKjZptkpwnObXMKFnbRIXXFNAheGSo uLG0O2aFD3c25kI69eBLnjz8rVJwFekSqJvVQ/SOLrVbfS2Mcj+esAxgo9zo 4FcCZZoXhzPCTehoAKpp4KfM2rsB17exNFG9ZV0SbEHbAqPwK0UsXo6FvTC5 XCGqALPiOfTd+q//9Rq9JTeLyehCmqBldpIlWZUtV/PBP2nIpmB9ZBw51wDF qFYM3pxhOUXbsPkGT66mSichAoV1y0dgYm+NJLnX3xylpjYOtsE1nifNsg7e wgTlHLG9Z1WgyFePzUdwYO9ANuhQJdnirT7D/4NWlfM4ltwBeGxmqs63OZ5Q CSpLSc+EFXdEx1ZAY6sWBl8PUA0mCm7Ls6RhshSB/i/ItTG10SI/9m6zCzkU LmHp+lwffbk/IArYjZSXCwHeajzgDoWdg/SdS2g9/eloJzivCUa/Gld/fY6V oLRiQsoHXAuZrCoag8IfimymJJ522arv4x2fzkLJecNOQY3LCf7GRJ6cMkRQ FW5dbCahXKNwQD+gzmYmSQ/FX7exVkdmpxka4wkZvgoAXaGFodgSW56pn/tY OQhwoVXI+ONjCpTA6FDwL4ecxZQh4lhyCTzLKTbd9KgFfsOxyXVulN3eIYRl YqMA9QIkGWcUW1svJTb45TCBnkHBVQeBFMJ/W9goE+hrfFsY2FejJJMNpJlE VP7+cwTW2HoipD2vlY9L9IGq/OFBHDSThd5HUaQTJ2Auts/8LyxXPM6e1QP/ fkVF+U0LDG8McnNJRisg5OVPyKzq1WEiS6oTGsu1eDsUE56Sl1Dsdsr+oONx uneXg2qCRWFVMWDRvsGhbHQ6DuvPF7xJS08McRhlcA7SEgMieqNyIwMl+64N yO1NhR9rO7VD3FmxxoSRMyusweADU1iUXx+hI/wY/UniinfQGlrCG4SbYSfE LkS2QvnPP7VsD0oE4PLOfuLhHWKCJSE5xOKmlFt07KmQiYarqZrC280xeq6b UGCsgQf63ebbU7Id3k8yyU2QH5MdxO3tOkstSDh1bHYAwpmwE5G//9jQygU6 NgvobGhCjYwEROY8osWmi47JdchzE5L5Sp5icOp6++4pxSZxSd9fgZCMumBq 7SPApLdznqwTBY8xrqDHtK1BT9V/ri3k6s2azWeUCs1wLcfEQgUWS8caZghm ZmeKfkhNW0C42Nfn0WeqVuVLQB+4lIjuuBIzRoF8Y+pfOXnNMf39Mm9mltBH zdE5lMENodKUwEVj8bmKZT2pjjx8s9p0URT+4C9n2mR1bf6H6dBk50TeiOih noPhyotDmKd9ZeG3a6QJbVGIcKnRUYqsWoQd996iLYhvkMyBCpSdzpmd0dXt BZpfbx15Ee9bg615pOlT9Lyzt4xVOjZ0gWAJ38vYnanL0zuUUm5zfFQ4m4IN TY5cnm9LvCLob5j9n+ztRhQjbZqgoMw7XPqP7ALVKkBpFswsnosqKKXSIHmv iZjsB+26EjE5SnF+VXh2m6ouO+ShmgOaT5aAKNokwEJXxvrqMd27H/N0BVr9 hTi5Dog9FkT1FCvPuUUNSRcSk4Qa01cI2MQVaOKU4Hx5XoKjRlgxVJzjmjQy COCft13hyMybZQTEie3fwy28rEJb7BhRoL4wPUklYEhTDPjr5zc/IMFCIvPu eOvuE2pmx2feOMmwtTm6iUZ/UkVXow2cyueGsjWcFsrIJp0tXIpfz+gGSqaG HlWZivcxDvNdxO+MpHvav9YxL5nglXbq8zEePDdpSZcqVIQBKjqxcFZ8AEps klejdD3m5gWRNcE327HLvn+AK7Sd3xcsRg20+rLsmWhCZtvQd2ivS/WRA1oR xKaOrsyVL2suW5WT6DK8BZcqAVuSXlD0YjWBDe7l4WznS8cIdbspO+Pwz49c GxGeet866BqyP6BUxi63NC1w0H3QaN3C66gBXIsTgsrCr8tgPBUecxFzkktt d9YVAZdWD+g+wgYbcve9GudXqBeg1KidQcFRZeERfWfsOoJEiIETxB07BGzV NibeMxeR+W6PjBd3I/X3e4E7RHdTBiqOhDbEtfuB18UG01NOlqvwjyl7xhog ZIVYNrS+n2D39gxZ3W3AzshRhT/pjQirU9gv3oTsR7/r9gmGiP7Rxu7QPO+u fUhzy7OoxxTvUJi0ZFYy78tRNhYJH+sXXY3uAAUodrLJ5+7Gb9Vuf0boRSge AOHdNdvg+gALZasKfQ1z+dJniSw4+Iiq4GGHxH71ndHh/R9SJCGGJaK04eAi QlqihJyYhlo6xRc5QjZOEWq4Xp133BCfWeu3YTqnDPkUSmhmiqGoaI3qc1uj 2oquBv4F0qNxdieMfELVTYnXBWc7oRykbwdmNKL0rnWBrzF1XsJxvIRC/TZ1 MVs/n/752+bG9FjxAXG5gnC4NNwhipvCEBsmcPVY1S/PHkBx0JmUUFVU7PtH 9Nlurk+M2JlHaMLEgkokU8SaApOdUFuwH+Z7nlByb2dx/IqSa566xUNBiH+0 kV6EBZw0VocqjI3VFbVjUl9HuNy2EQPFr/vxGVKhrqO5OoPip2Vs09Kdjf18 5Q7neR94tMt4fvus1jK6SkmQKwtWq//IWafLGGs4f+72UvVl8sIOwsRjTS76 ke+vbI3MiyTmhLCPYDXmsyhn57i09E7dxPI73I4Cv+kdy/XnO1uayB/tDDx0 BlB6Z9mWQgR4pWoiG0Sq2IJDmeqhYa1Qjmt4789HG1rVs1rZQ2k1eWiBhCZG sfsouYHfRpX3mN6AwbKvZKNu4D6vk7NbiRr87U4WfkFeihhVmvv3fLjUgQ0T nzXQe0UXXK8qORrWPJVow+bUFf4UNIy1SdX3SqkumuPgnsvFXGXIyWqdnOH1 +RTzRu3l56iX5wHi2QbllVCu1EFADrKHgviJN6PROkaw+RGSFG/D5WWF5EEa rZxSwYF/5F4VkkjUhhDQMsCotv9qOrqzoHgNrpFLmR9MbloqjLFyojhqSyCO Ecp1KYqFbrGXQG7uIUObzcLQ4YwGrSeIm5zS1IoxLkTuWCwXdRRl4Pdm0pf3 JRrK0LPYhCGOalSm5LimZT7h1rah3BBMdF1r/KBE6dT/7DFkO2ePRRa1xALh GF6k3B2uB6V7fIGhTWxB3CHEiA4H9id1vH4gsGdzI0pAbR1vzChmUbQucFwc QSHlUVSSF0j9F7lYpqWS0bYghUCpjiNzL24YnwIr7Hccf4/H/cFhCzzpl3NX mmzdysa8hqmiEMVgMyvNSX31heYQ2QCJfGIvCPz+3OO7M39wnlymBhjlUgmm MtUlulkZhPPIXRP7tmnC4XLSJwbPv6DXoH4WERmIFk1txvwsRFvECt0ynfbL Rf2Cx5ZK+iO77AEvAdWbRZ5e9HVI0XeNuuUOtcGF0b3xViRIwQdfwQEdrTWx mUfrrnYQkb4r1Zu1erbiVihxSw2EdtUu5x331N9POGKkQEC4FLjcN43oMzQp F+eNqVhmOXhYVPYp9KspLhS6zja5TY3YXaHjI4NGi5hnCOyFAy/JuFwqLuB3 l9nUyMt7KwJyLjgHSLa5p7Co/PKOZGgm+QypBxWJfZb2KCKlz4daKVRY3T4c AHU4V6u2K/i6ihKfkD3CVvLMW2Tal+aFMfDwpA8MPzVbnZwGjRF2Ea/n6JBK xis51DQZkyKHH9GGVJriJmsqGewPAo6Q855K4xeKFf3fv2hnTqe3cN0zjm9r 1LR3JEhJgYfGAQRDFF/EvducGjlPvhdnb9WnbSUE9Utbysn637K1yAFzNboN XPzFILT55HaG+s9PMcVELTsyonVNs3wZt3Cbv6+pfN42xH3A2I967Ds4qbdH aI3cRukszqYM1hVFZVsmKKe2Ihp0mxmHOrx9QTvaccgrECMMxHs/WGaK0+9a AocMnyJkviH7/Ym1lI1omK3Ghink5EYqTOFDzzGtNscVajw3YObS9Z1bAWEe wgF0u2wYbKooU1El7yGNCG6KIcp38tyqM5V3boJCxmf9Ht9do7QyHRxnNI5F u0cZBKNECbQ0ooGtqlIgh6k8asrmVjiJ3/flCwpiz6av/ydf3MVHgP4IP8NS 5+AhpxCSPGsV4Qs1MPchZTW2XQLDJZhKTQ0Xuek/r0MxW2h7hbs3bw/GGmYR OQmZle2vrR0iPcSQ+xpzrxVqNvLGUq7oZgeBQbZNPN6AHjYOSlKqoKxTEFei ruoY8OEmHaZ26zl2QhkAZ3nDyfAAx7TG0Au+VZ9rDJH4urbDbEQd65uCX79C sFsMPuoOTnF9c4k2SJbmDwil+2dwiE37Ce+nhHdWDQiPf731DHmYTQ2TTTlb 5QsrctrOGzY8G1WYCwe7RyXaPgfv6eUNGBWgcvUkCY8tQKHGtr0acn+EjXsj V03oETz/nkE/sd3UBhMSVEbJJHmXsbRprH23uK7+h8zNdOoIAygk27XmeD63 oSHa6VELqqQVlwljZL+NmJNuqCx96RIWx5yATtou1R1z+MuP4BqBcylyq3GT jVCHCZlB2dxDLOReIjpXi5uzTKGaZNXd8tkHBNY5u64Ezuadf65kUi3sXLZV zThymiAlcDgO9UzopbGPhxLj1pw45wjdkjMir14Qwm0GWClREQC1gViFrilb OI3en33PnD1KNEwQQCC3NTd2cRgpzp0MRw7qBvfLoj6i1YIvajJ7/c6xfY9V w55xTha1vCvtvcMJmCvS/dYZKb0zOn34TrHFhWV0ijHEQZyVXpkGEHONwrHO ugOWPR4tc2tDZkkj09/3yTZU94qKDK3rBLfAcjqk5NbEK/CwEYQYWrg5VDaB +iT0ktjPhuXi1tviN7q5rsSK7hcE7j+QcVv7WPnAfx7kCDPHA1IQSZsZaloN OPX3AaWa6HIlVgRyOvi+8shfNDTZMngHyNKS8eBxbH4ZbOPcrk6ZfEQRxyDh otYk4y6dpjZD1vWdHXphqFrnonGq0uzDOeJgNrj+aNI8r/FcpF4w29305aay OYIb4lmlFCb04JxjSMcKFtpytw4GENrRGDpQCxOpadwj4MmAHcIFK3VCNewd dbbX8wS1Ky1pbZita6E9pgsJgm6VhRRK4Qp9g9BEtBwzkJXUGvz2Bm5Lol1O qGh0ULPJSlMuEtBtFym3gyxyCCExjWwrLIefvuphWLus3KE0SBOOJiVNDUUF F+mEpECwB7eiPiSDIbcOSo2bzcNZim1JSWd1EUFmqbghJ3sFDVVj+0bDuhrH 25DLPJ13G4zOqrp9RqjTVgvTQ+4tkDWMhJBby991o9lhRsFYEacgVFOwXXzz akz64GLTNeYQVXh81VP78H+hmgz1kmOQrrElpkO1Guuau4O8o/gToIjbHt9C 31ZMJVsrCZ3I+/cDNGhkiN7BoO2yo+/P4cdKNPO56gtyFryTYkft01Bac1G5 5pFMc9xeFBSVMhb+Zn1TcfviS8NMLtM9CNFugto9jEtYVKFZxqERG/fJLEIy NSnoBpH9Wqj2CH74htCxFWSxHn02kUwhC0IoMn85tQHXAARiJevm8Dk1PQXF av4r1NiBVCLdt5ai9PYiTSLFtvZaj6PEFolO/vs27seP+wXJLtEWOaFYdEHS ef+cIhFia7eqzs9ZWjmYmCqIh3cfG9p+XW0adNUyNssBWmSOJp8cK9/V5ogj mAPm3xYFlNh8WZzNtE8KxqYJX6vkLVJ2ONHWmMxHESMsJajWp9mRu1du/n4J xlAVN+egWp6Qw/ZvVNyaQN7qjDrMiKW+EKGny20XKoC5Hl59LYng+zLiOTwy NsT2Y9gs+IT5dMgQf3E+poeGp4+cq2ElZzGoyxkcUahgec5JEdc3NcMhVY2V 5NFByk32w7p0llsHQ3ieIi7XxLsgLgRrbTv0EZV9Ok130O7AaW2nOl41SpcJ ekYmi4ZAwJqh9mEsXMHi+l/7qjIdzS54ZDWTvEWjv21yQGtKeGyO8G5Z32FG +zpZr7Zzc9H9LhnXLTGP4mIvuFYlovtx1mWB5+dlQrl0HdCTdZSCQaUzd5Uo 30L11Di+YH1TbMySLfN65MufFzoR0Bi2A5vlLFY/RUj4s48Yj7eXNzlU5h2O 0HFotcNQxb7b6g/6nh9iQt1Drd9+2tjEnNeI35JRIisN7VvXI5Su1kdIvFvS 6aCLuvne4Z++8O8luSLg2aGOLwqGVrBDn7vo6Oa+ZiVQoysa/cz/KsKg6hyX upSRxwtUWNswG3AqMaWQW5G8L4G2cREIdJNVJIuhdcELDWRyjd4i+shc2Vrt lj0O50QpAVuVdkgqz320nCEpzgCX41r01YaiqqclsNoU35TazKGYLwvkmgAB WFkTGrHXn6uyFC0361EHQCsQ6p606s1VTA0+u0RgqHsn3PoNUoB7u+5WTBYu 76FbqbHWc5cueX+B2Rn/NwxyBs0JvJk66CguPMX5uuTK569+TF48pT5a4/1P hYxBpRsCbkqhZyDOGPsZb1YVCHmu04ik8QC2OqSCwaLZzfEzvp6nUDLZxBWc uEBYIyBJYm8shQcXG3lhALNFK7Tdq/v2G9WUKCE5o6EAyjuMUS6GR9r/IeFi tZb9SqFRh5aRq3E2TlDAWylArGVGOLMJKpBOyTNm/zdB7G6McSVA/EZm+Ha9 1UoQk6vUXayHUt2cXLMnaU4vJhb+wh6R7PU+m7bvW6m6oJ0LCkvIiAKpqMzZ cqLhoFDYzEW2uXUQ4kbuFhqfQCYl3lpUD8+NOSKuvUXhqpILi7syJGq1nIUo lJG63Zs7/BTsvy9LaDQdPhEuE47pq1xCCGodc91uA+NY7ITZQ8Xj0wSx1Lte oH38quiFxk9ajatTtiENilpTtJlNlYuGN/XA3WubVuKBPx/z7A2tpzZgnQxZ bSouNyKGuO0WkQS1+ki/pg7859hI6IxT9L290fJ1zx+yqYbRQaAyQyRfDeL0 SdzJ4RyykmAwhNT4GUPKDsYPyddKNlweSkeE0hnmRUiymYhAjpahN51ulMMx yKW5+wmDp7OXZMNWN75iJIHHFbi0yaDWPTwRplqmB4QlgkFf7EobhYnf+OI8 ucCGT6kgy62mnIbZ0qLbk8+RsceyTkvfaJVViKY1+F6z/HldXKBK4TUnnJnk tmOQ8ZISwjfHxGFHQ2h61J6weFol/r7fQDmV6UQK+pIwFbgbfv3u1tdZwG78 lDlDFkqnzUvuH9BWj5Q5kCLcFKHTJ9wV4gwrAc9QHbHDddzzN0e/e6gF23Zf W17FGusmDCfvEdJn2+xV1nCV2vhoSiBkBRl81tm7Va+Rxb5fnQvb5BYq9EzI 4BUtfpTQ5g5K9QzHsb8Kwk2y10v1s28fynaHH3ItE8SOUpQ1uKgemUvXQ2mA rOAm5O/PJYa0t79P0O/jv54SbkzATUcqabC/6GjuzbWvcXzv1hTpBnyrnMep Y0OcbeC/7854S7Ey6Ccz4RqWw7//hf5DRdc1+hDlmXDP/jpNyedQNQ2Wx+cA n4cw6bNH7o5r/JsB7oUofLNF2uqP8li9WaTUmKalJKhefl8GYwOZZRcUGq3G HIiMgreZbHvZRlwjQvfrBxmRraQ+x6v3FHPHQRghdsH4REBKhNcgIjlM6cGu 93NeQoyAd16DhN59Qc3GjU8D3MUJTWGHPUi6lOkmn+sYAqi2GeoOxTs53BHb hgiRIvVfD2+VFKDVQ98C/6lz3yKA18Ttp7FMlXjQqxeqc8i+UNrsJO734Boo ZxlnFx8TBD2jIiLEqxFde+/rWOdPqZmhEptQmKv2lsuX5zjSdv/QQiOhEaqT FopK75R8e8IMeTtaa+4PrV4+0fGHRLeS0F0Ud8sKj0SECmdP1Vv12cRCztjT MP/7F9qNwgbDuaKFTi7jk1VZDrVtwJbg5oeQX2mLtjuq8lxX6M6pKGRMkC49 qqfJ+08jgb0smnhtL8N/Y3b5+F1iibR/ji5jPEHN4n/205wmUl24IZ+urrCM BKGBDzG0gYoUjW/fbW3+Psw7AJoCm6FvksQgREFFyHMhD35nst5waHlefYsv Yn96f+G9cXQfWiGhe4+oXCWkiaJHISQmoOesWr2xiGYODs/CFOD8o6QWhujI 1UJdj/R0O1YGyTyeVDKjmqhaN2xAhAKtiJ7Up7BnXziHpNjiiPZQqVHN+xAa 0ZkWgWPkyHYQOQGHmKGiSREs/3PrfaWolALpGWrVVAa95MTLXXObgQyL3B/h xdFCV+8bvEC+3H+gr3KUNRXhWVh0ShlZ4O3KDy8RWrZ4WSHBYin4K65RwVdd 3UKMiRuKtbcJWjMolpMGrXGigEg1jOXTwJKjcyK0I09YrWnf++ylpkjnRbiE nGq0ReFOyCq4G90pfdX0M6vfEVz8vEbloc0XhjYwTgg7j6JH+KhZmByil5VC wkUsyqIpHIRf9xCODMFPwPVJU4aHE2RkTR47pY4UXZSPqjZtefhI2PKvf+co XwE/mmkqqKuruu6WxGjmUemQ3tQxAkpA2FqBC9iLvUfJvwtkIsX1F4XWOeOG MZPRvDK3EKGt8I9HpWPJJNlVP8HBvVUR+y/3GAMYVDSiUxXciXXWE2iKO2gl sQpaUDRBF9z4c1282wrEQgwuE1prz5G439J15UDnUjh7xilQGv1tPkacBErB Rr3i/HWOeKTN5g6reSiQoRuVl8/i1sb5ZiLFvaoHzNd0oYjvV4+MNH5YnzG5 hFpGR1m1ny3adKVwYsSgPtaOfuzNFyQEip6IuGtPP2MGQdFN1PBOpSTW8jt1 0Mko7bbPq7q7h1K9Y10GjdjkalD0sJZkxhsmZxJp6hSnltXi2bidXvTiyUGz RAGCBV2NY8Vatn9OwZZqfnHVsTGmQvmioAn0pcrpIKzGp68vNjZHo3UDmszs GkIEKgeVN2KNXC1EN/taFDUtmnb5nRr9119IY3UDoAoGk1s2cdRfVGzyD7qc 6+8snp/QVy1yfX2r+bvN/tsVPAsmUwkBuKCuT5IB7yJvx0Uu0qSr+o0Ru35O +/knlzaXX8mc4MVADKRY5CzfdSevjW0OftS65LohYwn9D0m+HorikLNySJ2z M8pZ5ZJisjxAKTVulnUemQfWiXyStRTlrsnK0CCqDUk30LnXGJoNACWVJYMq g/DfKPRf0csmVDNKJ6L4I2RjmGS7XgjHAfVHrc3fdM1xKGlKxmfH4DzSiXd+ 9fUkfg6kKyRZ6DJtf28iCoOsL2vBtqFC6DASdVlgws3vv7Suc0ijtseTDFBF 5WYZtcm0VyW2/cUKIg5nLcihVVWvrIhqn9OtN54XBmrzeNQN93XChexKHeC4 a7lLoWxtBVwOAZmUjUDw78115j7dedfpfvaTWsh76Mo/D8XEujl9xhUoFLlB mbA73eKbUdpHyYcSp/0+QhFL1cItitJFR6GrtJ6R6gTchHc8kPeDLYJ0oIDa UU59fo7eJ7ITctCzoOujk1dComv6KSQosoSNuUl0qQOxz5ec/FaOJRpILLn6 ksThoxyAD6u6YTLccmPhA0Ozb506Uzo/Q4LkljiQ4fYUnI6cNi9tGheJ4umy fGLyxiJStlPUg+/DXTzo9S27IUhtk0nekQnD2o5mp5oZmShQrcHdJcvrB4Qr Q8Tl4PWWgMvBGXosQmulLJGsNWyYW8ZMjusUom0ab8py8DbXyLSPCqSzycFV SDJGRizA60HGmeBMVNEuzkWGc5uS/JLWjnrVDza4sJGkRXjwHBiGeoddJ5qR sWgn7CY0eQx72uuP995FtoSbh+co1MKx1yfKFjSxCMNknMqQ4BAS+hMibTpr rZ/Pf/FUXZOpW2oKiBSQIKG1HVzPVtmFq3jDOjfFH5ZsLUya9chKXcFc6c05 h24+sDY5FB+mDK+TyGWRWCcKsvuSOT3qJKbqPtHo4S9alhKQAVosTai1Lx13 SX690s2VzCbA8qR6NSlxaU+t9K0eZgZscAaxZ0qxxv3ovAl5cUNVHQKcWDe5 CN+tq7F7AY9zhqsut9ejXhGkd/mTihBhqK4th9PpLCimphnaBGpjZHzmYw40 gczauv5Aj++iWCUgDMpYEWkQBVqyHoZYb6GNO5B9pTbu6r3CkRz/xedaCvSd uNYaCsfyJy6OeXjs8IwW3BGObA9GqbIZ5icKLnTs4hKUQCi+KqpVCmXFCZug 9bfGm2BsqjsO3a+XUOjEDv622hlaKuHnvMpStq7Jr43s5blMYUkp7dgJQHOE K4rNN67OThXNmPuxQUVLNejFqag/lxFEG5q2nRJ2r+fF/fr5ZeRuQOgw3DXu Xwh/+eQY7KTKaYPC31HZ0ZWdjcuf61pN2XYiBfWFDNvFEadukb18gA2Pfu9j rWyTR4OlZn+hMCqvEBZK2lKHQjjwfm0RJoBim7fpnE+p4LDoDdm1eYbM7vkL V2Eb9KC6gD8NTUzDg++ST9YbjZ3mXzfqW743nGuCPFm64sc/A9e/v311THio Zngb0JAnyzAQkhz6RhHFc4izG9jUx9Kaqe6s/fYMcvWWIAHBed56JlJUSEJq DADvExPx0Zknq446IKfS7bFWbzx8yEo+rUW3u8lsDaKFIcuONebgCKBAX2xT aVwF6SbcXMAHplTmgJTVnIOvY/qGXQW4OUhXHuYUn+V1LoTfL4Y5G1Qm4P0f KL4qBWdn1LAqNiSvAnnEtRdUMiwwu6HAXNCN2seuZfFR8/IKXggFZMc8m8i1 h7KjLMs34KXa0Qy4ba8d3I3iitGj3J/vYLOn2s3wfBDPYUhUXlO+nE75OtU1 DjUsbA6m6xH+82n/fEENYgnpK7lYUTqjtQEidnx0NCQLfZHyIobJBud3FNQu rrNvFK3VzUW8cESLjkHsnPzqKm/wVKGRtVi6Jtn69w1i8XY+b02FFF9jZgCU E+3N50o/Jg6McGNy2Ra3IBrM8qXElixWiulQDJUQDbc4YxtySaAjF8ewM/Is mfRU6G6OIhd6nf/1C62qZ8Y5WZBXnNDEAyPipCYwpCZZcSrLDnrADLdyZ4D4 9+7H6XY1WoFMO1lXY1UGiLq498hh2aq5y8v+KSj+/HWhpE37lIxDyKtrVucj l9gNSu7ZMRwgpLqEk7dqelTh398om03WIN5kCDUmUlHyEaTEDtRWXzK1mi2H sq3ZVuJ1TyEFJsFZo5+QA2e0aCwbwVhf4j9M/UCeAiygumTqyq3kJ5TdPUW0 KOK3AJKFmUI5yDoIYCkZBJwtlaCuA6Bl+C5Tgh8lq5XO2Q209pEMrXLFrVKu 4tJO2Tj7GDjiZIjeh2/LIJNL7z7P3+3Beo2OKOzs75t9WA+ESLcvxVqItBTd tacNuiyVrO/8/q9+xZorGWE7j+MiyNxZJEwq4NToHWVcK2ijHvxXmq39+QsH NRshstj0XVIdZiCKHDln+bhdEUAh5YKkM/XnV/K5wxCP0LKFWkIQt8zDIrxD U+AdoOftBYQUBpb87/vXDYx0dg3sXi4gtVLzaWt8hceUklLcKmRq6B2Yg7P1 p5AN0fmleFN6El4v3y40RvkSq6AknmJoCC+Biyzr0M0HPnDI1/G/qLeAHriU nrfln/NyGP0uVyCgR2TAmuWfkbTaZTrNVTjkcib3N/askG9eY5fZuxoy3OEO jmRYa5PD+U0wilKLgExtbKHCkKm6Pf2SFMqE80zba3l+4tjXdfBtyrAeiliM fvix5Wvh+kCvTtkytrrPgi/ccUN4m6IJVMbAQUuGgqCF4H2VUkuckPkYO5uM 3ZYBgfLOY1upxonPr5gtEzMNs01r9JYP9QhbRCq7PLap9E6MYQ724VJXUPJE OiXL1lakMlTCt2Dh9xgmuK5taZ6aow3Dce0C/RT8WattuK4ffTGUkGxtxiFZ NWmMpCd2ZRHyLxusy+M9qrDZZ2Id13K/kIe1HZ166D/h3HnoMit7+lxaBB7A ApPR3g7K9uHCGR+2qwtnCoqgF/lqeF1MenAZsFSOvn/QVZvz4JyhxrIRYtoE MabIYAJhPPYT0dZQgqHOERINjrm6Q94VEPQaSk0egG01BpJdILMECZu4SRdN /5zge8SBHrm46F7qm71Bd+j/8QCxzm78vDNkkMl4Z7KItDajsOCddHHAPPgM vVm2XWfO+9dqytbuMkL/MHlcHio6SGKXm5r88ioWzAW2ar4GHwT6wByMDs/4 /Qi/MIr7zOjTBJ0gwRPQu9rTJ2gqQjGQxy/Pcgn3yquSeXBJg/Gk0EVSHnQN kMZYVUP4S6NEAH2Iy3Wwyg7i5eo25MLelEOrEQPdrxfbcllrLEZDgeCDmymH 3hvwpLzKcLz6VXKmeiU22AARIFJ5o33dxLnlLc2rfI3OUR0QDuu+1IBEwujo 4RdaMBJ8Z4YScYLkbpLclbn/SuxfJEp2OM5/z7xrmrnL/MBCdIIQRTaSIzTX HezI2Og+FZTPSNl3KKRHudcXaG/pDNzhWtKjZZzseDAu4CeJr1PsrAB5O7Js viFRBern5BFCBhWsFQN/F6HX2jCuZGWtcszVOHZCbkpZprHHVdMtvFJHZnE2 5uSQtRKGt/7SeaGtZ47Xtp5gOVQP4jobH+nzDE0MGXbg50SbZK1U6VPdTzRF WrArfQjhz4d9Po8lb5X6HFoaoChsHdmLKR05aq4wvYMB41iHAL0KoVXZjN1c Qf/ryMgDEgD6IQVXWN4iWq/SIsybwscdZcxdBvV7fUg7E9rXS1fz1o4B6gEP vXyuihOnCBA6ANsHKgISuSrkH2Qi7rS2DxUKju2BS0J2zYERMABZoZrKDio8 TnI9wSHJQ6m3wx4+r6lp0NOVaYjwYyOMT/ZEl8Y0IbXSkvumDYAqMKsVeGM7 0LdbRHPSRV5KqISQw0Zke8AKsD29whymdTg6w9QbrzW6jxcJsjGFgbhmZWab y8ApPpF7W0hddHI3zf2EjNu/qIe34T9jkgvIP650C6EMm0TuvqueNhM2DIkB O2h8IZx51/J5p0H7/o10Q5pNDASUCUq0rKiSiPEOdZDZpbZe3Z6tmVmbc67y 3mzkkvln9vPkEYkO6nUeXPHq4kTL6DFBbkb+gf7+Pi8hflfSqNmKCvkeGzgh MK+VR/fI0GqyXtmU7QH+vx8guXnKYUET8Gk28pWJ8CLFCZq8SJZoOrt8WaCY yaDvlHrayxsbSqAr1IJf1fhCZnin6LusBwoD2kkSJ/PuwrtoSd8bESaSnClE HIXQJuTJTFvmjOB/CM7D6KPxx9+oj0Xp2ljfwKt3zo2BlkTFWeczEzxsSjRy WuOo3QMigX3ap7fqQ6Y8CotLYQvxUXlN+kRhnXwH4BLSl12zciG5RjpKxB7E WkO+LDulFPu9b0L1p8swogN3OEjyKFyfZ2geKjluSclDoZwT1yynC/RBvaQi q7eQK7s7o/n1WEugIyUHherknU2jPMGTIusALnc/tP7+iN4ZSnu2EXv1Zird H35K2TV1JL/t0HIEPSPgBtbc05w5uy214TBW8R+aLPi2ZZzC2N1RzzVBNplG BFnLgXQUaBGOGsddYeef+uvz1R2Uypi1u6lTiYau+tazxmXSwEeiqWkArpuJ U2gHKK4O/9f1wDkWXl/eO7pxCG5WujsIEI5UjGILBy/YE0FfhbBLv7jtWgYc G/tPmxvZgBRhDvkG8OM0yFsvxYmT0pS4GLy+XD+08qgtFH3e4ea+/fHQPTh+ 3DgvhOATKe6g0ugh1swobP8h0/znQvy6qqYxxmiDmWc4YWhQnn6DKaqTRcsA QYN66ru6zq+fNZlEUc9QUmR4cbXqrkjiGiqXNmknnYOKK2fPLsLVta1g4gHu 4gmSnNv6j+FICMmZXq4fdoxtR1TKKC27+8BWFeRLNE0AbWVIF8M8Exavq6g6 gVIAo5Oy7VgkoJIqVAdet+55twcXtpXggAl2grwX1zXvicXkQbaIjRvavm8U 3pQcknV8XInUrG7xW3QbZ2YDP3NtJiAnmaY1m8LCVerzGFQIrc9UzcjPZyhy DK1+Zg6gL8oi3anmedYnO6qPsB4/SQaFP1ni/gVCayFDVOfwQhT4PawzRH+C uje3EevfrTakFGzfX6CqsJtg65CWXYyzYj+h7Cdybkp5o0/teFKozGKtWfdK e70L6PnITxygspqgRgt+ZDqmnL6mMAx7JTf3B/fKH9c5SndvNdagG3ZTgDaT Z4l+Q7wnsybrSXQ2Kh4Zt6XpN9FN0O+XFBsGctEPRsY81FFNiv7UMVg1bXzG PG72ERXJTRCTjNGZiW9P8G17iKAKAdtbux7ZnLy57LXGUY25S5GDHLgCLYkW Hj7u4YlVumNB32n42GYeiO9iA7aVQ2UzRznsLjMcOOXkTUw6YP/zPsSct4T3 YsoENVDbcPfYOyJkt0BnxfBtDUDTx4YwZbuKfErfZNSVC/LmU6rERyigTQ60 Uo5ZFo5pQcXSRm5rjIAa3lZeUzve52/WxcCycEH6RiptwyEy/qSqIXk+MNcH uwwSjTqctqVVZSF040IbrC8IF/TcxA08PzVLysOKZqqA84/U9J6A1ddz9tlu A7FDSajo7CDs0evw3dH+bdyB9/IKkqKhIvlwXIR0x6xi5XU1qGWtqUJyFnOp Pq9jLYmRfGBlJFTdSO6zkdhUsE5IFAhzLhL+wRhLwlooB6Npln5CA3/7nCFh 03EUSnekAsWg0rcVad63gbk0R7D9VIHaf/5Hq0m5BU8VDrZti2MxEAi9l8Ww laFqLM19YcjkgVY7ubXGwud9ugymiTczqmdAHxDIFkIHtx75dUkT3hUa0PQp 8CHB2TIFqLV0MNnvz+Lazo5xvBJcJ1tjluGP4uIiJq42u0NGXCTu1nuVo57o B/IoNoK48L7QMyOYMDb+HVbvlbdVZLu6g3++OKupSYRTH17cWGIZnPqVQ5UR 5tCKM2OxJgY4YHLkCgqqBdfrg58fbc5Umaw4jM/ON1+wHVzDXvW4I6N12Kxk PyE3OXXXag/5IAa3hFiU75lsximgFAIUdFYpGzdjnYe4uGdg3VfaykHJuhcR csImEuSAvwmIPoYVugoKqp/ONoG3iWYOyMrkg1CZ4Kvz6zvEkCnrK+K81foi mXILoWCuxUJhoUDfYR4GvKmgBlbZkdD69RseE3UItpCMA/6GjDwwFfNCNo4x vU4y//FxylA3uk68PbKSHuHzJ7pqh0ec/GSj47uWfeG6RgE0gSYHmdpDZXB2 uT3Pt9V7ygCEBOcneKwNxNd3KVFUyFPieWFI0R0xeAVKsaCLnPyprhmbrcKE R8RpbMcd22PJ5sY8ZsgodFJC7u42rz+iKawljnPIhmLX/SPMHwSN2RmmZR2b Pww6nYVg9fn0y12ElLvVGYZ/OvlSKyGxnyjsPTfzh+35gEfUtnXbl/O9uYb+ oafsjGOsio5iq+OTYlLEJbuGSlgFjUE9NesQYFNKb7u5Avuf29DsYlbTVCS0 QKRjiFSl9NF7zlEDzeXsPqM9qmlqB3SY9oLWUewVhozFkofYIeMkk1QBN5pK I0ivh1KqSNJy1BKhKbfB6Bfj7Qb+N1s1Rlxt4s1wXOtZYi1s8BvNtGVY7PlQ DcFryrit3+GTn4fazKYWKlBEkdZkIunr/yXHYuwy4KuDf1/ojtxXI+xbW9rb XpJ1ydBlwG0hZaay8B5sQq3spLkV0ELqHPzqtyDJNazLQu28KeVDLRlBNhtK rlAoc6ejGgstN5oSyn6nb1yejDXNwo2+vrcn61zY6kxYFN+q0OcLFLE17rDb gkLMGWU809uB+mRw2Krut85/ldq2dAtsCkr+KWff4B/CwFIUcUjp4G5/vBNR rTvJYMLJV+H1yplGa6aYAgwzuWKl/E8vgQhshqa2GJggp45EYztarBJSSfrC 4OK24n5q/fbgpGWyoo9qlctkdHqjGW/EbjIki54sbWUj9cyvd/AN04YwCukm Rpz88V6P4VGdlkJs9IF3pk5fJq9YWWmKxtbcW3V9nWdjqOdRxbhWfSrc6mRf 1eOgKsvoo028eJeThbNrE0oy28DwfBOgTyCntGjBC2ncub4E2QmIuWHvswwH tKFhZOkBv+6zy6GrEDp5eF6jjtY6H29dQIwhd6Q5z2pIeW8h2GyGlKgdOxk0 3pNScZX1KzM8A9oqjfpZz3gh4+e+QehCz+4d5AIqOmIscoihoFPGKSLyIR9s HBgtZBTzC3+zR+lMvRK+u0i5QXWYbGG0UA3HJsgpZmHpQ4eUGUTG+rHKspgp mzg/fCFZ/L5CGzxCrwjeoAeS9YT7flJ9th7/DQm7ZHhBMaUmMrWZ/v2BzjNv nh1KTqQpRy9ruihTn2gauJFoCgxxANBaRZuqnn1kuGqUVIGWsPCraBSw3khC UaqExOI4wmjs1w+ld7etP570zSdjNiNAJCBChVGrFUar4+pZVvdEO5aLyUKB nmzDOgm6mp83KB5MRhDQ5ucpwP8jO26lp5dugzv4DowsCUkt9rMllD1eX+AJ dCKvRaIZmjjK5BUnVY45cEktxampo8dr4dkEaNn1Df3j//gUMxm6I4twQhGZ MkY+Fkq0+Yu7zGpKJVRs5ygx6py3r++YmlwhXcgEhHFAEufi2EpHp28RFgXG sZFmtk7H0T08Jme3evoFTRcqtKfranikD+1a6uWGviYrkLHGzvoyOcQnLxil 1dmfUdlws6mD8s2jgGRSzK1loYqW7IbMVYlWDRRFFX7VpXfQx1cPfQWxY4f+ M03GlyKbgMr7cG+5+PjQMhHZ5im2gygTwfNg41aY3lrU27LJs604bZFEAH6O mc3kx7KfsVMyeWckePOEds5k7OML1JoQ4pvz1xB5YFRGVp6l0Kd3WN0KJefv +2zcFg9YUIvf12jd2MuTKYfFWwYf15H5a9KhXt4/nrtsAlVjq1BgTynbZvj7 r4Ui5jcYPHfgtDpp6qC/EvqW1z9B+vwB8m4ky7GI8HMod5MfQQgqORLxvVuJ zH2sK4KA0R2kNyk84gPPM8LW+U2B6i5N6PhQGORDuSw7E60GbGcokP03mvfo EU+/Q2btFXrZTRV+1VWYtwgOOXMrWBuOnkhmqtl8tezNU4IgPy+qhMrv+SVk P0/HV86cAb2za/EiR008LfT2lS18RwbeHpqp4qrXbvTXO5RmW0U5lyC3uMxA 0BKpmq8kba0dYYABTdo9w7e7Rxeb98wC2Q9YWNmD2GtvStgVXph306Zmtpse HF8kRIi7FFUU0PVNtLZQDMjMVYG6Ip0KGG2284WLSpkx3xus4VKBKkjP2w+v UMfZrUsd8odjqlG1DVkGGf1lU+Xb0zHNFtzkw03seof8JMKb38F0hKBdgafq Edw4skBdayTy0HwQPR5lfbENqsD9OjIn3gLCxf4h5PuAJvRxIxghWKdvkMUN PLkAWXRg8bIEMRubiKPu4GOFEMa1X3H0GKLxQgWqSLVEYzLhUyque+SMZUK4 lw7Au/lG31uCyURg4xRKcaOWAJLcOjxf7hQxFIz3wLlPzxDk7ca4NRWPCk8p sEmMRKnjmxCTIxtw6dpDxwFXSPir7Y23zj7RFnSjG2K9cVDee2PZgL7PEN4p kd0QQLeZudCb+uvLH+7WUqSlCJW0L14U8xR+4c0yxhf2+ofAjPA2osWxhfL2 vx9dMIXprPuZzuMJMoxsEMQRRW1CvLxgl7cxP9IbDofqvksKP7qNvefQfutL BQb1AfyM3on+7aoVtrN05dUkUgesKyuqEue6HRMfFbVvfSyRTDRrzohhi5kD 3Ud0jzbMLmNZInZqsf6DQIC2qDQII39Tt0/ovLrZgVroNhISRvNIL6ccGf4p tygc45r4HV3tq6cEvfWmZnB+1iSuwdKwpTTPolaTcXygog/eVkQ63I/GpqYr JounT/xfkDeYvYtTgYTnVAC/uGyMrjq2GdPnyqtyx0BKjaFrgHSsGC4jVPWb bz57iHjkLyqOQlL7Cd235ftHdQXNgJrYScbYnBhoPL68crWZClM/mf+VGkei fI2UOL9f4KHV7RuEE2IJmsXGTTQGRQ7qoGLpdupt0Y0VN507hjJfMViqjwSR BP+sISceAQ5y1Q5r4yk+siv19b1+/uWmxJg3Em8u+TLZYIzoXanYsEJdxl0l VEoHBzqWqUC0UPyxnt5sDIli5qvFPweXg4iiDJI6oCfzbFNmh+SoUNbaxbRa +a8uBFrQM/886zPEhh8BoiEfOrFwh9DGRGOHuntpAbIaCl5Bzu5s90y0capp s0YfAfjzNGi5M3IDzwyYJaXQk9C6eg6pYZdWTLUy078OM8ihpZMIAsgxsdwX VKEfbqAOH64enoWwUH+5hBtsqFD3TAQpxjfT95MNybwPm8HxWLe/rxp6d+t8 43JzxEItCGfigH8WO6QiA/5p5hdDnhivcfQYsXoUoJtzKIviZqGXE3JsnKtR EewWk55pa5uTnV1+IACb63sHlzd1mk6L/dJGs2PXSvEwBJ4nsmt8rhqHj1/S zoY3SV1PX7+kkAoZAZZUKoRuF51Idd/1o19XaupedNzF5fkVYtb8Ny46cKiA gL50g0vR7kSqmeW0f/PQknEx/EMH1uJz6nX1r5+QkGkd4YudxeAaOXgoa4gO ND4GXl7q72sDCpGtjr8RWLPBmUNegqdZaiWTYUG/v7vNiD7zM6ub3K2Cxzrk /ozcL99Rj5MICThX0GzENxaIrLkqzqSgAGHrcd2fiuErcMSK/46d6ft5rWa7 1kU+7ITEciPtCk6wn9EgmYcuOnb5wqvx1FN0lsoIwLOLqP3tiJramOt1KpGJ 0FgzlsyQlwi/6YZW27iW/oVajGk0QOELcbfmGMaEmZ00svIps5Z5bGTlEQSf S7P5ViLbhTclEhsCVz1ywqKVlnEKLjPEjQDcGAgLASY+BN0N7uUNMq7dsKvQ FWjK0PkbuVnesbH9b2vIXn+U2AwNVqpfASGkKFm3HrGPsah8+7FHPcUJvSel rNt+nb9CFku0bITwZSeUerJCxFWYgLFYxmNUiKKd+UOAjigclBSlZefNPTww RyJvxNohhWAlEkfpv7KmOpNYTsvyAJMOpnBvEk0oOrDqyzu73c16RM5n5zfe 7YQvOmrdPuhjCJHshwAlC2qdwZWwm4rXoxlvLL4UOT8ITvMdeSodOsMw0Abn YbUNEygy/vXMQcOw1T5HwUWkRgz6tYsi2KdYR7Nqp4v5WbHqzkvKrF9z0aAa Rg6mHyXKnqXOyKqeqHZ41BKquons9332TX9zpUqFpufQcQTFV17xVXLQW7Ny vagl2UIY9juaM3d/oUbdDrJDiNAKoxEYGwUraXkYa+7Ey7xexUH7PiV7SK28 jrh8zNnVDYIxZ4NCHiWMjQDFjtObJmLzX+s4P27ygbK43iPHhvuX3I8VY3HI 4IULRKoLTjb16643jqX6U6xNxX9VSv7f2HL+fUwuFAJFg36lTMklL89OFxPx xexlJnKVZJgK9s4+/lCM7yL9rp5Qj3iLzYhQZFRUmRbBW6IcPnSw3ClWRpPT 4T/qQtombyGDB/6m0hBxK+fKmiaoqamSP6Eilk7j26YhLe9x6b8BNJRaK/61 uSO/i+sNCM0lFRZfldlj3V6JGXJtCxdGr2r9eBz0zqSnmlRE4s1FrG32zei/ wU++JLGCVBq1EDJr1BTvH7Z0C1O0/U39KnJdofsuSWcJEgYUvKHhsiRwxo56 2hqaod4MVvEiMdFCYvJLmD3ejids5qn6fIEKbIK2LXll8Chq+7jE+KmtYB54 c2gP7WIyXSTJPTSbmRAofUFmjS/NG2xoeD4qxDDYtuecd0qFzzMko1L0cvI+ QE2ENEHx89o+9XPrazi2K4ZMtDMsf/7Ouf2+mZFSgjLM1CyZxSpCbyVwIF/W X9lCmYKuBUoVPd+idfSWOPC/45+0f3l3DJRufqHGwWbwmAzkmYqiSTLRoUgD 6Y4vqwrUOCB4CsLiUJNDvQ9nfyG0xg0XHLeeU4aahgxvlCmvqBDgDuolx5us eiQseRkBPcUkNS8/fMacmCgklOwVwgv8f5n6qYhFFH4x9Jf3M4B0CGxpna6i fnLrIRnTIDGbP6FzUZTUsBUID/ouEILAjgAgEzUQ7JUuP3GAtqEGlIDmgQWt qAdOymse27wVxgTrlvXEfA1rcXMBK7y5i9cYi9m8uYo6zTHmGDWMsjCG3ipu ipmCspUjZuDUhLeVdPGN9czmyBHtwBw0WFlOyDKo+lCiDUNRmUwZlC3xYLEo gB1uPmKsmeD9XIIuOsdKWHHsToxq2upIEnXUf0T5XaTstlfBuXmKDU3lGOx7 +ca0J3K5Mo8dmR6wWrHtShvcf5fak79G5yMISIXoORERS718YHXvrgAcGjlk KOOCCq1/iq4yw72Ua5i8DUP8MsXWzBfPwRgyn2F1K9DYAZ1delv3j8vsW1xc KwcjsQTZLGNrFbH2caawRYUumLXUwOi3WRsoR1E9vpghF+tvnXNEG+KDvpoQ I0Snj5rm4djo7OYgcVvh84YQu0ur+wIdkONXt0B1P1mEvcg44C6Q70DFqnzL OuYZ6UqdTDDZdxVYz+1hqL8gqyEkTCZCEBsULlTs6Itt+OKVzJs6h2TJ2NUJ Jy51g2BeAR0e4PzMuTUiKt+j7sDoD6Dr9zhXuZ3R2Pg3WvgBirdqj3/7hjTg +WZRaysTp1qgWdccYXaUhakZ3r/Wi/w56vVvuL5x0ygli8jPFJ1VLJQ1q+rc poeDp2WXxEJ5AE27WhTf3aTQDOpXYIKAVEMokkY0cnb28SdsW1AlT0fE3F54 XK2s3yR2DBhuEsfu0JmPBEZ0cAMJCljeBqz7ugCFhYVMnRVjttszrJA2aTpD kINkYg+pamA+saOetIrOQ1c5H+RERY2U21Rbo7x8ZFT1Dv6goz42FZRyYM6W e4rJdtVL0ob35zPqTqkX5PK5HOSq+VYOHUyzk6Sz11vwPXiXNUP4rmzLlJFH VOQQ/fur1CbgvDZ9tUjY0FwKdnZxK2CtPGLbPr/iTHfh8naFUptshwHRbrZM ljeyXXWf+QK4wrSRlcFaJ6olPxlj2t6FTi3fb5IPiUwDXbXIfqvtHw+oiEin jnCtHL0IWf+6e9ZcP6f+/Ot9ZRVnwj+EyP0gf+Cdap6Lqu3r1NUdnZbrM2da 6bO6CNDSoVVWkG7rHuPfxsR8HxQEO9kShNydR5y/Q39haN2G1jUupgbdHhOc HsxverpYyp3a5zMcc8VHKh3kepz1vlzd6OnT5Cb1n94w1v/c7A8YIu4a2Dw9 5BIs6eqCdc28RlsPDIpo6TKmiyyZ04F8T+/QbDA8VK4xoa57TtIEbQ3Y6WtU cJbIKU60UjRYzVjPbGqSpbTqhQ8MoQz6FfmpyXDUeUcbmufvyXIs+4XZ2TcC SDfIHZdKCpODYD3W6YsCFsXmef43ZP9LRmzwV0/oKbrjaXN1g8IFW4ETW+fW uy0AhPgmWhckbmljZWi429yUergpkjjcR8zFUuYvhGPkjUTxCYqejn0g7f4g MLq4s+v6/Ql3INE2NOSIomTBD7rEiNRqlzKXoZJRB8uMDQWOTA4NzSsf/f0z G8fUQpLPU8WFgYw0EXmovk28RrBS2+uAgQPCWZNDk2qJ+3fr4pYqmaLxk6+Q FocT4LLV3+AR2lKCyYruR+sIbUc23nTa0WMp9CugV8f6g6NpQppSKlW2Zh+V ZiwSwZPM2tqGUXh159fIyiKoGVRCm2r2gRslDnB95w9aU2U4CbnLp7Ky2EmW UIxWWlx9xIP+AF0eJHSiKtETGtEp/lfwC2V73BPSoMMmNCbf82U5etY+59SK jBWxDIqaKeaU5oiyLyWz2S+WzPJIkYrj7RN0JiPiuwsRXq0ZLy30SxvAEoof wAOIlr/BNRZbRKm50rY8q1ruBHI1vj09gf99xRaZqg9Dzg0oADXCW94Sfw0N dU2bYaCmW5Bqqz35fUy5EmqRM6bOcACCqDpplzTg5bee+XgdrPr+AV2Gp361 CbJjyK6xE8bC7qi4t7xhXJ85onB+MTXq4oWvv6Ec3kJXoVTOuOFxVRoEKnJ0 xba3S3a4Y9vFGZhUineLkcmqUrtNvk26VpYVIc+rKCLfO7Kf6Qa23JT7R10V fgAU3WbkyPy+z6XZ9q2X+TbmybvafIBGJoFSHQT/6kCdFcZmgZJe8opT/QHZ iSKsHLZQPhZvRqo3BXobDLckVEYqZH1gPZSPEJn0sz9c+JIiUXHyNWElBIlv UA63yiIdpWR2/FPKe5R2h09odCzp4/9klBHlL9OaUlFeqXB99T5kf1Nx+MQm cF7dmKlwpp90/ecTSpGtaWWCchFP6jhinwIrBjWH9XnLj0zOHlT//AMlwOhg wKNbzpRs9vLWQzBB31aaulz5YU9qkkG71T6b9vMZyVB0jJU94j28E70LBO+V 1ow2o4lTOXJ74nOPD3CsbedvU811Nl+Rp0FWZB9GUzn9X+J1bh/WT0sqROLb cxS2pYAEU5GnHMswTXnHpn1lcBPFgNZB5LYcLC0LHlHMgbYe6HiOOF7O5BoD PNdQDSX4zUXlngTOTzUpoWqeQm7lOZ1lBoMQQxtN32N1PcfkgdY06spIRl4f FIUSKlzOHTLqHziaYfuNYCukieTYop/Igg4LAijiXr01DNRcJbXZBNMXeo61 bvFK0BNBAwqHNYpNiChLn4wLFJldxnQrEG7kii1d86CVE897dpHpPkJ8xEzi chbMlwVziDmQucyM5HU6BAe9o+Cci10U8SpBfEfTloVrS9CE5OqDAerAKkkE rBTHhMhlpWZS9UBg8z6loDy+59/1YNiz8g2GTsnEUBOlJLJgLAFVoMcqvJVz alBberk9m/a7q4LSqJsLjWyZiOYzqnqMOFA5WPmu08dY4+Fz3emTb+6D83ya WVAvPQ6XlELT1LaMlWsF6AyvhXRQyuRMKrlF8G4Gubwph5H0srXB6RpcjuZv sbdV2Nna6Ma8e9fiKPf2gXyYzfzExoJHRaOzf3r5Q9EHiMnzr1pVXDkbxIdW UAgjwZcXeFuRBrjo0OESCVaCXoTSy0GfGJkzS6sKdva3kvr18bteZNM62xX8 HX82n037PmPtkKiZn2xiMqcqFuwHjBn0rfPTeTKe9/toDZvrBgC2HqWJ3Q/q cdDBZWPl7cdfqNWNZtN9/SeamLc316CUZT2sHPfxahs/kMADsBsLZ5ivuivy 65IasoBuGA2iZFxsj29gWyfhRlHgraOjJ/f1i9dKQPx+06JRts8XCJIha4Lo Qp7Q5ruwufBQKNtMBPOYc16MO8pCd7/goGlzI1AvdIqxtcSSj9coyGeMDWpt WcA9R7rUd4a2d0uijNZPwSNw+x+xFZZSmIc+k9scnQBaRBPjiDrEPVfH61tb q6PMWlexkoyVUL9JINhZimdWjMkUCLImQjlEX4PRFfFfbmsN25I9+oxusSEP PrWuWVBrlRMzKklj1BOs3vXp2e/7gua061cGfZ2dPMQHz9KFhE/jvUbKzNhN zsOdDahHIQUTnTox+3wvyebNGMol+OLIyDDSQKLuwVNG6nWakcPecvzXo7NN p3vBWqLpQLHwqTXMz86eYFjH68cHtg/4OU6vIQc3/QpuphkmBxU8EYkgJZns n5ItGViPIVGCwyV4sKq68c2XzxvEAZRiE/ZACs9PFv2MTRKB0TZGpYU8zkt+ ai9ZhO4SEkJmcykUwag2cqNzAbnKCx1ruSaD7nO+bAUmdIO1+tzk/SNV47dE uoBYN5Oi1wDZo6s5jWhLa52f0TRfHb4mz/VVczFoX+uI4q4g2UQ1DRyUgGx/ vGOhctzEIQD5Hz7RuXh2NlL5fmehgZ8gKBj2SyejMt1VOVd2X+X+t3Ndd5vg pxd3wGMtabg0qURC4FFYJdJTK3Bl2dFVnt+iLwVvrMbaRfT8lDt/fyMRnDES IdpC+5bT2C5LfGzZNlHRUXDPD1cKWtp0wASIoeH2qmTjqFQLCt1CqVzSSAGh cLxi9pRhInMUO4CIPmT4KPF256CiZ0pTDn1AoyF+BKdwbP8DMU2+Yvlt4b5Q eFfA6Ws2Tfiuj4qRJC5caMXgkHzIuuuZK9jOtT36kVwm12gEjEiCy1vTKF4n 6kptBHECM4aSlVrWJw9ocllCk3eVXt3DKxJ+546fakh4qDpCCnXU4EEwPu9d DF1aZKXU4SHSJpM6KKQjJu0iQVe/mVFCwLFThcKg7vcdPC+7BtAcxuGuZPED enk0KRVZRu8N6ty4kcYPvrkQtPasO5NasjJTdzLJEa+lMYC2d32m0Qp29F2s czRCpBASjtkT1w5neDrRddIHJjAiC2DQr1v0hujtHX5vhaCQCsYLm6GRV3w+ FHelgMhMehUaB3ZADsXMOV4YSl5dVB8j9TCCrnqC4oJ29SeCTRpApkmdrxkm ag20aogQDW6T0ec7D39wyb0BPUSII1CYxiaX0HcLE81fXfOcHVJ5I1su39kl r6r2X85UdoFtKXBQixI/2gUehTzUE5aH4cDtExCVT5/VJDo4gyjsEEzTfGDF FbLobZVNYop0A/0mWqkZY0LqAbw+XyO0lGTu4NA1YypQEmuMX9OJXpftR5yr u+WLjk334HGqefn6dwmNkk8zg80Rwe0lDqoFDN4DWSqA5LTZIVJ9Xhf3UOJX urBIqBHpUAJfnZ8KUll9a/BR2MMsT5njjk/U9UvJLjr+tasJ6IhZDMnDLPxK u0309GJAk51h5dJvIrgAXfXmK9zft72eQ6gMdN/mE2oOQLMwT21Hqh5RTCIZ R5U1ZR+VdURD11sE4utw1rubWOr2c6M3eZ4qSmn9I46uRcGOjBoa5Mi6a/jB VBnKxBjWVoI/8ezlwR0UbJZQUfA6leo5VZnmCWl6Db9PzwdoqmgLa4hsnaAN aJxyhceOZuxzB7Tm/WYzoXxHVecmulrwsKHckaWMPmUQw2tPrePx1kZTN5V7 9LMrDMQ+iRS1SzMaHaUuJtV7k9SH73KQhV3ttrFHDjkoqiKjjERd+XxEEnY1 PvmDc2gKOEKUOHTF0UnLbfHGIlc/kqOesG1xqCZmg7Pq/OHjzZWGmGEK+BHh 7aOqOMPkT3VuQiyJUXDO61PKtxsoxOa3wBQB4CfH0XthO1nyzUVZDlMs6+CK LjZ/PHZF1G9o/s3KXuAPoqs3LX9BElhGS1DZhkKcBofIKBm6gSO70xWhR026 RzbOuErObKlGPsCvKqYUq1oPy8b2xjPEV5GHwhyhZqGWTPoVOT+LqVi6hEEL A8h0KbDrQRp80SsTN/7sesjC/hRikFFXwbZrqWAWLyGqhc2XLuhlntE/6XSP eBzjcNSUxJfr4OpShiRdG5ZZWYc+loNeK32NxqETR2miF7J9zSAQSSckLhHE zCZ4WTdR+HOVbaUk0FQTXCyIHZzXQ6hco6K9srEnresxYAXfpiXSrO3rsqDm yPqw/x8UnfeHFUOSzt/3OPShoEuHDCZoVujeTgBKcNjXAdU2orbWiXi74rjn 38iNIhu7+QGGGL08P+6i3ucHWCs3BTZj2D+fZh3IUnpgn/cn+OpmO79MMafJ 2xioTDJ7cSL3JRtO8JMt4jvhAmv0aG3u6Eeup4MQfzMdVxgk8NSYB/01BCDx vPmAqM+SeNNzGpi9eddQa8L07eIsZJtJX4JWblMtniPKJXl9Rqi02TKofhkc YtissSEubiAuMFAgUmOmVNAmRrrEo/IoYzO2DE8N7mgTwREO+vfNmszsrqAo jaifWrw40RYFyV0JgXHPxikmaKADB25CVsKBr9/CAedNndkzBIeyXn4NEHhm UJ11loEQTljqYnPpIVp5tdC/Pg+lLbhX/rRQjkDN6ZN4aA2CcGB4r8OEvtBf MAhIPa3NQ4q/r4dfAQ3E1t/W19ysBplf+LqeFzkFKTclxXXoPWENGgyEJCgW s742h3YaFaPJ1w2YMIxNcd4AL8fuWzFteHyRaUjuCH4dls6oTAa9pj4Aur6O sRT64HxAW9cKlacqTC6xwqEszqRV1QexixzRXvN/+5Rqq/IXp0z48bD4dzS9 0XWXKEMOWYfPBXVlWUZBO4A9RJn6t5IOS0rSUKdoJpM8BSPQ6sFsS7MWztre iHLaR6Se1OL36sPXFClREqKe86h+WFSA2vHbdlW/TDONJSQpWbmFmm0YqB1s ODAd+N7rPKVWiTATJgfVnKlZQbSO2kDI4si0u8C/0TvTc6P9yREfv+CWbg0x M/yxCX0f1/M1+sTELHEYdgzAObZEB0l6+sg/e0Lq90bkFGfJU0i+DREF/tky /WGr5dQUdlg/tKvgg3qs0TXlFGXU9jtWnzar8Ig0sFDQW1O4DsqIOEOlwkTT hwRwHMr+e6hyOkXDavLzDJF5rmeOoQz+BDSqMSVRbXG9ueehzBfDHfAGpZ2C 6/pSfz7F4jeEvv/9snwf4r5Tlb89ON+afUZQx20kPFQ+nhrxr9ijfo4BLtOu C9b7ZQjGbYgEzhq0iPVZHMWv0/FOXBtC4CKYFQk0VrvEn+c1VbuJaygkMZl6 WAKJ5YOEdUd8HxVDPoHEZeENVZdSVdf5D481mi3QOVUHHRGUaURghMULcRro qqEQfSsDUrYHD3WypRFlhXv9CB2+8XToEzzKO4Uiyr4rnAIUOGQvsGke7RWW 5ZA/pHM+Z9QU4h83QmM3Gehvo7xOEucQ2TSs/6nB2MIvtBrTxZGvFrgPUALX rTE45FiPdbAZM0cUC/iCgCJ6NYzcHm3vBvJ0esjGy8eKvfE/qySS0WmsePj+ w1FOhAui4llHjErqnZfKDYFd0eSoV/NvnzXESE4PGbFCnDvI+IqRQ0SppOCY UYRXy/llbglNKFS6c2ndX/L//UymOfTRkIFeARY6fk76Gxm76oFax2YumyZj Jocah6o9x+8Smov48VsHrFwhUzriaDyiprSz1xOHmcRUBHeKpRqn72yuvzLk IDJ7RUGgCS54DhrPfcdIfu2l58SXyG41Vr/GhwWfcNQauQ/Wbk0WMzSrk622 6RedOAfKodHih6TV6AYBUoIxSDs8HvSo3fMcbCPir6wJjUcv7so9006kBs9C T8ltJA7HyOIYp6EtCTsOSWdPCWoDuv0vxeKwrXleSZixUW57G/UNFHI9BfXf vyFylQ2OwqGqPtqJju3PRYIwAnu3L23AWRGVkF2oO55vfx98bc05UVGGZxpc 22P3J686VGzUcuoHMNgXMDxC5O+gCPZstFZMhQucqjDFVvb78EdZvtiRlV2g /HvmTdfnwTe0MLkLUC+nCRdWVrutooZoScUzGOaY/lsxU/TQN/WqiLtzGxvi bjVyz/BRvbNFHf4MG5bqPOuFOwU1MESu+X8t1u7nj8XHQIaArsR5TODdoIu1 iCk3mfvcqKiwtWcl/CrszmT44SLGJoXHDN48NNUB/psRxPY6t/H59kGQdEQz h0SICikAR+16hHj6rsUyGwvrUVswQ9Ok4oqHw684dCOs5npQK9uOBQOEB8Kz S3CVoafLJookfBEe1rFeGdvU9kvfnyj2dp1y28eulERSdFNGutfQFdgxW0it /xoSXCRdv7VQOiBsVb0InxdQMBi2wUfsnvsBBvU3+FInCv1NpXagYzyZ/TB8 ce+LpagOJLsXKCCLonYqEjmKL1zyYsglxuGWAmqDucNQcvA1nCpuNYVR9cKZ FLJKEJbgz8m7RD6vTjVYRGXN5INxXTDHKn2cRUQJrOMxdEpx8nCPeE05NgAK IVsy3C5yiU4PjJJqweo15Pc5/ExxyzrBHGlQCL4PzVRK9Vj9PDBaE2V0YPxh QRemguW4foVvP+D35+jqHoJaQlRk1WD8ip5+sTVyYOMYHDPMNt0p7nigv96g eC+lY8fZkLHkbKrwheUAUROTYNUNg1fyF3vUtNtPbwwFFBeEzpuUUqYpQyko xLmVbczTdRcn7z0oomNXs/fsKaY2oWe47YIK5IfdpjAUPCZkvrv1HIAyhtwO EZtOn3YUqC8fA/qbrL+2xy1qTDVyt0VB6r3rT2i42Xgd83C3Fh1u27ZAStfP v6ENch0Q5v8SJ3B/qKlSAt+ffGqUNCb2E/2E9BkntnJd/kzbk5vEbrFu07ws lzyqtx/QXfykT1cB6h3Cd2/zbO+bwrokmVQ6l3eue3JkTrwKWm3L6kh42FRz UHfl9/c1Ocdg/abaydYmzt0jCYuapxVtrNmR9Rn8SibSTLZ4X3qziD8fcKZK tBsKujInj6MA6Qa4Hi6tfdkQ+TFVM7flBqS0KtV/3tTDGVxFKoiRUHTIFtuc uYVC3Uujpxgb+W91wEGCgcX+BerPvJAUf8Zlr2cxNBI2HehA+ps8/AB1XawT yLg0ccje8qXygHwEVFP4ubpCLT9nffu0LkZKQguuoJJiUx4ZEHAX5SpLZIuA HRTosZ8wHu0Ym5fnZk97gVQeu76iMfsyc9fLWBsko9yL4TLYJwAkkPuGpw56 5Xt+jwLr20oS7vBkQt1Uvywx6D3nKK2dnXynhX+9gb9zazEfZsElE00e1CmT niEqNp4UgVcOU70wdncRTUgUneZiDrjI90RVmCDpRI3F0AixoyPUAwgF3baq 3RFAvr5KKFfIPy3Ukm6CBjcoKkQiIyZbBpqRizFWpRv4O0vzUpFx1w8VAVqb y1AaYpxKqCmPUAobzjlPmKs6pOpYSpoKLUbccUy4e5xHTzw2w08NFb87WGb3 YrPYJtds+fRM3DGvp2feZHVo/ecC+nZqVxorNvQYmNen3Id+NRBrTmy6Km1l SSuE8EqHKi66Gdr1tQ2tPV6/uARxPHkfpI6iSFiZU/YAi1osKuVUa7uGV2t2 FLRogSQQG21AtZxKQAa0xtEFN5msz4DCIvz6U6ix6AISXyF1IAYxosGuCXHo rVVZ3wkK6cz6Np2ys3JO3GHc3kFSjhsuV0F8pk8hDZ5clOzwrvlfjEhbUtWZ PWXL6/cCISiTq2zhKkO7mWOlQGxhp8UnU9VZ3s6PzaYQXe+da+qKSn98mdH+ Yx0roMIPuO9uSrin8G95w3kYLfIx1QDxaGctd3eLMvqbKwLv1+Kk1QbW2Su5 RHQay83catXhj82IkU+nD9j+PEMLlgg2AmWTJwv9uUbjEZWqeuqcOkyb27gp 2i6vf+ChBzpZq2Gus6HKWPf2BJYrm5c2+y7O3NifDjs//TSvvGq7fYy2eciv Hl6C6zeFuuEnsqpYLiZCpT1I48ns6qVbc6BGCWrel9c+Ga6XDrkHrrwNxJ19 f1jS5Dg98ypVOAUkQyeDMqu5zKNO/k2/Pz1UNWTM7qoNU43RKZoo3YQxh134 e4atdikyVPc5/76uJc03eEXSqFg/pDbi685HRO8a21DBw2xJztDYgmCuvqEJ p87hqSQ75RBrlAkvypQXdQLoIWXIakdMBLpNKLa9ypF8egw5VKogmopBcGOS jBsFuPicCw6Sz2ygPgDUKX5yJucdS92Lv7Y4xjCDjgLqulpq7kcpZUrmIWGz vCt7sBGYmXXo2ZrnpZ0QAG6u4MXlrb5TQQs565rweve4InAyjcMIqM5inCAW ma7z6BFsdpVT7nHrDdzhVB3Xzjpx3tNwMY5pu7eZ4X62tbYSN+vNtuWluMRW 3xAei5tyspqtkYS6huC38bgTw9j6W8M9LtAtlK4gzieuLqkQa0ZQq/H8kEMy MxscgaxcsB1GYVbQC5iPqwwFANONLQUhJVZccleJMNDp2Ia2EgHyQgohd5u2 I4DrAz4kG57D60wQfC3phRXog8jmc8lT1SldKIs7RrnJoKJyL/mePcbMzeQy /HXwA5sgf2E5qx1oEwx4JvXwrSlGYjmCQvUO4uNXcm2os4LIpYSqb22UPeR7 Jyp7pWazxtcVo4TJmDQh4bPr6sLWEiik7CdIWM2Quz8tEcUhfBM9GmcmsxMn 24Xe3/+tcG1pGY6KpDPQM4i9pTJkRyNd/GKEjDrYn6HeZg22pxf7U/XcPkEz bDff1vuCH7dY4q+8D5+cv23NgXfDY6ECHjx6iNrly/5cgdebUpp5BKUUWRRx gaOSUndM680fuB1E/W+s2qG//ePy6iqkpr5CqQA+oq0ONDr4axzLwKM7ANkF nBRnGdV1atbFea7uUw2JaMa65MoUUomS4JQic1xrTWxsOqRPKPlYrVSEzlDT nwxDMkIVoTez41WOiFb3Bz7HyEhhbeeKABi0vty+tdUS/jdCIuc/RabTyEEs cEH4aogMqGWHqMq0561TYQ5cGyJCn5FTN8O93ECNPV/ctYeym6ASbGswkQA+ iv9WHO42kIGY3LIxPCp03yPJ1W2eHe6usql1yGNnV1pxqR6KOmA63AbccG7q 3eNc7BujMvU0iyk7KNMbXF0iUQ+rP/pBh7CUuw5hr4/ONw+JlfjD/4bN6H40 GHQZ/XTJhi1TD83VJ7jgQzYJ41ymMexTRMyKeuz7V9xLbY7tICPDt05Z4S6I Y/PcgBKr+6rOHI59T+1Mw46zm6uQLSUUhorD31i8JFaxu1EZVKxcBou6HPPj /0STqJ0DAoYmZMfMvy5BBES+sYE5gzVy5v6W9YeWqaTai3DYbqyoFdCxTlDF O7K+Jm5KwwYIdiBhYbyptjk1b97/r5yN2SAY2soh1sqhbYLm0p63j1oP/Gz8 +h6Gfz4LInP5CaMPZSYTk+0TsW0+ZtEuYBCyGv2lj+G4pU3I6pN+Vhytkl85 BNkCHa6RT7tsnJjeS2giUkMa/EurKNVWRwm+T2RjkxIwJWyAY3PwGNvVSHVK MZUbB+hSjYt0BgRD27SglNniXT5gSFetl43wZ0NyGnN/cDij2Lms1/5oX6FH /buH6BwbdhWEZhhoEkmlPbLw3aNYqV94WYeh/LDzOzzLp98QLwKBLMDFiIgp 8UkxixRV2KqLbKY0NKTzaFQaTCtMhaHB1RUUf267WTcmTGhXRRyICEhPrLN9 TAykd4rWskH0F2Qkndl8deOTm68axRaWWqGaRUbbP1KjK6qwoTsqvRSDy2l0 1fJlb7T0cF1im4bTAjxDdVlMyuPG2CKME2WoGPptDMVZHaruxLrDwDt7cClv FUs8CgUZjuiUNpO7tkRDCis1mQn6WF+3evcXHxWysls/P6geA2JivDSnUWry gpsiep91VvYJ7qEX99k0RzTKWEoecfU11rGRYxn3wbUyRXcdnnNtBYUUNe6s L9Q4B64QBEe0LtWICMNUQdm8uYM8Fxyc356zb9OwZQISS0bJakfimsT72YM4 jbWP6BsKOddUlZj78onS3zQvO4vAeO+bfPsO+nFAt0ja9i8btD1Tw99fUIhR YPycKqw/aHj8J+jXVOgGIsm0y3Wag4qgVrOTML6uLEqjks+LqvwTNGiOq48M yOo0DkqrQ4g+n9rzslyHYdNB094bkV/DfWgDCu7QiyUQtF1srEQk+VXjS/TO jPTYLgxJ0ELAXU1rNobpbygvQLfWweHlT7EMiQAJ5Ox5qZpz4EiGIXEaB4Vm qpBluwDpx1yC28RfG8Psg1wijb/7EtWNj5t4S1wHSSn1IHEmqOi8XaeStvOb CDd4QiViokVDDyshH0tscvKjteWyq05QqBncR6rv7uobYXtkiBcg5aHAWSJM mhFvn714LNaZqzVg9JNzsedluNpgvzuEZq4PbTNaaUB16liHJziADWjvj/j1 eo+rKdfFiyy+08gnJwtsSCRxKjYZPbKJtyIevJxPVsrIqABX66oqW93es1xK IuMx+J44K6mOf9UR2MWO/pMkVE0ALqmq07LLJ3dgdC7g82KQOFaaie4AEm/n 0uYinHMdxNDHtrOdXKW3u3DQz1iNoj3URbjOtsolENwA59FebeF+ubVqTdbe l3MWZ1+h9sLC0YDhG0GDpEKH7qtOyF9061KHJWKVxYrAQcqX0P1PCCk7oqaM Tr59vXW1+K2uazJuSlCwl0HDyEGDH2UZ7I5fGyGM0ZfktqpaLxfoI0ZhLQX3 Z9CohXWlNranhCI00jwhg7LInAfx/dBAFX0qdfaYDparywLNlQIBtxYj4has nhlW3/KEqiz7sKJc/lzZ389oVkihNxElfWMitI4xGxl4IJFVM7oGKj1iPXBm yBbiqFJ2VtFQ75/NRAdnfAYHFcID04Q7Sh02CelBNB3CQ23qPbAjT/wVSjRD ISHFIAARqfiD476+4UJvyKAjGDZLig35+jmkvCWkFI9AC5OTeGWX57/hCBuO vxrydD8KEPdLxpuzCNGBDdRR5RIFJqJwcxXoaymB2UwNEn0sjjSS7yeGo3/F u492KxMJVSYkB5ObxORAxSh1bPAu5tc66Fg3zPL59VJCcps9SzHIW4GfmZBP BlVGUFqSYa9OsVuAygZKl0bj5rf3+QrpuQQagv5fM15Xtx8znU3LzC/wjU+6 xsOfAK74qW8UW4iHGlsYX2Y5rkAL4g9M+IHMKwrZhcyM3WUFJVKVocEJKgJo +hd339Cyl63POPpLQNURWYvJELGiF0dtcL5VihvTK//RRZHNDD5dNJncDSjN /OQxiSvwXQXphpZlFOOkoIxp+I0Zau3Q/q0bTsd7hay5mUZb7xJuwtyQs7Ai m+NDKKw1HuL2IDbam4Y+VISU7vzBjpeGOrS+Db4aIy+KhFXcVktWZQIy1hTO RaEo6TLsjtJrXxjmNlj/Cp3mFKG6NOswR9OeaBKZHauElAUiBcujOHWq2enf +eYJ/jdpgyXD0SpSXWNQhO26sXnOI7lpVq3rt6G1hcV6An7tpjeNerxE43FK dbYBblPxUSraBGe3tg1ynKUy5hAAdXfJJuyIC99doUcTYSp5TPKplkbkP0lp 7aBTxdBPWRcCW9rjvbn13UfMlrKWcrZIYjhQPgbixKhcp/zsSPLYXQ59/61Q ojGdwP/jafrtBTV1iLyoRbcpfGlRXGLI+HPTRrDr847lOWQghlIbBVEsNz+c ayDsdVPn4iw7rehSlT7XqqFMLSP/yLYcm3kq0uCNDuG7u3PQJ5EFDKRHuMio zTGmOGHEFiQ2uOXwjH3J0wcrJ9ozX/+1NtEt4dzUFxdD0LQNrajP2Vz+mJKz TGbb5rk0yzm7Jv0nFkGXv/JBGWqt1ZpnN+QGxO14kK1ZrfzLppYfiFnECEDW JWgg0A+tN1C9u8wmzv/NEoFLNRi8uWHzicoCzUrPsvKnDi5c6oSSXjsLuYuL Ghi6N2akDefc7MiEEYU0oIKCmpEcdbWXPdP041ziT6yNGb5uoOErO/SZHXtx 3aZ/vsqFb7X05LELLTjyVT4hlFQyrvK4bvQeovGYIxkveYxjKlaystIyoCwo 0lmKWlVevcXDhV1WRBB/JwjErkqN87gpvV70rEDeZYLQ3WyVlH3We3EN8UpR PGhaadCdRUU/SKUa6svTXl+G/G3TcnBmgv/k2EsdP1/5/CqZBnJeUDE4XsP2 VddB3QHULrOUUTmMODkf7I4w7ttj9pGZ6kEEtlM0oQmcjdmzjCIA5eBGFlyp 70H18+7u7mbdCxot0LkVmj2qYaVMMSVthJB8PqXUPKBZD6FC1oI6q1Chccyt wxlzoLSQISGoH4dmQhgTdxnLZjagX6JN2XdT3a94cKhf4hnyBQ3+02GvHtFV 2ucW4pdVl8rEW4KG7g76+RV9I5uvZtq+uCl50xQgT4GwMkvA2srAYemR9pWP nLz+uPj6tYac6ZoDab0QJhTpU7FPRmdRznFUswa3WkxTxH1y1y/ktiaXtrPi CoV0tlWiOiqzbZcCE0CVYcE0GwuiHit01x0kiLIVO0whTd75okiDyRyWWuZF 3ol8mxAM/DZL06cT8H1vf/0BfLgKCSG6CfJUE/sZKHrEps42V+LRFQK3EUYl AWdMR5zvKPLwgEROGoVjReSH9TGIbCHRPy1ZwxUpZAAHuRnZT2hdszOjevqC b7J1n4ff0qyz0H5WyX1elNuCHBu4b9oQTSNEXGseEMmKQNjfHDrSZlAeWZwG Bj/IKBTFfWNimkVjY3lrA3QR3ugt3sdveO3l/zH3Jjua67yW6LvkAxjqm2FE ZPR938xrcEcFXNz3xyUtx2eTEmV9uU8BdQZn8GNnpsMhi4vkath0JRsM2VPi 19jT9vvATrU8qSD9R8hwRFIZNYtLhG8fQ6zuuuRmXXdKcaSWdNh1mDvBPLfk y4QID4XuaeNZcucW76mV9RMNtIhw27rBEiiaOYasRgERGbZI7dNBLPuclwzA TZpTcOhrn7KWl7vDsWmq1OA2O0kYq2xwxaNd/IzX/Z2DIg2dqh/0oJV13XD8 Gal19KViHDM8RlfaffVpVHZ19LSOavLRaC2tPToJEs4UXs7Q3IoopqCN92lp 2irIeQ7Iw1XLDpdRVaNiJhITqWPiL9da1Sh9Ei+bTV+hgAE2y61acpCgXsOV rCmPBk7sLOUZUnhv13i7h7g7il3wJro6JL284jbovL3GPEJKVUJTI+gIaMzM CEpmkzfsbilMHoycgSvKxKx8v3L/ffWqhGus826o5BgIVRZTMqtcKtsZdxLk icfkf27R0kut6dN7TIZZH2oLR3wKcPt38Kc0ccPodbaDHrIeNc5NSdniPUsn xvdP6FNTGz8Anoc6h/7mm8ccc7hynpflruqXfXILH1vAmc+3YREHrcxbC/cw tmYli6sxJu4tD3JkDX6np9uW4d+uTr52HwI8GP3lWyQ+wu9Q9dw0pL1t8jaw cWC3xz8wbuOUozeuRQc8MNgerGow2KC0mAmgDo3xpgheEnFFV2iEo1hyjYkA BI7OOakxQjmwhO+DtnWAKXRKGlotFTsdh/S8XmluDqS7vejCbk/QHAHuTy3W z8Nt1oFmHBho5+b+k1OEiRa8tdUoqFFxIUl/BrgMevCVWh1br3Qjl3xFm526 Y9Zaz5bPcWRr2zEajQv8HKU0LsM0ZXY2oPePNvna3sh5hyYLKFkceG6BwlaW 5J5TR/tpMocvL+HsFMpVNf45VIhnG7yjXq7eZ8yUsIF4ubJSloUDoh3PHe+P KPjlu9dbfF6iEpzsbzMaVMPPGAdbIvGCs95Y1lt0F3bMDy/gfiiG/ln5fHG2 cK0Ynwb3YHDp+MFQ4e1x2bPCkvWf28Mi+T7/Xnl3L2gjVYdn+VkLmBWxqmWn ZRRfxn7UFwfHaufD/PoBJMB2usk5FF9jbOqfQaFtX9dBht59kc9K4O0HIFx8 QatMmY8646AiWK/HLhOx74e/YGb1DxlkUKUafJtQ9XY076d3HsMaqkscM14M xmzKgjUxAyhwdZ18p2yBBwaQR518M5zzcKxPMKKczj2hmOY5yjHINkOjItz/ ZM1/GAY9Q+VSVGcZjUH3a19uw2OGEw1F0tAY2eQ4OZ2V6cZ9PX8nbS0z8YAS NuVkzJBiJsmW/NkZx+b1QyQ8OAnQ3rmdsJ+HJ2sztbHVBurgBN1S+UgE0q6g H2800IMxcLPNlSmKvA6h4smqYGvgAaAPAJONmi15RwhCFX1e8xwzI7M1V1hq VJ4UdLW2o219+fQAJ+kWMmXcFQN2n4/k2L5XNKqCjoziJiNb6pEWQBfjeMGT +e7RmcIJYoGoKN3U0JTLXBbRzNQsGwN2sPfk+wZtKB3C/+5B+X72qtjTbWPg sQq5MaHN1hVy58KT+ZvbGbjPedLexC5Z7+bJetV40VBEJuhrEnFYI0bjEivL LO4Q3MR/HHP0vfw/f6BAJjKMA6SBDnKA7YZPtMjIcanobJnby15urtN7sc/X r0YXMelKyIkoMQ+5MJ5kLemhxjSDtfEaYtdHt6ldGfUZCnAqUWZU5nh2p1XR fW6KoYp5inkhLDWL4YqIeE/rDLc268PQ1WzJtGgWv73V52OyYf4HV+MMC3UQ PtfMrSLZMFma1DuneFSGlWVt5ErL6GiNy/koX8g/N9BDUVpWxhVwzsFpeSHZ UV+htzOt10eOtzq0rDcocIo8LK4gkSpdsooG5EEyOSQ4hu37QhDWCmLengup H8j2eY5QvPa4VAagss2DZBGRKxCj8oyUI487aPXTGVmDRTPcQfpvMXmqlDde o1mb0+HYhx8wwhwoKoIT5uad30MjVWf96pzg5OQlg6fdnUjvOdjIkjNlbsMG H2UNlyugny6WPv+E77vWnDqFQhZvC5psOsIIY45yuC1zRZbZ1Nu36+Iu5eUR ui1bjQgMDsIC2my33Rx7Oj1TNAQ0f3K38/PoSwW3XY8ve/Ktk7O1SigiWyvp lIczuGS3IF9lzElLYCoMwCwKCyWwax919mqgOBOsAbAZrg4dlOzK1lybzZM7 FV0jEG8gz6+//n2+i74Y5W2bKuxdAxNCdggjbfBZOyj0BdSHR067RrTXj2ZR r2+4IibNrrk5yflBw6GOQ7wWXEVAQS6kmE4I3kkykRmJuVldkp2zI/hetECr udVDm0mPZjRZ2dADy5cvLptGekWOuC1Epz/hFPdmRb4IyrZVb6znc7Mpow22 eyP/fOrF6WTDw1BYO2KpK0dwiEqP6jxbqPSHzps1FXQV3iXdBRnvn3h+qCpA 4VINLgku2aOvWLScjNDhsBmMdKsxWIFBs0b53q389eVtoMExBtkM0Cl2FZHS FZyUz2zWJY/D6SVsHaoDbOqRL67vs9K1PBY6W8CvTlvuBy2NjeqgkMzbpiMC 0oLKTQuL03NrnaOdk1cYvq2y4wOXAe5CaUl9IBVa2y7d97CbMq7xhN+fWpcE UuZebRASu5j/4UqAf4lz6IfyNoyzU0RbX9P9wC4sOqT+4WsRBHjQ7RVSQNsF XoyYRCUauXO7A3o2oRCcrA90oU8A9oHWCih0Kk46K4IbOuVYevKAYj96bvtK vZUxBHXKzC2PMHS7vc1eMYJvDAoAv43Foe2IiVsxPCu1Z/usQ2PwbPQ2EKBy cfxxtgxlN7wLBcXYhuU0SCppUatgTOaMlti5cVdSb4JmLLQv3MOu6TuZkKsi DB8Nhp/4ouOS1E1yj5GDYppY2UGXIB5THM376Oz10anCDKJbVGSKW6iIgyxT 0fwI9SyU59TJP1qpAgi+lSk0e34s7k+TddRBPuJOzIWUKG/ony1/ySZyaEPm AWlpZWwzAOkA006CVfUJAZSGsSdOMR4JHbr1p8bbwN+hb89D44tGcra/yDl5 j8vgeB1nhhTgZQNIE6lEoi7WLz4o2ynW0F7PhzC1ytzXhfYlL3Gz+UjoTIiT CLG7aM4FSxSa9XzRNNa84QIBmvbFhpcw816vtDWq5mRFp9FSrgz2BnZ5fYb0 QGe/vR9QDgiA0IRua3zx5VLRb2xQukanyuR4ktSYXNPZktO42SX1Xcs3u6Tg JpeWWFSpaLyGxWlwvR2y1xN0dTQDmD6tdGCjL/x7Eo035nsV8R8FmLgyNQ/3 wJ3LhTnI3exxQWoyN/QkCS3SkzplmQBrrnQDHo4xIK0w7mRfPN16nS3rf5yb 4OtzvcqmGxq84tnmEo/qkB+YNBToQx6gKY49ze7NOVRewyA68s91MHkEnfVk mqGsR4YSrElRRmk2lHS947tzYuEqoftchyXGQ3PRCcprV7X6ghjzo/Xt0c7B OvfJK19PgOHji5PLOYpN5m75HZKKkf3Rrobw7NWEECoDUmMASKJlVP8Ii1sk OIOkv8g9NLkOSJKbFHTFur8WeL+I1sfasRo66QmFwlva+Yj1Dmcha8WnD0Oi K4ORHdnnpq/ygYz+bWxRedBwBg+HQ6FfbcepdtSYtB//uo4obTkcwqru8Sn6 Ivxh3pnJ6VKZ2ghC4nkAcrZsDtWxUG1oNFN75PB6DY0AWynO5BYAv+YfFLAm lDEQwbpdk+L1/o26mRnx91kDwKPSKnSfxBWAGnQd2Nqd7SRZd8swfanJIHKI pqlIOayZ37UvgSKr/sfPfl6Bb5nHUnFQW0VpM0nmdFAw6TBBSCnTr8m3L3pB NWtNzn62NaaJEu2MtwpBaE5J3zm5KzSDfzQaXUxR+bG4vs9J1cak1liUrYXi 2iY2xhKODEjypU8ruwKZ6kSgRUNc/FI7vNdvl0ohXpkHcManAFc4ucL+OUZr 3cwOAQg/L7RC9t1N0feb8ak2WjEYd+4BYMrXmjiH8KpMTraQR3zd287Yqhms 2YbkfGNYcudzYZduZmn49eBA1VPCxIhJ6W564dDc8rdydLJ2vSlJvluXOWc0 nGtlOmPgTlmGS0Oxc11YNaNXHdQPg/Iy/OebUZtv96iNp3QDAyfDZlMEqDuk 4gHamngq2HgdrmW4GwpUFARCr89w+2qmvkp5zusrjd5/4zZichefoMgTtka9 jm3y/G9VuXx3RiVKi8YU5wl1bk6CQUl+YAfAvKXYHXHrd3oCyKp8RV06DLWv cBNO+dFBKQ9oKNooX9RZzJH8peasdXvMLGiXafd5gcm2bLGMYkevQpZibbeM aNaPQgM9yuUm+PJXaiOQ117u0HuZJftAdwfVJxoy+RHCBHY+t76ZBjur2UDp ci70GueH5xCDp854cFDtZF0majwGNCUUhFEafKjal5gvuwxBwH977XxJSTw8 X7Szt1UqA/p/yfoaMtlh9kWI0ErsYfNT+jwNyRg6moSPS8Ht7JKmk2rJgZRj dl3EQUPj0/qqitA4Zpxoefm6fb+Avmde/JNGGV6wQbFjdl2wJm0ODaA1unfp pPi0fGva8uwNm+AKbi29nPhNr+yDwiwq3TGR33GEHh5GrCcDzUit2jEjvbx1 qZilkBedjEZRuSnMsrbjq7Q0jLbi33ZPx8Z9wk8Yfhv67cbVD9wMrnrJKUA1 03ZJvBFesh2GZl38sHD+UAWvgw6r98Tv+b06R4fSCvripTdFTHsZmbWL1nft aMCRy2LOpCxpdZ124w6aIU84GwDZM44iMrna2NUrxiA4G3hHl49RBuZFTtXE kSd30N3TRRwcAj2h96li4HfbgIqpDVYl5nWfRa6GORwGdFyCEmN2LLcfLrNz kV7HZvZENMqpMTWVSI4JOTHJeSfnlHJ5kGgd8x4x7fMF+jbK5kFr/2lOBeuE aW3Z+nupoQMaeVSftSY/L28BsAV5PGxAJ2WTImtCoo0Xt4Sez036xtW/yeMY SAlNQf/evX5Bd1ey0QxIE4VfgjODTFVh4b2sYXjWUz8uZznEuG8P0dheWN3J K7TRzHbLAdqFbjNGK0OzdXfMrZUdp0N0OuP6dsA5IHx5flaiCuPV+ztUVrLO HpMDJuhieAzclnUt5j/BpcNcwrU9wpYEI0BtRKtx+aGf3iPUIaKNh98qgBAf i3+t6CcnMpGC5c5QpUoNrD0DBjkhCVvzm3jDDX5zwdk6RAeue2g0lJImPls5 WlN2BOCJF+hjpmwGVTpR5Y548fMJk92r7bi32k5IAHJscjwomAnJjx8TogRM CppkG2PLS/X9XOdcuw44TFGIUekoJmIIq9t5Thyj40tm+S2vLBkkJmMMjuma gXyeJVsoBuu4R8GfmrwvOUbyu7XS0bgv55I53ieZELop19khobl06NJNB0jT OE3JqxFumxys6tErt73TfzFcHg/HODuPRtcHwjvsD1FlOCgKFQVUaNRK3rI8 YCOUNZwwKJ+aPpSHLMnrhH4Z/OGNjwoF8ZoEff+DNbBb9j6UmjKwz9X9l357 6m257TYTzNl+0kSSyzbCAKPjKkDpjEYhQ/xNcmfem1bBI6siOWW3HHwOCoWt gjFih4VgoucZNUcMA8xM4sm2P5i/edSxtAx0b45ZfZhx2hlgaukN+6w4UX+I kCD5B/2e5tNHhxuO6lm9DWgl5UQtTyfHCrpxLrtUMrKnBLvUZKw9/gCymNmr q9gIs2EU+vVRbNHhDUvbZ4tRkfR5tRTmSzg1DjAGJsb0P7yPN+sKw219ePQG tj45O3ZZDOdMjs4uMMMxpH6Q3P118CzSwWEORdK6mGwLJbvp9Dl/e8nycJ3O KG57MeME0KLIqDGE+z3J15fJ58DMpFQwCFyliyJtSI07m8Yj2Ag7w+1XqH65 Vt4iNWuKIRkt9X7yOiYWJ4MRmsf2c8OtrIKXqjq9yPOHW3yhNlQPbe2k0T1V Gl71PAdRYkxe7RGchHYu5gEBvcCPokibapDXahXAWDnebp1btU0EbGbKxDGZ n3UTxozkHfu2B48RKeSZY7a4aFcEB9FvTKgT2hZlC/nExHkQIWP3ffo//gZX RH6rq3KALlqnYI3YJ4lWEtgh0Zlg9yF/gyV2TCfPL+FE1qb3UN9mg24txQVm 2YHG4xiR/PZ17q7wOWNivmgLwUdoQwFQeuOppWuyKPbMioeCjZSIytnRKbr6 HCO7Q/M+qaBi079qM8X6G7RlUtUAbxrH+X5H1TVIvezb0a6cNR8m66Ar7OGd p0sTimiA4J0Mv9UpRJPMGBJuMtnuy1lTfNvUnRGy6dDizVZZaX5k7Wo/9uyR V5h0kdkKoZJNv/7FQV5x3DOil1qYbL3keh1KJ7pRS2FgkQnG5u6ZkD23dZlg rbTRLtQ5lDj4vWql9gbdp9fQtymCdeAW9gA6tPXCLXyMw1n3BNfhSrhLni9/ eUDxEuG7ro2LQ8RoPuia2FvubG2GZT1p6N5wDhWd2uTuVf3zY0xisEJ7hTnh 0H53WNASuIwq8Is6dUWrK28QDZRdKnZnwh19/oMoqcJsVqU5tChyKjQZyopj b224QUN3dcPHhOgqF0JzJrSZtTxYXXwaNrDYJUyN18qLuFjcl7pQCA1bTttA LtteoPnPU9aabfGyc1OOthRPodnY2ZEyb4a9jcJvtr38nHdnEe4Fmmrm3Wy/ bo3kQSr0nrP5etZ8VizzPJjxxczFTKvc7yAygIaz+C6zsQn81qFfDhJfrUPQ 9p5LvMaiqX8hWwf/XqOKr9Z5Ba8mtBcM4u27fldsVgItlP/DB2gDSWtd64WT a5+sJjmoOIEP+JASTheMUEvtdYZvmfvcfMYCDHYKzpZBpITZTwJUPkLEtbjw 817bYXsZsY8L0BWyUXZvaHIoyJgnnPNOzMHbp7eu1sk4lDRitxvkCjHq6jQm w5dshw4WDGcaPlgymfI+R0w5zIPYPfWcwEqs2HYfMxZ6GEIbSD4+oqUmaTZm gyQ4E47k15PBg4QgbSwyihFP8+08B3NQ4L4PuSeHuflIUNOrmwHKNRqELdmS O7w13gtZ62kv1O/lGThHPAjQpl8hrs8AiuTalAOwdkJTQRIpIe2OKnCjHasS ue90WepZXjReAqq5+Xa+mJSuRRfnvgn+v0wGbfovzG/XWF7L+rxVRsJe9gFE pHpIvvjUsRHjY6LCECCfhjz3OicjZsNCUMKgtaEv3iA76aInH2a5dTdK0Dyv m4qQShTKtK+zqkmWm/qNQwBaG2XjQoc6/nyDcz3/h4za04w1SmTYvnh5xyXL DAaqI0gF2Bhdi9B6fQmngVqGQs+DuqM6XXbEVlYoz1sLnLHHTgbeVU5Fj9BM Pfg8M6nEE23jT9GRFi0ZBi6HKhUj86N7xMQBpSamPg4bgRoK8efWipJbnTIo EDfcqY49tTiWis7QRVxHydzokpHxCY3XTvdz/pYwQY1fGynOoR7GEWYjbSyk B8+mmprMTLhdBStaZjkbk13F7Zur+K9WhYjKOBI+TTFA1RkM3JNUtykUOgsh lA+t8+FWbyKJr8ccSjLINqfcL03p9r2S3CT5Ai6KliPjUaBmGLusqSR29k3Q pf3cdMABOr2Ijk5yqJqcApgCT37vkmR+PcnTpFxyO3nfX6/Q9s4X7Vb6AK8V EJ0lxqZbC0s96p83+KBQJVKrSmz2Ql9oFEV1q8nNIeqZpERsRyEi1Qs+KkMs b/o6Em44NiW3pGF2BiE/1hepFrsKsp6cc6OGIqI2GFB0JryN4oIzsPTGYXl2 uXkvXN87XVYlh3KcTMCEHLh45fWQxBLNnq8z+jabY8Oby+uoImVLJZxMB/Q7 H1F8dpiLIbjAeK3HcOmynRSS3vtLjKtnKHGafnQeCfPoeP3f0MQsu02FRrdt 48TXThgGcJdOuINpYqCzMwS+BKolX5IPUk90JJ5g+GfYY/Y1R+tjRqgRXpVX WD3mhVPBVR+ei85OQfti4tyuwdLkFFA/s2E4anNBW4uXCwsdBNFGGQMAsOTN CK+xt3DTjmsNtQxtKgm7Sou6m7/Hj7fkizXZxtHdevh1+0wS6jrtz6BAbszU Yt/w+vUzZE1zY6GxDEiA1pzHLPzmOditqGazTm5UFGUwFE2j9fWf3h75emaI kuvAaKM8zp7S4H3Qy31Hjh+908a+MxvcDmXu4iHAj0fbN4PHXik1G8K3EiKF XMDieFFQ6aaqdW8uhtIdCvdC38Py7hq+j1C19t7juFonF6SrLLeNDoqJZWLD SZkBSmPINKp2U9O7+yD2/NbG05mfwTgklXKw8kZl1GioL07dGOLgnRtN3w/n 8hxevyKsfBOhRni79E7tEY9oDZuSGaVP0qVgwAlCO4ZzNUcCtFA5A2AWlk2l Eu3sAaqLOLNObcfJf/3OcFCCwKM/1Dk998ucYL3e3Kx4WKD6vjEhp04mxQa+ 8tJ12wXtGYq/XkWos7UtUgaUBi839ALo5TjeaJg8o7/n5s5T8o3w1xibqul/ QGWEMthfjl3BHa9Yb4sL1eZs9Aeqa43GiWMsBqOde/giw0mohtfJ5YDEz5zk BYa4M0qpoL1xUfjmoTMcaOuXSUVzXfR9q0OxTN+qjoy20J1ontfKtvKSA0pQ /DUXK+kBLKQxClnn0pdVrkkPWjUUBBh5gF51gZjV0RVnu1Ou10NHJK7sEtOu P+DMOwrd0MgSwJCKUk8vvlTnkxl2FafHwOUJ5247ktrXW7ypGf6xqPfztvjF HqUKPxJeljstRLTpUnnHa/XvRdRR1VHIZrZJQS/fPyIxap1FNaU68AqY12IP xxNg7LvX2/sbtD26uowTRn8A9rBZesPCpnARCGR2nx3RJuMMJMWkXL/ePb1H nxxLesgBO6VQRNPtJbhU7aBN5TM/sdoReyQdJo+Wuj36+tcJuq/UAUcJ0DCK BzpWizJwt4mx+6I846FSAa1Q2uRNZ/XycA6lrb7UtFVI10nFEkbsmPrf3vYU F+97IduvpVk+8Ks/4KvixrZ4aKH7ztvX2SnIYjZe0KOMYAIs0x5j5+PVqBBI UI2Zw+UwYVVetwheMrUwQLzLyO/fomGswVSd7sN+/0T4r8gkzaEBGfZ0Rsov 2nEGHXij67VrMShX+5Iu3zEG+JvgCyJ0cHScQotNrgcfSHKYZ2Te8GTg2NWG bBohgz6Fud8IvX17eLRKtvd/VwDF3xO/ZNCvW01l/RSi1pZKbjpDHtFUyNlq MDVQiSVS3O8+8/EOvid6Fhz0FFNKyrOHPkJEbZTNjj3smPYbPZCCdtF3+Vxv V/hJ4X9CCbQx+snrOLxEFgm09U3RJRyxgpygqGpd4lKEcvH31cLRZyZZxqNX kglmbCAoGNQduTdaaT1tReehfpxC+VDVktNYQO3KJU3kRGMLDYACmka0iQiC PClOpkIuyggxrOQjBx+rHg7/2KRC1mnwHfcrCQM/Ix0oJrp2L7ubs6RUQ4Hq o0Gnt6C2dY/Yi4j4UmvFhEUygY5UPo2aTnSE75fp2wdoTjKz79YOakp0jnTL glN6rYlzrPOUrU5X4AOYcktCogfi5cUuW2rKAp89PVzw3NxfigjaOQd5rKeH SxZXFKWn7wypHpIqqHKTgBctnH9t+i448mHwxZxvVej0N50rCsqz6VXqO7F+ 3qHNPeFKOW/yBPdDzMJJEN2nhM+sBX9J/BL8SlHEsoPXfh581pkgYqehc00x FC8Mya5OizYRxWNGswCbHbIGIyqatvXbYdB6AR+Hqyg9GR2f0SjGsWHPyEKp 6pQKEBwdZLKByu5A8+rRppxZK2IVJvcFN7JyFjkTDVG1ZFBfLzz2+e7f70jA rwRoOuuATMacmXMLCSqVJoPGRG4PYGSi8BaHapNRpqqKjZOQD/J008xiQRIu YKWUw/h56WOlIdPvlmSqyWE7CK6fcK5J75MAUEXB6/biWmHUFEVeLFGSB/Z/ ppm+8fucf58sPCf+F1tXfcRUUaTjCjuwIvxMnMMoO5OT+fwcBQQdUcvM5/QG fuGKWvNanAEB1s9yutHq49OctUHXwzl1Qwp2TPo0AYfUf/iw4u3FhBKAvrkh oP6g3HrQum78hhjdHQD+gtaoeMnK2ri/gPuZ/Rcg0TBX7Nhdm0sw2WRPTWUK b39HcK1xq4kuXC06wvMnwMhQTzHh/ybtbGblj55ZkUKeYpV1Jc+2G/t9zDTD GXWfC/b1GpN35GxEbEKg7HotygqalND5+s0usznm/4j/zfm7zjHSDi8Bypxs cKV3HfI9kXiMManITbG7IyICPaEDKorcDjq6A+Cvq4EmKntmX9w4vscb7FNl 6LwFdzHnyXitW5/hIQrp1Sfm6Az3nkY1v+/YXmhpvhUDt1aL0hh2O+o2OqDb u9sJmvq6TU7VPGcTNGploo1HcijmJ05hXlIMtXykuTYY3pgKjJSXvFeInInk OmFKj4LuQKRdCdOtmeEM1z0fGPWpFAcMZO3kjC+BJZXy/gvBA22fFDQi6FyX mBMcUf2GXsEzVnlmE2DF2rx91ohGew4wbmeR+/A3wH1POUABf0aMhZWPbgdI mCrfryutrjxFeM7uM/wFieqOYsbcCqXSYGC49J0BAg/csOOIdAWoC1My1lVC pM3k8B66wvn10uFKRq6pcUUVKSB4IW2sRhRJZrXRjW4K0Bf7GPs38fUJ/OYz demI0IdPgPJ8EKcrIi0sZ8XecpDjFMg4CIPOAK+b/qbx5THlwrTbmImqBGAk e65dFVhWzc9OZUZHkF0kSMGD84pm1Kk33Xz+xCuYwjb8QQG2qZLKujPabE4C oo//Tn+2GV6ZMrnp80UAp0qUWQo/q53gKCvCLB2wES1xLIYFiI/F3iC1xqYQ d0IV/ybMSSPvOcGFOOUcTREcCkOXHbMvvmqQVqQbrRfAY/hHmzSxw1b309hU h4pDD2CmjFax4sc32iuPOQGihsRYXcIXOoTBy6CLbHPFPfC2p6RCsT1cXy4p d+Ovtmv3tcrENfTnxuk+kH87hZ+IZSAlgEtolKyPGxqXbV4ZQY84t2x2prtJ iq9fyMgna92oUThqY5R4E9toJkaChgrH2mVZ8betx5gyCeA1N/1NNxrxOzjY npTnOSHNYoqOdB1s92D8cVNJwdn2GWNiSo/09qRMrJzJDjOTB+2MJvZp0N5b +LSUpCvY9vXNYUTU3Ouiu3g8rHRThq8ESkAX9v5cahNqOSV0rBFpNN3ewjRe 8EJL0fQFHyNrd3CL4Sgv9AeXH1cW6hiFEBnAA1xiKSiR9rx2n/yhdXZ8G93l ErMZNwm3Xkd9NpRAvY0bmS+xdWUgLytVBz3/5XiF7WFIwULdz2FHeHR/jqGD zI7BojmPl7UnnRV/yoXXNBBbu6Ha6SliOl5/Qfd0leDDqpxiPdIvvMuWeAkx XqDogpIt94/oR0AckAIWs+zSDvv96RweLxJXIae8wh2ols0VRZ9NaGkrA9N+ DvdSIAC5xl+xcsX5ePNG1617sCj9QjbQ+JCkn3W+dfLqtm9cab23bf56QGJb JfACWBRRu2xkl+au8SaAdXeMhmPDclXYSu6QXG8/vTE1LotpzhJyvkOJFxej XldG2F1Pn1/OVdgZBN6c4c6U8ILC7OQDR6obLiXz351jG0bZ3J2OsJEGDPC+ ad2yWRNculR6+ZUgBtC+5Er1wwnEJZeN9G7r+9Et5KWEexcdVZcM9PRXQ0ff 8HS3ccohG2IByO42kW0Vg2aEtj5Ka/sySG3F6Y22xW5lTY9BNSC8JJ/kaV/T j2Hu6HUxrjxyr+WiQd/Mbgd09W28YisjZIRMCq43Yh77z3fbCIO4Rj7BZgAG yep+FsSFXwx91iKCKatwa6fhu1nJWN7x4Zrpm6Wv7ScymVH53lrP3J84NM8n V4aLCRfkum/BKXqbepXYhDX1TfW2PtM2mHI3dsYQZyGXRedmtYgX1QQYn4TR CamPHF24IiskDP6xoMIlfpMrcB+dLTiHXhMOGk74FnMYm12KLzgYl5i67ojT jNOTQzhBp7u7D7YEo1ErWYM73ODLg0lZPWLnjPFTlAcrj4jJPNvpKYXoVZcR dPkRdZlEbdke87g1WJkRNEpuHNpq/DrByYzS+7igb2a7GCJKQ5O8WJTHrLHY KhxJiod/MLhFRyJygE6SK5ZXm1fqDXyn8KxyD7rDsjq2euQ95PP8FVBz8mc7 jgouAIJ3+j8H0DnuXldYVwPW7pgvqFNBFbQDvbnNqlh6boqdRUQKz00wpXAE dtgmXRbVJrQ47MgiTq8wYmwGodt2DpXpE5qRkEEP8XCRTRmcZuC3v7pfSAZY SrMuYFH8uD7ek8s1Zc3jEh1aJUd4gUONfSOrdKw2FDcU8UlfLxwAv9pyKgMS DVqV5MEhHr/UhoZQXFWG8sU2L1phrhmmWLUKxO+98HiFUkXywXncImckNPaM 6kaTNDpc0e2sEgco2aJMt3uMfy7SIhXerGfxc/vNOx7rnMVNhip6x23vPMj1 mTmMFtNE69Pye1nc/0U+PKlrAe8W9En3gwKEzhdpncs0RnwwuSKXGB6BGnF3 noPnQWNQc3z5QAdcyoa/yCN806Up/CHO5gyAr6r3MAD/J2d0IHaiHfCmujML a7g/gsxBIJw7od0j2qCoKY/bmWTgso45yhhI9PGuwPygH5wO0FHbJX2PI+TX dwzbIKsDeGq0qwqBWNgRTziJ0uFCsczcasIGzSPzBJekVa0R0CHI7UfnyHzh zGw64jL1E6VDKzGhIGTFetH/meHPT8ixLn1o1gRdhzHcaWLEkOa/eImunh57 XOfTG2jvZ9hLi/ZMuME8iy3GIDQJ0dLDWrag689UNszLNGV0Gu/z+d+fw8Ka pc3RTImFa1GSH3R8stHhnaHMHRk599DJcD8B2jSN7+3nBxo+OgWyOmO4bXK8 gLBlkjRmC4Yvk+a/X7K3ZA8LrU7Qbkb/Qs27e0/ROTpOiQZaV4WGIuI9JnIv g4lUANaFQhsR1R778u+ltUZVC4+UgsbtYnEHELbh4q0LZ4GT1Ib24fixm5CD 66P6k9OcuCYw4DoUKYBWhm/bWfweM2ngUoNGYOoOXO9frcuMjxSSxfYzcVHS kYl+BSEXyh4zl91HPtHi2k6bHVfZc885gcag92VWSQ3OgMR5oClegdQPajSf 0qOXZYFhnX3Nt82BvXyncf+cU9nBHsO/+298j2VK3xy3/bxj01HtlYJOeUJq ev+CU+1iV+9zj4ifK6x84WK7uEDnsGqw5oODtsu4SKI0x3wOrbWaEam6O48D mmwnEG7GKm95sZTfGF7CdTc5bp6zXmudMGYcOzICfPeWWDsNtCKDxtL1P7i3 RwCRbP4HH8pkNUC8Aez7r74I1MJB0Hb9/v6vPgAAmsr4P0E9naJTelCSLTMY Zz5g1lwg0Z9ZLR8YCVb9feKXc2uKtpatQK2f0A+fgGASCCGBB5c5PtNyYnuD fYv8b2gt8Y8ImQVnJ2jaTJO6/EylsykIXLqO4MTaxQ7lX3yfoFdA55PcGlEc CEqPLhXaDAsuyB7lJkrajgu2OaV143m1IwlM2qI1FmCsTmd//+lSwbgU8ig1 h7ZQGcHIxHWPiFAk/3vVwcZeNOXNmY2GNsbwY4YJzrbjasr9sXuZmwQOgcfM aHapEt/vKMau7gg48mFC938n7Ai2nAPOo4KuhLmRD7Vv6KGklW76ax3SoT8w 4ogsCXzQZl0yy4Ypg4bkHdc9OnRdQuXlmILPFIyt/TyCT0izLdFNQ6hSmE5V ZUOOpVxnrglFZYAK9U784LPXRQG58kNNsJOHu2XI2rdTm5FPTcfyZT0xeMcZ 3G1GW5xiBEXE11fKhmZjpQjHBHUJXEtOyoh0w6HGit5wxfh4YOwK12qAIjRD YOFxb85yCLlu8nXGdHevCXF4KMnP6uIHO2xWw4OFWr39y4P3lrptwVvBjw+u kLE4iB3WxPoVDvl2ejRaMqpQVOXD/HllQyGEbno7A5gdrpKcuxxM0c8XrnIm VZTpSg1V/nJ5SKPhd9zrZ6o2QUFBVCn47cpue3jtYH9RbM0GGnzVOAN/X3EE UXkjhxjg9vapcJakll7kGRilHP28+oTA36Y+9puKu1uEbnSgivv5CY3hs0Sh 6mxfsCLyz0oepxOwLgXpPn3BxaSpYCAkNOcznjAJpPzGPSV4F+2SOYOHFla1 5A2/1ffhVWfGwwcIBneUdWXL0N4ki2FyQVVrwzG5bzMb/LDDegkqRQLI4d6H ewreZyddRQx8cM6yu7QjLasnkNpB3dGoee188Pen1mS65IRy6yevfCReQ8Qb SYKLMZZwzOO9kfaH/xfnUblIpqWzcywgXifnEkuK7xSCo316X5i17lOQI46f SAODHQw3T4MzNMk+YUxTRsNZkfggOppGY5hguvSFA8sfKFM5etuaKX1e2xSp bwyiQ0wjNKLRfJLlplHFylOvf0UtUWy4PPEYFdl4yNtXbUyuJkka4KCbShSU SNAanHloP5CXgTZE0DPmphHI+yuKDapWJitjJpUqvC1Ytu88pexSQX7jOaUJ E2pjzcf5ugUwaCs6hos+T5gtY3odosB2qluBIXs8dFDuf+0fN1EXVfnWXCXb KSWTyViOHc+WyKZomUJk/IXOQJYsSGJu1c+Le+/CjGiofVFK3k4RXjVlD47M 7nfiAkc9+7VZhp7VQf1wNnnChE0JSaU4z9gunDoMC6m5QpOcVtbLziwGxe7a qtJpVO3Jk0mmDhDFpO8J3UANw3zbDkXMLPPRsATRDne3rqrJwm0F7XV/+wRv OjWkLNAEB7gSTCJZUINaYtx80pLV4SnUGxEpve7nxGIWG/nSPCa8RPwROhGt 0mbP6mLuNAQCzPZWWDCACKsvTnxU2lTnAW5ndDgPRsABuw5n6zdWdsuCJd76 hVkoB3gCmuaIl+8J3kDNr0HnYwvgqpAKhLIlrncDMk34BSbTCrcvNqhJQSea +kKV20+otZqsFjQqTSZl9BCfu2OcEZNz/OyOMbCChjsfvnjVovafX+ZYDEDW dtV5PWGCpLBjEtvV1kxWdacBK8c054ZH+PepM1FR/bhGclPoGzeYvt0ai0oa yI/4zUoS0OrnR3QND0R46Qa9aLMXdwk7ibzDLinsotJIQwMM2iphJz8ROn5a wko5iHRa1VnYiib82jGnxh0i2DINgHYJyphpjq4u7o2PLHUItdxo0RNlLZUs vAwl7JB5HuyzSE3IaGBWom+Eve37i3XZVPerR8scgOme9FnbdahoSoxe5qwW DO5tDRwCH3U3furlRMeicd7MBeGSjVapOIJnOgJG+HH5i5a5SuRFW7QphHup v/84+YzoVlO9a2+xpbVRqmW91HGlZgi2fdkjbOiI2qkQ+1SJ64esS+ViIRJQ CQNgddM5zFJJi4BGmfRSPBxbdxS4HSb0sO+vEj6/bMyeDAwMmkYBUFXydkkE uNmNi3A3pMYUJ++88q3x1sao6i75wrBissto0KwqWKGaZXlzEE1gbDs5oIxO ONzkUCC34z3zYqzXVWcOxx79lLPpzDnE4ANVjMS3FVh2rNrsc3Eop4s/ubSX +THW+ur0YgoF3GxB+xG6dt542u20aqrvAcV2/cE24MP9V1JlTMmOhEJWfHJ+ EJJJ4ZzRKZpn2KdX/er398jZVy8oYMG/+IB6tEOLCvSwGZQhCFri+Y4znpO1 jXhnECCJ01CLB/NPo0q/YHLofKJIsrsxcF1AieF5M2zm0DW401mxPCJ5xUAf eG/LcPllTGIpgfAT5ikZl2eDWxFiyji98LYY5XW3dTMWdTGuEKZ66cKAhUwF NTW6DABoz35btOk1N7i/k7cO28eFfgagbch99/Xvt+TKKHTl52aNS/RAw5yF VrNynjWeeRUNJuaovWSfyyuX4vxvboPdoeFHzzRi7NxZ9ouFJBavxHVH2hez rcRi6NxycVPrmfJjfBXd7WLimQs+y1Zx4gFGXyZa9fp4s1xr8M1gyIpvlbxf cHx2mV2g/kpoFYSJ6YZHpAhrqKYRH4Ly7dtN/dKxMmx2iMWXtxkpTH84wDQR OaPw0sVvTfZOhvuGLflESLHBl9B5OKgBTc3779t9foAGypJsKpfULHzTxEt7 REw+YFM+bKgu6HIPC/NnKCqWED5MQJObFKhwlIg6xHh07dlicnCLajHH1uSm 9+UhJecaPqnAnC+Rae5RrjNGoxAlP9YVQv4I73V7jPf3fp/PCS6xavEPNzPG 4foozvx2DDBDYd2TcZp8MsjFlnx56Moh939buHXpGzYomLGBUUjZTl0UUuU4 Y6YBSUc9qcbcR2e6LMfrE63L741iTAUFeYLLjQStdb68QQJIHBquQusL/7by 818oewx8wIF3VN9h0EkSMHOWQk87+awuB27A1R+vrYMVja5fPnaD1D/hcVVi R8PniOHKKgq9UsdlAtXpTF45Np7QGItlfdpZYNzd+ehdTYhGMpuD4xw7ZDbx odE/ml4SMiW6voo12k44tEzvPvnLk4mGzoQB6aUJXbglBpNoXQQliK/e9dC9 5tyseS4nlO5hH9+QWVc3G5iXnXW2XKw9xmSyyXGLlzQUSJ7h+PrSonQA5gcK OhorDe+nqIxVY95FAh26LtFiK0qqHvzEfQx0eupS8ban9AFsNSYklG4PhMRz 2Gv1hzbe0bRZWFdX0OVTaqO1s32NGw6TEc20j5Czrlg4ao2RBKaprztEilxF tYg3aSBc0hMaKHfZ5h2VfpkcsPCbgbQ9N2EKXe62c5/nONWiBqlQlw2gYa// jYyZbbIsrcX2McSyMoCL33pbxkQCmf/2wcRiaLUyodGmK0S23CI8YtEMfqky 67ktFow74V+4TEvo3YmfPpmtrRYImAJBpqwaR7NzKoAMeeQYQx+YDKXrScQo 2gY91cOOaPH5IgbDNFRZ+ym4nIUVR8c7BxC0/pchtplHHjal/mT46T1az1C7 Q2GzMzk4I7zgDnKA1q9axQ4NTZbcHH6B3dsU6cvE3DGLbCklXa/bOvbyv/6/ /+f/3bSYyXCum4zDaK5UaoLy1zefvaG/7eDjhGs5yTErSZPexhK2u2Fh7Gun 9nJufuLCo6FzahPgg1KLVlXSEIiDp7QEWO0LPYlHtkWvVtc2z9oQs1+SSxyI +4TG4ya5TtMjIRkolVxCOTbUM4hFnN5x773/8IsZDFu8FfhV8nvbYFyKPvY5 23pCNkDPhOY3KKV3nH3O75P3vjKPSMpo7Ha0ktsH2fS0OJ6xaL+htWzrcv2t Bhff0ZbJEgVcOagAFS+LTfB4E6nzkEQjWz0DLmkh9Ib50tVUQWdsfJVKXrpZ x/l6Y2EE+8Pds3ONvl5/NiOmiN6zcE/4vg+VaFGYnWZ9WPfA1reYNSWuQQRb t18AXjLhwsMZRqo/HFcGtv5heZWDT4xtaLvi39VlMUMT6VRogfH3j2RirA+F Bsg1ATjVndusf3or0tYoF8aaZlG7/8q+uKVudDoJUCUSD+RhtKgEr9saO3R6 g92qqTef10VespXpYClD4dXKFOO1cfeY+Ve+qCG27Iahm0CjvlgtllwC8+Xz OfpEBSZwZ0EPD7WC+PIO6HVmUOgq/9KhNtEgiIEHSX0Ee3OJE5yKLuDgbMEf BwRFuceCOx2fzgCCot3XDkePTcqTmlREK8Xuo399B1QZVd8YNBFmylmL3O6t 39SOhq+7ED7gRd20dtvYwz54lXXFPtYmqTgbnMgMneEA5pJd1g7XWXswNcWg cjPJ8dCGvcIBVyxyySsFl50uPJABbndfizCCFRpT6OAmfGVNu6mDYOZZu5BI xOA834/4CxD9x3akaANOoeQ1C0ahh1CrC4/U8epKC2jcYa328sEVBx5BRcYN 6DOlWSHe10z9jbk4P6+nAtAmdo8u2RGGXIdIb1UMbIPSPc8b21DdUrD/vujb e52S5kc5qyl4p0jHO0aEgj+bRvsJMrJD5lboGXh9nZikG3EPeSZh6MJBFPVJ ImcyxvnMbzGDG5uDRYUKdedaJfnuBr0KmR2vxsmZz5GwJYnHrfTbN95XaoRu m7Yh4uQpQEueWk95f+tNyauil66aQx6MS2PWMeJAPyNoHjwMFDdOKOCdh71i xTj5gdI2PyFNkwfAM8HXkgY1Ns103SU5leH2jmvIdtbko8WszJIJV20tH+CV J6pS/7825errDKlvVfeOVt2T19HymblkgNxcCetE23jZ12LD/la2q6g/uUAu FhWywS8CB5UmsRi5f0PqMrd+ezckZ/pw5+nFGF2bdkEB9uhK7aUlpZD0O39s UBe5EEBmqzPVenlcYTh+eZ9TMfOg60l41RN8g8YIQ5y091qPzl0PFj6UvHi6 0tH4w1MIRlUMHO3wt5+1kiiyedP37gHIbtPL4IIJ/RNweeKWn2OjVQAImayz sXMPSGwW44t57AjhjQwed0ciFz8xO1bLPGYzWheMqFkTKULH2C1vuLC7YYe3 L1oVWul29DyTlWlCxmCmGbpwjprLMXW9mxTy1LochZPPFJStGh6jNaAZaL+t 3PBYsRQYNqcZ7IPzDrvt7h6+9UCnznOQpIvQuItp1J0hLhTX+YvnBuej7e+y 4BVA7cOpXVJR6NQZdezGBDffZWO7XpEspBODNnHoBkMba21bsSO/RffkEaoc TanGZ4YfWBfkuM8zZlueWJZJm3ctTyApeLR9Pt7pQ3TGUzADddbiYCwTW4MR OlNNLuUci1FNtvVq5077+kCSWDUYMWY2o7SZk+fpByg+cl6sAEho48ADA9Ke 0BNN9zN0Xs7z4mxFz3XCbloX+Dh2rAepIfLuagvXw84U6uohoICcHZOAJ1qX lX574iASAXSZabG94G7iR/DQ1Cy8905o7jXSu2m0g0PZYQiOewQLrPnKrKNY F2x7zL6OgueFhSknU0pC5Sx0E6LxrDojJcDFWLxaxGMszhowioO838UbeGd2 li32t0GF5mb4CsMaqzs5Rq3QKE+LWXepfRCKA05Zyo/YspPWBwMMNLSYvgHR DlPqDxtV7VLqMVXMwz/shFGZANELRitV6TirfpPTlDHqtH9uH/530GUoSZ8X vXBSjkGx24GBNXHdGh03w7LdSreKyf12nXIwJj3PuvSUpG2Hy9jOYaWK7asI c3A4wKM7M/2lBQE2hIZihyPwlGy2tMR5aM8w2Ze6Yf1Dog68CR6ofQQIArg7 ZQCaub++uH7XgLZqaVtAOQXchkres62WlAxpGqN45sSQPBO6d+N8P/fw/DF7 zYRAQUdojJJRdNXCkLysLtaBSXV3Mp/Xztg7+PZiaMaO/h7p2y8MlCTkMXgQ FOSE5MdGaKOe0f2sKLbOVL0J+/kPFKW6/7AY5xfhulFssSnt4na+xI7Ahro6 6HYuwmFOfetTERKvVgQezhO84LI2GvcyLoEemSkoZBbJ5gC7HQrszScmKBH2 gLMuT1alDu1cjKn2BVkdHxSn4W2iGaZeR5C/h/XtTafcMqYyefLZ+iTX4R2N x8JzGA6eXTUIGl6Q1TsZKdc3RivNgA48zqSg7eeNEdtlSsXNpSIB2mzixxCv aY3Tn36sLlLQzRNCK4S5zon4xbPaK/rb5zKcHRmVuMMphb9rsiYWa3yZoPs3 wbdTdUAW8yZV1OPx38OLzNwdnyxFuU0y/z2813chZia9TDi9NNASlL+/Pd8V uQNwgjQ9AUru2eiNFQwuyazr88k+niOKK8kj/5/gbO7b6AqUzYubsPQnq495 RPMk6Ce5rrnTxg8O0OVDQObnOqGviNG9Lfz9k7fakoFfhoM7oazPxtEHHw2n Kl/EPjM2x6090WGT8pThrFCdDK7mdLaWhDsdOYoqgfUlgWBoUUXKxMHhnjzr x5nFbDd+MxjsgT3SCmUdRxOCleyAbNgw1Yivkyio1AQdpdP92vD8YVUIRBia McnRq8Vkq9lQ9GLJ8ddF36k5gklmopliStq1jPZObjMaPG/PAiBbALg+mUEj HdOHX5t1VS9D61DNMKxepXleLayATr8AtVtGE4gJY39Cjp1bTGqFUbp5DJH/ 1xEDgwcXBUmHJf1uU9R0Xu2RSJTR2HjMfURJfM6o4nA4TmMvFCfTDsPYinC1 NfVyMOHOBU6I+YfJQ8C4hj+DbkXrvhXwDPp4+J0ad3NqQ0lL3tQ4XGFM2Tii S9l+fM03XPo1x2frRyhx93n/n89mYc5xoZpCDqIlDC5yXYx+dmrgLMOLafqG fv7kVKxo1lKhoIeA81vqoUA1lAMijWcByR3yyPbuRWMIhJE73lrP0F4z+3WD JpHRq0j4/QyUt9euDQJc1yuaLYbg+1JOhZ1nvr3TUH6JWyA8LLxjpL2yxpck MYjSVWsYBbWYqe0z0r2dbI4ht7yOny6xb6grccp+tnFPI1dZx0XaVYnOx1xl xqIRaDZNM/lNbT41zkeCL7NCUpp2iZPTycc2qgk1MpJg80i029ex0OaaZe7h OiQbCUwLOAKyWSk+PyWDSdFNHI4ZxRGyZ/O2JO97Nr+8YnNIpIDRpYgiotDZ qQzC9P45WF9ptpNKLoT+aPrpJPpiILfaVHkNGB8OstvOUInNoVQefEqJTdHl E8D2mWZyyHjCv1Xedr/AR5lpX4FJVA4KoaIcog5CEz1ztLdEH9bRuG+yqPwe +/T2zJjyi2fjfzhJcIcrO9hliDEOcCQZgh8IgAseGY+6aR54aOpvcrL1LReN dZOGJsl3Zzui7iYFx6ZnY0o8D2XAWxt2IOa3y4btNIuRMxRbSSO23WDwOK3l A+H83v2bIqbJOp92HATPL7MrKcTrZBKQOzTLUE1Gmo7dmS+NspN6js3Ke9dn 69TnyLyyAzZKGrC9ZyZxFAqJvum5dJLHbYoMsg5zKHF6Ha3jU0jakr4uBO2n pH1xgxYzcKXqkRWXjqUutZMB4Zy6HPuzH3guVycpRJWgcXZltXrU8niWlOfc sNgafGRpC7D57m5ctNHwh0YbRI3EGl6lSUXRjY9vnqlZMyP2LUNGfOq62/8d WnboJj8ebf/5UyP+AlyvFUkpIsBC0pTG7FK10xIRJ536CBlF1z8IKNgg0KUJ cF6xppfAj2iwlYrF83oUxjjrFr2UtA0tw8BD0biHFkMz6hFOglWwHU6iuAlI zmVKo56x1e419kufFJhoTw/eFnNiVpUBi1r8FbbRT0ew7azKrA6PZhlaBV9I sjs8gr/P8AFb2s+htc6UApyc4bWATJLS2dMfoK+HXSsGwHcLF2r/Fv48iaos L1cjeKvCbLtDjHPGBicJsAlxyBjsndv+DQ8XXkf6cCYCzPHaZWKP8w+mcNkU h+sR6z1yhGchC1SutIeKY2H2rLQoQJVqghrnesVYXG9aHyPF8blb3ZaxyY5y 7PxMp+IceXjFuMfAr40XtA4KHlzHy4bJROwWfT9E9OEJ4JumbSecBzSFy37k WGxN4Rmw1D75xjxl1C65KIGSbjnZb2ZAJ1ob6kNsAFzgPMVmOd5qHb/zhfL8 5AttYwPWxlIsfumfcmjrHTT1ibxvZHRNAScSg+Nhqb9DAjctJLG/6filFvid DN/3d2gc6SHxbh5YhjICaeIH0ZgmOqYW6buLMupRQlrMkpgtsyGu8V3UZpIJ EzysjoPLDj2szzjKA0IOqT9NRlMCKABx6KKhEhAr+85OfDS3sUCYnf7DxyLh FIZW9y/WlrxG5liSZ0tgM1RYBK7+PG+BH5xOLFS3aVo137Y54P5+QOlYBeEN ur8CVgpZoPOIjvA1S0rmidPZ68498f4S4ZOrWeIBjhC8ViO2+eL0B+psYIw/ mW5ADKyQiu9McSjtTIEug40zQiJnIcD/NjkbNScwdwZYo55MfVfJVVffc7J5 uMUJK7V7Duh+s4z6ZGZP7lYQ+C5oBZHtbKiZdoK23fjiOiB0IFcvyD2r89JS xtQx9AuSTsdoDGH/Rl5dgnaUZs9nXoW6z8dF1xRyKGBJVnFKLHxvIlvpjxKD AYpPGFvmWnSUu8esiqv4ln4fzeQlC4jODNAYxVdfM8qVUfFiy4hp3tA24H/b NOL7vEUKD2s/rc+Tw/8/4lzDYVpOgbPn+rfYry5uhra+yZTZnIHblPj+3lsM qQsYsi5euGKuH44N//Ch375rGI50jTO+P/l7/nLQcNZaAbgkMIqwuCEdb9qq Cmd/cxuIWw5KnNKYp5F3rNlOr7wJDTE9nt7Jl+GhRF3uwDSeSqzdmMQBY3ti cs2ox9eTGD3VnqIBMc69tRnbE4iDFJOLNe7oTnG9c5Ema3PzIB/u3L/wW7DU /xANOtGqmK1thXO8w07rloetT+fODOUcam0NHFwAlO+xp5MYBiIIc0sI8mZt 1GWws1Utmtw6gF0dlfffm2xNHWHgUopoTmBH9XzSxDKEqEbVqVvkA+A3p4VJ IEkmz5yKofLsM+j8mlTSHT21mE8XkirsrSNtkmeVGbrGNqDDVv0dc9LUqGA2 r4em1/fml23v4Ro6yFWuNb/uT6+fr4IpPnL0ZDi4jn2ORvSd3I0CHeKKb4rd biDSzyuAek+ZX/Apog1djKOyXyHMfv4MVZ5f1nZTMOQI4UK7vz/Ms69tTIoq BwATTMqqXtqb6Nlnc5FFHE0Thk99QuuTTfj2IWr1PFhf8BNt3DC4CXcEnXMr vVCro+Ynoc/nYJOInCePXiTdScT7R0IJan2CA9qgxeIJvqeB2mFMDMwudxvO m7uoY+2CFkyeY9sj57IOOmenrNlhiN3WYq3JGuM0TOkeOuXuMSjt6DIc41jh 9KKW+k9nONwuzI1BSV8wuzq/Q+MWVZkhVEz3M58bFiEG93cBjrzIY017bngj bm2N2arg73ogjT9Hl7ibTZ6lyCbzAPkjI1jnAXwKicjVy02+J/M1swO81WHu f0go84Zv8K2tj0TFF210k4oxy53x8GvupMlvSDOm1WC+vybT8kRMc2grhsd0 v7FRCqjpy0jWtOg2C/TlLOCubvv+NPolTzjDGdsUydloSWm20xrDNvBLh4KP lO8/vDY8PSbl6WYLOhDoL6MLUf59i1sLAKvcIWho1yIFr9//hc/b0DwChcpq TEUdXmqKesIAHyqd+pcCuicoxIkBNOau9cjfH9mWb4VlihmM0dQ0sI2RokQ+ IhRKuiTsZkX/CtAxz8XvJMDePEF3o0momMHFW9I+S0/a0fYbHQxjrB8FDPB3 C5VLp4al4O+hfbzOC2OHhsNka+Gxkcky9KGJIgcD9YaJy7obrIUzB9dkRnO1 1gb56zVDV0/GY86gAaJNJc5DEsCJjaUrfAlCJDmCZTRntjlbQGoHItwZHNxs nzsGFBT5JUHiuAAp7wqL8li3KwPNLPxRvUPluvybQvG8oEghGpQaqihnJa43 WnMgHT0XdMrLWFO9a2R0ebi1djwLrv/CM/LsOYSQqN3iws5dRUZhx5SPcYRL uR5kpzWmVacm4eQX5Jw/BJ84kTJFD18g9ENU0iklwfIRFJxJJt7qM48OssPU Agyn5wFKLuFF4aQPwO0S2vUfHDLdkqk34ghC2kmEDckVQ1thKnJ5nZYR/VZ5 mi2a2Zco8B1r1x2a5yjtyEF3CIijuQDaVDtMttAU8Cg02siupJoKspedCQPj 7UgRPCwjeudZb35MsnRd5T0O4q0ug/j2i5UuM4siZHoriF9X3UUYDaDQpPYQ 5zA4vYMTQ7l9cQ6nM3AhMK3sgDh9hjw2eDIgk6fpdM5r3DwtsL3W5+rO2qDq FA5ojyflcpLc8YQonpnJhaFt9C13+ZLrlrjtPHjwCXoHqGJrk9SEY/8Erbc0 FRGtyxvdb9+wbfG3svhyVNJzJIgQxXFyaY2lcya4xBKcoFAAXrsOS9N+m0t2 wWi0CT26OD80ruxoO1/blwmpHj9aaO9mn0WuD2hTfqu5U9kijS6D1r2K0/2g 8Nuz6HNtmqsDfKHwvak4Jtoy7Xvt9xrme8J9y4rkJ232MsN/PqzJlOUXcRmu rMppBA0L11xBmnE4poF8gCnAv69NE/UcZpPvzpc+Y5s3FwBFAJqXx/87mgYC ivsNPfPeCbrZ1r8+wtFw1Qh1FicHDze0/AlKwhxMVyNNRt8jhI1PUaMbY2pt VzZw+M4aTV+uV3iaoeOTk607M1/HLKv7RjE8dm7K8DPr/iLg9Qy6mEjuuYRW LAmD3Jz0yGKJht9Pas0jZOR+OL3TvOyr5jtvBt47Vfk6i4ZeKohxSB0fk4QN Cz+xY7xqHEJYKFe1p/LjabSF1skGpspBF5WdF3/3Mvt7iYaheRH7czKNRhDo LWh6B/X+w2k3/ydbj6AQpgAoVNQid0y1ofhnxtcak/WqpkHtZhZ9H2Jjl+LT XBNTHHWvF60RQ2LfmLygIH4bcYK2JjWzzbc0Mx9LRAo7GPBbAnRGc8LZq5bM 8ACFcDPHY3rjXRPj62/jfB1t7ud0L6c0YfOxr05LTX0Zp5Z85yHG7/Zq+A3F 6XBKPqz1zPMKLl2NrN9C8xvj8nXiKVn6nyww20wtBWHZmtQRY4jEjUUHJDC6 2Jv1jEqTx1ROIUHb6RexTEeZ9YBmLLRJ9h4lGZj/2lkISbs2aKsY/2XEGlFH gOBKGdU3BnlNrtjvrDY3Bk34obVx7DSQsMo+a2Dz2+9uVVZAtgMif1y21KsP J6FIQI1kFDySXc3vNeO4kVB3tMPVDC3UcAhG+krIiSNnISn0Y58tiP5sZxBk bCZBM/hIFb3StKwY2XJe8tJzctRw84ii5kpHCKgezVO1z4wYN3Il7HxtUnAx Wbq4Ni/j4Dn4CJ8U9SoA4BkiSsoGC52IzKDWsBjr/gp2naDBP59i1H3iwHmA M8uuhwQNEfyjVgnwR9xj1jSdMe5I2lEs3DyEbOpjgTZeGGameUjhP2RAWq9Y o5/Gnh2jpNC5tYGGDqktb96X+Kb1JWetUL1QyDXtlYZoEBHwTNDPTt5o0B7Z 4bjRm/5A4u7DOhuqDh/Hl5OBm9hJQDNLXX19MIay6iJc/Vp702+Fnt9x9ke5 yrlYGHeJtKMFOYlcktXsKFi7I2+6fspIGSFPCR2cxbgEQxdbbcIk3yAHPftV bBsi2XtlJQ1oHO1bpGO3HHluP61lNK2k4IgnLMDbtvIf3HgAhiQ+2ulWi42X wqQ83Kgty4oDwezELRTmTXHDpGvUaA2JDHui/8DNQQqlYPcE59ysc2c/aKRK tpzodjTpUMK1/9Fze964xERJLyPEQ49izGR101bqoDx9gDqoaXAHWraRvpPE vUXh7Bo8fn+OGPJtNN4WNR3FmVyuahcm5tn7le690TIRELMnBmjCtqV6rZrF D+nZU3S0fXPz0efn4PmvDYXovA6edLSTQ6a66IK3Y9M2gswbbhp2j/T9de2N rWN4oR92cE0D1JG7CXFcAr8RxdBNd8tCnxlbIFuMyDrpHD+YLlgdBji6cPWi x83Y3dCkxpQVgeJRwjuN/UpFDRhSWy4CGfx85+h8vatHshLgO2LALpALqtKR 2Za+f1BWjR4GNZhCO+sIeV8jXLyVJ0TIqNe0qSQjD9xwo3Y8MhW8webYoYK/ fmGGBa0i2iuPzrC9KBcJVqJvHrEI0bIHAGWmwi0AzVWJixA4iF/P2hTwzmCx wuBmHd2gSbAQEraYWUR2uGW/GzqfyBoTd+0OE+X8HZo6XzOXAabApWJNx/Na zKOBF1ANs7s902Z3izoSgDo7goEXNICs7W7+p+nW++K4Hb712TWcI1U5rWYL PyfAOsNJtmOeIU6ZQGvhoOmfyUXq0r+wP28wxYiMV2wIOABQmg8A2NBKmgMi TY6pD3P/jl4YPkJA2GbO/Rbgwqi+QQeXyGRUckqo4lk28TLW8vAR+TCQS8PO C5agbM9A5O9Tij4TjZlJOkw4FQ8dIZG0QgihcONG2B00pCjMRO+iKZTXzU8Z /gGWNIxWPxFuGGJ4M0ARLfU6hNbtsL+jcRiRXeJoiMbs981ePSMVlDZPBs4B LuaC/KWJuv9G7s+YxMVMXgGyaikNN8b953DxejK0cgFXSc6WjlvKmhYX4EE5 Jv7vxMluL4YICBIApE29Bu/+HFPKyPPiiYXO0FktgKDcCRw3idkn9mM62TYG b17v1M6W9uQ8mLKBWK3QMdsxGhuJT/fgGzYqMLls31V8NVGExse4srSQ1+Bf JmsOfpD5OkHByOREjFiD8HsCF2fsu+tKPH9T7SYHAL6VqfT73d19I7Y05C1D BUE6KNnej4Qk1CpJwybcMsV5HQe57OrA4d/H/f6GSlY7mcKvx00AsRVJUhlM 4DPFxWvbgxwDiwGrYaK33/EEfUK78zraLMKJhpJNT/Su2du8THI+s53o0HD7 V1kkr58f4R37qle1Crk22nrXBT6iKaHNlt0Z3cwXxpmxgLl8cU+Qv8G3HHUt igBgGvDa6M0zdavfm3Nz4d9keG1w2iIsQjdF5AI6nEwuOAd9El7KJgvnOO3V Ozol3i13AeqdSrqEuUio5/EdY2pI9QD8AH/QlshCMXS2zRY+Jv1nW+n2rTSv 5njc2hPdR4Q8GHW3eavbJagafdJ+yeBhA771oR1YaWia58jC1mTUcgJm69mu HDF87w/Zfg2kenPL2x+k9xPHvGQ8WoOgdfOf/zT8CVDIeVEbqQ9aT8YkH1f3 it+nvXhJxrKFvVYuwtcfi3RW8O4XVTpBO6rSkRcalcNGjwbxfq9dsS9iRFBE G1ATxuiUotEc4FBGTSqvtjVzJ7UBc7tVtk1nkPcvuK5q4YufDd+YR+VYTXDZ Mguencq79j/oVwq/2R0n7ucTTFms+bYqWDcl9OEYe899l7n1zh1q5XfZSM8f iHGqyQPa4gM0UmZUWNL1v4IvqDIB6Op2Rmbyb98pplzBM62hbcaNLRFAjIjm 9rjvg5mHv2yqapf0AZ17HZrt0G0DmtWQxBVzx8ctR2uI+GFHkHzo5Nwc0LCj p/9+xBjJ2hEf8wswsVDiXQp8wJkmkZiJn0ybaZgspCkHuIy7J/r7QWdticM8 LhagKC83yjEyqR1/v/8pft3TOVzGigRTeOcNOswbK2/xRVVBWvIkR+UQy5hS 8AHYGMS+RnTvIe82h4Rqei+pq7M8tc4oRiCPOff2A17BPk4hphi7GP3nGr4O Y+q7LSqFBInRbMk8jtlMn+u8tMpqsZeXtDFnxtlITdIiIgtAlcWGa8z5Whqp uORZlHaWX3tD6BUMXB7BpB1G40vU5VJb7UuR7OTQsq1DaOyw9flcQraeojUQ MIPyIbX475c3AIwThXHOoaLHJkv8mkaYFDtkmiFXL3ix6MVfpFwSVr65zs7M f98WfSqPLH9j2D5JkBbw7jN4TUuJHRKrlsUTjW78vs6YSMq/PJOR7JZTIoHl tDkWOYy6TJe3yXHH2TB3MozuLHTDFSU7htmDyFZupWPZzg5OEJN2yfPrzS5D cGjaIIkTqIJUHIV59fhRqth71B078a2D5phzbTIRWnoc7P7h/dH7IxyouQxT 5SSKS4L2xsq7NzGnHkPbqWGIjHZIAfZhUhnXtI0b4OFJJxXpp+TMrGtGg13h KTtkdh8zp/3JXv0NyZaFltf7aGz1Tt8+nS+SpbVDxp/NaQBV8ke/ywMdTotb 62/eEoMPSS73IRTq+FYmECN8f84T9RtFt6KHY+Cc2qMsIbDDTBpTF6oL6u9X Upl37wE3XT6FxEos48hIZRVJ22wGbYdEOtFCJ5wXrlVFtf7B2J6aPBAMVjUd 9DgeEPfwscTvbLeu4uyJWP561F/5sk3q8fCtToxF53Wesk6pY8kyrBboe74e kfT0dhEB37IdZsLs0YShE+3zK2yIS+petEc07ZuJjp6g8TLdcdnVNaBnT7Yp VgF2QI8DMyzJ2UG21JFUolFuXrGdGS2+v247+8yJmccYi6tt+CSHosj3DsSY jdS+jePDdUYixPZBtU3QsGcT5XA1sd/BnoPdEH0Iu7J0oGOwgO9SXWif71D8 WpuOzlpe1RmaC2Y8RTxkNG9sxgoDoLTyUgkXalVHB7h2uV01piXBa5U4AlsV Ds2g13l5IUTHMGC4v2N4d/EaYhlirucTvuUpxiVhVi4Og4EtScrDXt2uyrBc 3pw9G5cNi+GIaELpFXmVJIZDjsFWnN85Nnz+dX2XbqnvE22UqkZIefbLtDlx J0mKV/sWMFuy2xiVBVDVlABBuf4o9/zThdKjbAVYQU1QbotzwX+g1wPyjUwQ 0N+fbWhDe9Tf76cQS27sJqoQY9W1ScU5aawoSIoWAwicSkxTt6dd5h3aofta yv1p4+2VDsWVglxkDlsbaGqJf0mHIjBKRx3zNwLsCh+ibga9/57x15sUTWQm yuhz4Qzg5EGhoUQlid4yy6vOJUdYZs7j2MM07eIPOPhTL4uNjU9xNvBDA9K2 dCI9cl727DLlGTp5dG/8BI9hbGO+9/voZw8Ar2tTAMzCwNCEGEVevpgEhu7i 7F13NUV8Og09UQa0vhON8pi9rmMwkoeiFG3K49G+oqdMzHr4vRP95O6g+vIt BFMvMeB/QktVuBzGOOM7mevrgL2Ll1nfrPdux6enHAtrZ+MNCk1BhrrZmV6L G0WVuL3bmDeoDmHKNhbed6Xsgoc0LBMBGqXJWuWD6DYlMmqzq9ymBkOJFLrt aN0idG14+KfGldEDnZxhe4fSWjvuDSB1pzmUBn7bnXbHKYfXjPJY7wsXsVPs 7+GCTZRNNwe9WOscCTQjW3zpVMC/x6J9i//J6HTdI+UbuvvYkv3dneZY5qrE JQDQLNQfKwNo8arARB7mhfQPWiTxeLy82EXZvOFVWo+LDEcOs+TWX3ENAuOh RZl3Qk6z7bBj3s6SDixpVCuNuiOtBi+0Yfc/+XlX2kk0rYX39Zn3fGZlFPr9 BaPNCDraHtsd2+g01klBIVPwoQQ980uEfdbVC2qZiekf5qtMGD2hZFe6nXZ/ 806POLJIYV4Nhn6xxMc1QLVAJJNBodOPMppE4w7lDbuF1DLq8LfZVPQt/h7e E4pn6QlI3k0Y7jNIkRJ9FKPWpuEJOzBGQSNFKAI7kXAvb8E2XO99zg7n3Y7o KIm0WiJ1RajebvA9N6jhIWFQdwr98nByjyarRIbhcBfr4ER3JhZSPXYL/5H4 Y3WNWTbNazd+8f0RdTf4H6wcAu9wSJzVoGWeyPHCwRzLqx8wgjRJTSmXQZl0 pF//4qiFYDIblAJ85KwZuXvzZk68Tofm7QHAbOZ63V3OHxawcCA9IIKmCe/5 p/WGKgVyRoJX8HGGJWNgR9xyhtK+bzcyfZraauDfqhlnbzoZXVEgQorwyEuo g8j9FCxt67SqLrl6fa2704s7qAqJhxHBk8LvkV4PnSMs2nph+MifoVl8465o 0+gOLrGvGK5WJZ+iSAMnsDqwyQvtLw6DoqapV45MtdUfdfG8rSmnJR63oxc4 gS+V+Z5AJwo4FBocPqAjFVCUxunCdGPZ6sMi/F05381jTtlRj4MA1TPDReUl SJE7KzAdM3c6GGqZLZYCZ8qf7hionaDlKZGcRWjrJsAuhvTMDAKNkxPlW4Js wjdx8AfbmxcHqIgQ5jz8o5NS0Bh3VqEdraFb+GcbLsnQoj6YFnPy4jEZE6h4 ISg0DIUbXhYviIbRQQfGmRxbwjgfoTDYohGsLCIeAUAyURbqoSZ49NK0NDGk 5GQSc/HVGw0W+HXEM7g4DC079gMx4yI6lVgPCd859MpZS0ex52CcSw7Llphz xNjGaowiVOVXItyvj1/wMhRLDYUGcsraUi4RcZuTrLqcq8wsuhtk7nMOcDca s2M+93yJO27S+ro0yzajE41VxUzeenw9dDs5wH/K4mCu+6xXb15FR2ZOJkb0 mytSz+YARGL42lQG/YPqoI2TQp5QQqy72serM2cKMqMsagBOk9JJSZYxwt2/ eIfPoINA8iRep2RgGsJUX6hvZyF7x+YJDu6NyXtlqUBzf9Q43wbKsnqq45gl EwpoPHQYtk1+DNayvDSDv4foonadMjq6Y+nujLnjx57i6uUWw1Yqwr9HpGKR SSwLdcc1V/JwdO1r9gmF3ydRm3rrmaJKE7zfwWGN6DxgoTT/y3ObDGchutyY 2R1W37fZmzr5T6egNSbW8PU3KWay9iawdBFjRYLR+rxa4Z7eO6U6w6X7M29L S03pDxhHkfWSUdP23RmcL8mbQmrqkOD+ci7n7sD84x0uKVNHSsc0R0pbYhM0 YkO550Qg4q66yyngUNpyfjzY6Jlxm0n41QZHNxOd7kwa7KKrIxvsdg/IJtWl n2d6e+dTcfqml4YH3J6dsa4zhRZXskrnek01MCz1E7SCSnc97m/ftTNVaBJq LKA4KrEZ66yAbNJspiCHJjVm/CgVgkZ2xx/o5Q6lSBULySFrIntA3DN6lWLH +9Pz7SqlS0mnTx4wjgx+w6H/5G+PQUVV+Y5FdNF08A9GGayttFo+eSo5IdQr es+EUJr+Hti1L1Csdf2KYzCTBsxPYkPJyRC9NYI3fFc1hCuhsYH20BcfQn4j /9xieAC9KKBPA6hkAMbIzjViYg461FfRcGML7V981h6Z3jw5V2J/14Uwclpt RkLHn6FhnmgYXu8pTHf8yCzzfoe9PK/hJVvtKqkCQGIAQWhHuD2ttNyJqbxw eGg71O/fVq4feuo6U0KQOt3FJ/z9hp2HjNtZaEzYyJSdCNHns6JaF17SPtU6 wJUQ/BZQMI+SF+h8YlWfkYQzoSNWkm4DgY9RwtUK42uYwnMoGPMLzrnpmLAd 8qaFWLqlLSMVV3kn0ip7WpuFAz8UgUCbOAUvGHBb6o/DHm9TiHSK7qDDnzQq xGQmhrSecFDIeaHoUoCXNStG0BnjcueKuDyFy4fltXqrHALpKCszxUFj7cm2 4zR4kFktREsCgw/WCXf4+6a7H2MB4QBej+KNILfwuiTPsTTAgd+/RjzofYmL 7SmYPJRW8ryoOJ/Zq7Y9cej9+mNkobd9l1pG23LoAOfLGFbG7WfQwHsKyzyi Xxw6SDWtQxPBzOtjdpcr4IUrLAIS1N3HPT1L0ddmpJi5BmU4lS3Lf3C7t6Hk DrIZ6sAJCQ6OJfR0oUV+evuLGZxkTO5wrI/5w4NMDIHh8B8t7zsy13udGcXF IynaowmieJWJgbJwHwVGyBEftLWncnDpYxhe73DcXulsEpW5BA9wN2hTZKei y440kfDQo1PBeSHmC5CXtRjKTja5Pbv7y3Ov4vxlU7dohw6mDqnZfzotxihI U7IUmhoopJ1x1ccnGuVVGtiYIiA1+IDTsb1cYQNHx/yMuozaX0kpetT6nSnw 95cNmdGgnImzaXQmfTI9yvJiILCIlF5W2XZVbJBIa4rWrxLHX6BnJ/neokZL dmg5fAdNwuGV2iCo8JZYsee+mdHhcjBpyiqWnEJh2/L8ABfl3Ayt+EHjzgN6 oSj3xHlzYLkrtE6p/M9rN6R6H9t6l7mdI/t+bXTDwsa4hGFg2RDb0X+oGnA9 MflAf6nFr4md+JHrB49JgORoQMM5JaRTDnPZRQspZxmK7+Q4rENMqPMbwtmh l3+GGk5zcKGBd1M2aC/4Z7TzNI0zMrMGQjFiZPv3/f3rzgji9BMuAlU7CyqF 6evZ2jFYIb7jbCJzJu23ousWHrozgxbt9fn4nQQ+PVn4WKvD7YPBwqc1gUR0 cyTOT3QZmbLHlZyvSBR1z93h7j4FS03wTEJPCpzNH2vIxF8xHMjaxGZ0WStM WzeKydOEZv38hEREJqhXy2IdGU2COkoCHq2doo1FvSi0eK8/QZeYMDYihg7a R2/6lsDSRDuGbCgi0rYrJll7KFww4xyqhZA/7r0NiTrwYETc5KCPkdMO5Zi4 lFpHeF/6DSU3AF7YibU7PQFgx5R0PqD9NTrWj5UTsZeOVjOs3GGD08LtASYr veMKfPGV1OKEQXfN2IL57Mt6sxEHJMi5fpkxfOQ6NLly1mFQUl+4eP/mUJ9c 3c9oieassZ0NqcSWSS7ylyxeGFsMh0GpqD1p8To2rcgHNEvK8FcMHYGGpi/b I4TsbYuL2qhSnmSQ4WbQua9t+HsKyC8zHk3G5blxhc0y9tziEA5uEObKEPvP vheDt7lFvqPXqbY2NjgLAYwmL013fFa5sfHotNtj7+l2qNjXLz6W3CVmZIk/ cLBxdK0uXdlucZ49+j7RBvoPD9C523ZfXMJ1lSjbQvs03/bedwLmRsPatOt6 2/4u1dF3Ey0//jS8cD6NbklwExxruMiT3lYYsvoX3cRjWf2NhK23BEbTPKpo vNeND6su+RgbHTyOQaLxbRl8Zw2dshmWwZMDgMYxBuBgtz/5vgV4r6kzPu5H 8bZLjCJMqFaj7JUOwqix3GxUHGMJbJUWZB8Z8GIFjVApArejVZk99YCV23wo vGOqM9FeZIs5nN9jkL89hFAsjJgHK6qkUkx2fKknyfdjDAzXJXnyue4a4Fzh 8r+oicQT8vAWk6GRKnBRYxQ2fHyu967l2CsoI357S8hsfWrlsvCxhM/u9tLl so2nwgKT06RjLAJnMdFR4g0ngIVMOdU90b/+AgEOY7Q7+ZOfZzGWsfPKwU4G HfU9zR+g9m5tQmZ9+eqxwWGG+x4uCl+7e/39hFaU/vIN3H1hcuiALl1lhzER pSBoZdlAdtAlSfJGOVi43IZFuUxLBMDOycTovQAdtjou5uKiAvWwLauBPbbE rlnp873NLlfw3WLYI/oPqcGQ4i0Nv/JMjOy8ynOWhtNbUlMwUBL6oP7mLxxw Sn+HrhSnASYSOgV926PttBoyxPdqO8baaOrfovWNHAT4GjEXrEy5x1cgMwwz ma9ARK4raUl37VHeznJWtfXC/33xrk/fXkXm4xIRKqDQN4zHxYk4x7v5Rtk6 6HQJNWxlCr1oSK7EtXb659sMmLyqEXhTA+bxxcV9TC8nJn1AR8AGnUa8hteK AaBn5/K4udTGz1hw3USqgPFHAPO2k8ItChaLsAm+SiUdOCQGuUhJxY295nY6 AX8pY5n76LGbCDQDmKEyCdlYgBi0ZPQNVg9Xg2kPBddIj9SivKYZYSyJ0MeQ offGg0PmEMUBmarAvx6sCYbi82ABz/glge8I3k/5yhJLRpDZuDU+d2lOXdtR VZ9/AIbxtDhAxzV5p6zbgoZtQyHQ4Y/wSKLjbB16UPHqLKmi3mGUNWXR8S/L riZNBm5hVEUW53HMm7Vaze73vv9q7y6dD9Quxqjs5n5tiIyQJWfo+kUPxa/t kxF+brDBJNtGC0UYvdI5ID9yPjK/dWhi2HkeY4siyPZa5dbO4/fju7v0tmjx 10ePcE1DmxqH2OUCTJuLNHSqbJTWCaCgjkhuglJcVDuVVc9LguaqmqJZtDhW CZMK/sg9kGh6C71IpPAniTca/QxDhLcVU+yDoLsHNOPFv5JtaJJDm94SOSka CYuKT7jN6RfZR8Jrn7kf3fkerGEW7R7e0eTxChnxj+WFzlhGeB0jA+lsUYqe fP95bz90bFge+gBw36CDvyhRE/0XkinchpEtDeXjYWC8wtF/95EvX5zRkQzR oCsBkBeSNsL1LJbkmmrVXRgw0r6B2gW4Z4dT/PoSAWZXe4Pg5gBFPx6SIMxW ayFNHx+vuWEJ15yxqTk4LP9PDPQhRG6pkzdmMrn83P8oDZu58j4rNm/typcO zZPe+wwfT9Gts2XPqOCIAeiU9+dKupeXdOZR4ubqTdZkghxGwl9w32sma9Qm +8nrwuEYOxp9r6StH9kgOzbEOKGDaOgqgB7PbFY1dxONDSYAzZnYzvzbBzl0 3e1PWO4+Ab9rcpBTQMFpMMVrv0XjlWUeOfJV9NCmEXV32Bd3F43nZ/BtUYcn wJABLgtV9pvN2ftW6tp051Clj2PxgvsbI5MB2UDBdv1v7ukafrJAtv0u5Tip nW1/7D40BlOQ4yCz8mTPt86p+Akp1BcF3B1I/dVReu4Oax5RLRFUdeBbTRxr 54ddn9pcmP3rLQHflp5QNBpkWNEJXYqKArdCMNjH9TlDpbUl5LAZRft5HX1h RpG4l2Qnl0IanGNuiUxsWKyLi8L2ShuDx1FPLubQFKgcPGZfDKqh+XkwGVrr iJHm7EZmxN1+3898cWRNzSKBTt0N3ftzgNectt/b/2m2yv7pGCOrPL0A+PG0 Ww0qwFXhvZZ5HztRZwxwDmSvqzw56CFSZyBwdhez8UR2B1Ae9eVZk0UH+/D6 prFbXmZ/BngoHAAW8ZtqCsF+XqIpITWbhzQongg6SwNA2cAh8KQzmR5B1jEm WCj6KFPsndvXS6Sp1WE7NpkJlRqD3tkr7Zz77BfKGQ+Ml4/DYmEfCoKQiHeX 8PdmUpOhvVIWR/FDRsJ5GPH02yVGRkEdUgxFYSNh+OcbryKdFSJLPk3WVT5w bVOaPavsf0ri2ayS34NThlxl2mDADarIO8aFIpvfV3SkToQubfF7KetP9wEg Rd1WeAPXLnTLVpwOmlEXkqGBMICiCfUPqX/Nfl9Ci8d6i2zQs1dbzTOYjk55 rbfKdsimHmlnrUPwdQGVq3Y/cCpF6IWMl7SBuR3gWdCjZoZ0RTKzP5/6lcxU Dh7nGSPh2CsFrOhdLCxoSdQjRiknHzxtJYpUfZjmDPc8auN9fekeIu5+kNpE haHQlzr0FOWZTO0d0Z5afOjY5o3t4wEtnmAFpszE/yNxMCOC0G4ezPu9t8rW Yxw4UgANrXZGfNwkWz2isaUhj9shTpJBNdz8KWa3E1909+lsg/tiIqYWeLh2 t0iRsIKlFwydqWcRRl1P2N/yCpe5bU7KDqf0NltDU2IswEJcf8TB9NO0WcPs AC+5aWist+Zfu0yWvILvz1MJhI1OQXdWnYp/CWFJikmG0xg9ZrZBWtZZHabq Ffx4jmyPo0c7kuwrz1U6AZYcD/wih9u2aGMW3ft5km+PRhXQQoWVAMIiNKZ6 7irWO3i7SWxaPpUMihAJ7awnrNwOIqFNgrqv1I4Y9O0R6hrFjtCpWQyHN6R5 H2GMV8/u8+h2kWIxBc+eXbB9XsTXAxSYxJ4djraC+2dQ3iNr4bVt7ZxbbCpK +7I7qSUnUNcCIadhJh5+C6XxGHhmUSoDfStjo/ROC3luB7/zoFJJl6Rl8O4Z UwZIhfYaH9kP729l+b63likZu0u6Xx1uT/V1egX9umHkT6PRFCNk+gmOML1a JrFjLQXOo1oV8NC//3VJWdr7mPm79QURtTgH4tgXwWjLzHZ/+LTxsv2tdydn gHNqPQlas04pxBzk8YKomPOoG6Sf1KAbCuqS4c/62L/LPu6NDpkUaTevReE4 qI5kR9R0QfM6HkFCy5tBz5BcyDHtrv37HurCjK7peBdeLk5HIllvdj6tQWrE 2JCsbV23tU1ChFXbJuFrVgpKs0jpksZ5CSPQ6Q0gv+N6z4lUdviudb9SXN4A BtaEz4E/x5R0KPNI2TpJ+tygPmV6c6WxnVtuZ0Mdmo7H4Ip1BwPF8JPa4JOR vzxZLIdGavQdDwUsmZTg7frCjpWHvZd28cKkzbGdPwLocpN053aApU/J0WOx k1G9yTzb2QW9QJUMVEoJ1RcTeG3BhoJ8RHy9NlrmQZO7XccaitdWiW+GTzda hdqUM0FfOilvjTTU6bRI2US2K5ZvhvpzM9CYG3Ry6h2Ixyd4ZkUAgzHKTphw lUXSxqjhjLzMbDDDdZqi9sXouMNwvw051KaL2cL518HkcQ+7ZvpWIdgaFnI2 osiwzk7WqeIR1AkeeAo2e7rWgiINV6P2PQrrqEl2Wc4OmLksMwqKJe4/Us4U 8s4jCeSDiibO4pqi8XBjKCc4DKgrnLCO8vfZLiF2myBHheRVjXTgP2Kp6Pzu rS52gusRHnTydnpScaEcdkzAHvVCVqS8YBQbxqyUHmzjpBvDQ/Uge+4d54CV zwzVQ6lNGvthXHWps/c1itA+Y8S9sWPQR0zhDcZF7kQ+Vp2hewToZWcUJBgl vz4jyYhOrhNGGgAKMSQ7TjjOFaddsUFw/4Zb58AZ/kmbm+uVDSi+hJPra6P3 iLJFQOQyH1v1A1VSCDzpQ2yLaIssxIX/3hdvl3BZ1jx3B1ACeo9cFADChdaI MJofVhfL3wEqXT1hMzlOXZO4z8/kla7cXKBw2CkHG3U36lps5513NPW+r4dZ HSVSL2Pn/lvr4kpJ7bQU4FK4KlTu0EqkJ0VHP27pI17KDb/s+SRHPTfnZL69 QULXLgeaIA9wwk8p+fIxtrNLpDsNPvIqXXIMXsbc3BJ+6cTsLT1WnGh9YUs1 NYcS+dDl4gX7P6Xc+r13b36CLXynDQMY6WlaYbX4I81TO4HnITrLdVvyrq3+ uII3jRzBv5dWeTrZQ73WBFdAtRyUVDnMStrayK6rPgCr3bv7nfHzK2BbhsFw aQjAIRebSNEM8FAZGK3TIOeEHIPUn/2uPVCYLbCU7TZur59xSbWlDHZ8auje lMiM68xMsPSytWafdv8r44PrJ8G3Mv+dQuW9+IG/PNSewipCS+1Z8R3IESzr eJNYVPXQ4+KE3Ie94fon+qZRLlGM0Ahhmu6xQaO8obCOyRv6FguspgG0TPDN 7ygGoJGzMxo5PD8GnM3KOCKKkqowf9nwUbvBZ6bnWU8hGJ+7fN+vVx0BTG0v DY3C7ymGIj+SGg2ZiGgdn6iOQTOHrk69Z736ijHbistn4e5Eg6HCCBEvDDF3 PXue/jA25zFq0oDnduarj0/QPymmlDQoQrXL5ER4w6OtffH9GPDz1g6NFG2p uMJ89fYaDkyqXrGGn8FMxmgjkgs6XpzOFouDbbkzXWpJuTCCcg33wtd7AA2x 6oNmotkUvKe+WJ31rLSBCykrusXS8n52ZXdCS20nC53j3HkK7/flPuFykr9f +EjVlLOP3COEnggRTziliIdoH0iuxoUGfRPTDrnz+xxaodqYMykkJMZUOABy TJ8k6EvRMYfW/5+6N8uRo1fSRPeiBTg4D485KaVUzqkcN1H7f7tmTo8IN3Oa OVN/FdC3GiigC0dHlAdp4zdUHQp+ChTLCFAMFE8PObc0Tq9IRJIaBOe4rn0l 9PruPkvtho6ilgmac2iNY8+s4udTQvuPzZdFUWHjjIvrIljQK9x08SaPiliS bOFwDOViC0nKZXiC3FzoXCoG+D2QdCFlN2WX6VKzbh6g/RI2XIpTjs1JT7wG j+9p+Y/wGQ+SUlH0uf95lQk7esR2zK8GoLQVUioqlWoH/nMOFQKt4KHFw9AQ mpHxwEBKVpANhg6k6pjNnEVWQvbGrRpNGpFv3kpto6KTLbHPKE8Ml1vTxRb3 W9EGhpBRfKrpwBKScgxtsifNSn6/HLw71xCImaDVLGkGKHDSvhZeB9vMjYnI zt4FLpqg3uiPh2qK2ZB+SzCoy79AWccDxqKR5hhxZGw27JFobBdNPHohnu5D 4DvlWd3XIItPuRCyjZRptKEx53KC/ESmfyqpqTkKpIDzt1q8ZbuA6PAnCc1p Q85v0pErKr+SDyubJ5NpKpTBqK0RtCt8c4PsWPKFoRlED0tvFaFN0SUmL0pr 605/DK+RUXLL+a7nxlGv6y5DWUk/r3dISPTBcWmxNQFO7kCrpz6fO/5GJ7aT nWazj568LfQXrhWmp84Top9DspxTF947aHBmTLCfjLGjgZKrFbOKqNhHKMFT rG2A2ngyKAOgUeltX7C0U+bMFf8+nQXhp5BXG0yff9jbd4gxWzGsXCG1JJes GVu2iJYxYRnoDxlod+ZUi7uNdH0h6oa6leKFLxwmB01ckctJ0bPCe8dcjhRW 4fpDQ303oR+xO8nyHM55/1JdqxnXsFV4ZRB0+TaW0ELkQxrWGhd1SnmKuXmC PNUitKyY/5ygZCRMrFQCvLZiTGR9pmTNxaXno4t0MKV3bsewYPMOTPXjsUBR QeYkbsbHIVxcFqwVubAz8xH3HOS0Ojd6hZdEmlJpOHjV6Ahq8w2X2xcDMRua +TA2YOV5LXCSf9XhklxBU8jBv88jJuH1F7YxYvSFVCjHMs2oreZKFliLnvZu yYu6S1tI59tDghvt1gdMCDDKxflvGPaJ4FkX2P5CnwEzRLvFLiHZpE+jXt9s LlsH6xxMnFBhh0BTJb9JPnF3ZsY6cfnlgdbCTJDG+1y3Q6Xz/gGFWaTII0jT uHeLkVjbE8CnCCuAgE1DmiwJ3LE4QhttNHJQhVSfn3JtloD03SG2C/mwXG6X vrtBKfE6FiqSgJxbXYnbaizTMEbsBjyeysUJlNwsVpau8qWhV7FTR3KR32Ig Hu+ty3Y7ioJaeDIBGiBFElgUxNoWPYNZDmLr5KAD6ilvH67vxX3y3B5xJutN dSmJdhLHDr1wSBhGKnCOb+zMBeOJlEZAamdAST8Z6yAGXmhFI7OfsOp1ZbFs Mjk411sZ/30OJlCUXDTZT1BMtcpdgCHKk4acOVxZ5r6RXz+tyG9rEn/2LtLf Gy4mhA3o6ASRmvU2hUEwUjEsWg0JpgqieKuK/E+1pWwnj2jw55G0FfaPupnk cV1tZZBASDcR/krjskLWfj2DX3mr++sQOz3lhYsz0EBIWSE5x6c2cttDpgso yxURVdrDUh/C1vObW9TrTu+rZjt53GgqOBclrNaS2VZQ4Wzjv2VZUqD+Pu6N N5To1VT6vbrmE7IOWW4eQxJmPI1YUqvuFjvjdTCQyzAqKodo85yj6YWCsxfo HGk5hskVYkcJxI1a4RZKtViEIMOBD7LCR0+jFm09S9qTzfiAT8OVdiuCPHE3 ItkddG9xo18VPxotOlHXuPkpWY0m9PgVctOAWm0z4WtBO1KNV6APo8oDWa/Q WeMO90Mvbm6vcFuB/5mTkAbuQa11vApTSvZh2QQ/NlKvxkzJZp+2Tcb7X2sa p+3UZKAXFMaPqiJpBQ+azb54sHDcZ26+PEKjnjbrlVyQwWUXB4wxaSBpABEM H0DMU2WJUDjOEXh/97lB4OjZU6wTvIGG3R0rfKXXWGM2DOQl22WST4+KTDXn 1FNmP9yTu58Qyg0R58poroL2lMwaSira9rxIi/KlT+PfvIPzvL6Jrm53nNlB i4FhdpC/OVy764qDLH5A8k4h7hKhPgq05huoqi8OIV+YTX8Ihae2j3OR2YZX td0/ziYsXA6fs05ueLqNIW7h7X72f4VIQtyKiJfOqN2PrNy/kuARdPvfP4Nv UwiKMkHWPWqOD3GoiwytheabOVAq7NPtPPhAQd00H/e4IaTz1YAlSjE1ym2S LNHtmjvKenAiggpOQBOIrYijczsMh6cbB6lvsyuc2ajI3BEJZsq2PhQbWV3U 4C57SJ6SVgO1FXHkLtQGheWGjRAcio8KY1Z0cMhQulX2VYeoFy7jCjgFr3ZO l584P90KyheIZ6bEpGkCKxeB8ZwUXz6yNfZ+ChDwTVch+qvGdi/XwGX4R6aY m1vXmFrQoMqVvN0kqy0oMaFYXCQIFHbWBS6TqE14jAi3N80v+XvQ9WgbtGpQ k2thzHsoFJN3Owi/p984oew4w9Xo4UoEoqowCIvJKdfB827jl0O3xgxn0gPE zWte5ExWCmgGuwCoLIp4ZllC1boNaEPVNWFRF/oen0PJW3OipxdUE9xkMzer CkEEcWP5Qn5/i2LvsPfeimSfpxIhLOqY4Nuf6PK69X4xKDRmbJP6GzKIljZf yM5l05eg6oYwRkHuJbzPP87bSorMZCJ88+y4f5F0R9g8K6fCMBHf4n/Lu8TL YCxFTkFdZpC96NnHZS9QgifCq89MlrQ5yA9Q+LxK1Tp7sZnrnYdsUVE+EDT+ PwwuKtR2bKU4Bj+ySFH2TZdI/spPNdpClqAxIcW+piyC/wRxi3lgERITMhlU loe/cDIHGRRx6vYSF1Nu+uhcKXHKJWURXdntRxtnyzCpLIUBxWidP8SB28Pv 4hnsL8b5s4aaBUSX4vcTU3Nh+K5wga2uCZDphIFfdcECniYq6Dnhgwvj2lhW b+dORYVYDzMdyv4g6CSYiQNY4r4XQgwTtAWBgIH/TeNxrK3f28LcP2Mqo6Kv Ftl6yA4Sr4ETYeyLDu4QKGbooCtn7TtfnSchDJV+J5NMyCMNfR2+AXJH1Blh hqSnibubGuOW1wulEoKmqjGqpagYFpyPjA/lbCNZ6HMqa2wj8nVhte8X8N/i tjsaLNG8KaI4aZF0lTsDSzMkxg9t79TDr1+9loUmfcpkOfhpZmqtG+K+qD1f acTMIFE60YmTs6ASC7nZjCtF7wPc7kKhiMUilNVgV/Jjv+rtIXlcqNWxLzuE Y6cTksMv//kJn9HR5gdqRah24VFXdWF0mjf1LQOaAyFzrNtd0UFbDJ1Mactg ZSL84VzbcrJZn51741DE7dGw0ak8x9leCar5enQE++uhaqcrDDgZCgVVQ/oe JX2JuNTkuYezWNGQVZerrmuBclQEP4ceo2ywXPBkIORVX6V+TQByteqLrxBl LgOrvnBKBzFTdRz/+ISmKpH2Mme4wsWkBkqThk+j3qGDghphz7fs4im7Oqtn rC5EzQFOaqMIpi59g7h5AhVTFxC1jylAzcti4BKpI6iPZ586OnNoZYu6bXl0 trPG23ejWm6AGi77ObA8QhK/acZPMkzqHatp0k0g5GiCGsIMzKc3GODEMCdj TCIBKnEoyt7+QJexFZxzWCdPpYb5h5Wj8aDSdjPJFqoF1qnrJhIPv9GEjeo4 hoqKZKa4cRc+EVIJr46pdn1j34Kj5+h2VhdXvyyk6E2kc8nnyUKgJo3mkP9B NE3ic8CCiIwqfUS5Xd9n+B4uyPW7DakyZbSCZoko5y7zcSR4bcEa+scmg+xa vOPur7g2CVYQBw9xwWbRNOLRtdMV6o+j3A+ZZbY5vRoxlsNnh+5/TapEETa+ gObCdmid6HxQUQLyh6xTOqp8bmQAwglGkwUL3yOW+Q/q21PAj/PoTdXUA8Tl rChAF1tdNbp/4/WlGC/uLxLUdVRO1c4aPMUSdO3IMOq/ScAOLuGug4m058gu lqmiRt8IDExxyYHXk5iuhS5duoCqoO20ttodYYj7c9TuziRS4AYQlS3CKOCg SNqlW8k/XXZ+2dCGvqzUkfpyWVKgRVwyECtsrYr0jULccqbN3QZk3ShVva8K vCJvnYXott0y6rBNLlq6SvwX0eVcmNn3Dsj9VAzZydjU8LVSFnn464Lb2hRb aGfNFJZRtLAIjVrHZ4PnTbWasMctGW/v6oJeXJH6kNMHXYUZxf5oIu6od0hO Lveq66FKSrsF/1k2zSdha/xQAhRKw8Al8Zonx1WI8pjEv0fVxBBK7FR5RyXA T5wTMvJnhVrF+US4aKRwlshzPnLzXJn5SW5I3FFh+HkXq5sfCdVhNT5ArWFk nqqI9ukNsIb2R4d8vUkmX9HaQlfkNSN1vQTLh4F0xDY6sPBjRglVQEicfxV0 Gv5B0l0Jk0uuCbT2q0tVhRA+GtePH/rFHTRnFQX69MBwfguBwbE8B4eeUHlj bDgsy/uFtqKi9pEjjLku92x1WW9zbrgROrqaEcXwDy/SaFDQIly4RmwZZ6uO Ij5x6wMSY3MUh8O/Pvyi3bWeYxYoMVHCTKsx5Qlhm2T6wJb4Ri4kOu2pxyFl rEGH1D08QMFUGeMETp+hEMqSHLq4R6yhsK6jOeQMsNdTwC/WXEb427t4t1Cu 0KWyRW5gqVXmcpwqiO73jX5jOODUO7HRxyJbxGMbemlzI1qtRsa43JpKaus6 0QteXxacCjUJD9pRkE575r1QrZmat0SuALHX5dJeoiCMJa5hUNub8j31hT3D 7DvrIO6XXLXO7vJhns+R74y7MLTsCpHKeY3EtxEQ7v6koiJNttim9SYd/fVX rqXS7T2cYspmobDtd047Y/rvuov2fV8OV/rXWXGZzWV9iQh+zJYbSElGgjsz ZF014iDsNbM5Qpvs8yBx+ZRtc3Q5mVylAC81ljqOIjeq0zOkDcvWNnLv0bEg jvpjvL5PwVK5FjSgm1ypiXDbCbB5cDk+uFOAshvyhql1J2+85tKUUVaMGUwc EQ0gfvTyhoLxQTQrA03p1M9l+gM5LgTXHPoE2c3HZwSfxPU3LdFHFI31ZuSx 1f5+oXnCNKXnNTtJ3ZKfCrg6If3baM/u7x1CQOgnDhauA6Kzq7ogN6OShW5o dYM4nV7VfvaY0LNu/W2zTWnyULuk72/w509am9/b6pOWITuKeWFjm5WFfG3P vuAhxS0W2wSoihFUPshFEuSk52IzNOfANSFQvMuEUEBUFo8aWRfIa2BLMdSc Tjh900S9RNVjdOvi4KlvqLTEpKu0/PkF9W8ik8wAh4WuY7E/7ldrRa3WXJy3 Fad2Y2Q67E1/AnH4tldXEO1oXRlqqtAUL3i1f7SPa7QSn9gCWi4vqQBg3dNA +f3ls93OTZxDpz6zMMh7agw7Uqajy3KuMN/fmK8a0bOUmtrwEVDloW2uUzBF UeIVObfOtQHjqIvGSlsRfXKKogv68RVxfLk+ainWoGfjPEcS4auiDRe0j2TO ugNUPCGaoWXIprTvJrbLb1chBRqC4f8LD7SUhjqTpIZGb0ITpdvHLM67H5Re dfLHvb3MKHdDDutnSEqxItBdNMs9VDjDYlOna4B8AihxkrrB/TxPqalNUYlY tFPP0RmiWjlKJ8hxTg78zKNEWxT4tNFEfbl49WQX69/VXDJ6pLrWtK55CBxM pkAENnCX55KnPehhKinaBz5X51h1UyAFQwGZQv+Mwox6Lhvyhrgjq3iRAU9A rfm1duIKonaDnChyXTGM4fJ7Y6o0KNheXJuqjODuO/1DhTfmY1vKSx/26iEs H5aBUuDYE7QXZLPMKgYp4IalaFpfW3kYRaUDhP3F0Z/zzKN7BrkHEDMLUuCb pN6+UfXO/m0IWulTVTfJXz8zJI5tzo2IMDCF2ngMEHUWcpGnLAzdhOYkPWdx V2mM3qO93tlg52bslHahn5yg2fJBoY0ouv34z2UxV0eGn4gjfqeo+TyzoQmX rIhmCEMyCZVltIugG4GNvDV6ZXelmp5ucRbRAQGmMkFbmYjNIWnWpQ8LbQ+T v9Hlok/I5Tq5muwO7+nr1uYGn6HoKYgJ6COZy5rusm7ZT9+2K5wHl5AVuWoG Prn8eKioTJM6FQBf71dQ8s9xmR65VDtlu9icdeFHEhwQ3VfYNx7TjEYjvlRS 7CG+jmr4DzFHNo+EiGGnCo+Qy3fRFb3oIhkKM8n4DsbLIekq+jYgV6DCDx4B rT/Ww0hvCtYKjuMXWZCQvXwtO3cz1ZFm1scGmLjprCLDZVoshWnonYet8JPK laM4uUkxeKbOrsaGlcMalH4lqRyXX1AzW+rkYQu60uRWHf/TqnUEcEQ2rcl3 3AwfXuHHpqjEkB1uE70fEn/dlTcZyWXrLyr5qa22P/cIBejMbP4v5MZG3JG7 emPnl8iCczxceQMZLFrrrKzxqVAxnG0wvvWEcXDRugvU+fkbbT3J9CNjcIUw F0TD6SL7fjno5RnCRW5tiOgrtCbVQIPd62qOe7VfSBTclrUV6WM4R1ALcpmP XhvobjUSDUqoWsBa2SDFpcGR2Tr4Mcb238hGM947tJDlIVWgC/GIilKX61NW GcxA7mooYUI+jdWhvu/nUGobrjtYJudjVthN0swj2shMIa1VR6CnNTAudeEk tpcH7n6ihhRZj8DzRwpEcWG/4tobdOgWegcnHDQEsa5jC/r5Omst8QCAIr1Q cbtMFjjf1tfZch11VOG4AtPZZy3N9WyFEoEPDW0bEh77P35VYEyuMg7ejkPL ovFwWKqTj/r3A0U73fonh7PVCWrskORZ8uhvLm9HOxpnviOvdDjn2Z9kQ7X0 nBBLvc3G9Ql4CmPUp8RtCXX25WoJAsVbs0WVAunHBQL6KFywpgh/MtfAFZSU DbSO417XfjJ0l5zdCRpF91DjzV0soyGg6DekRyL4Q+OTKCmQApvC6Gqep5ks TosgBO3scd/fK7wpyspFjXr0qRyEv4puTdE3dP6obnJ7XRX7Let2cP2f17jW p1cjutnSxMYk5gFZXL11XbGOaguQwhBqbW1wdPYXHQtIzkrYDVtIy14XxRgE Jciy36uEsKMseXUFKXjuYk9WFphEQirFj6yfFQH4shgSDtHb2FDOybHs5QPa xkhWCvD31CkgAl1R15JubNr468q9VkcaTpCWPDI8XmNw1IDFJg9fuCYOTSFz jeNpqdOqrYmBnYtGCTvSOzK8bheaj7JstfyR4BnR9+UQ1g9NZd0Rchm9s/KS kRLJITc546teF35dZaTG09trK25IM2kXJfjBhnTQqN1slbDfIvhYJgSW9LyD VliPV8iclgJeIdQbSIoxJG2E2A23c+VdGgd0dR/ETLy9vIgDRWmLoH/mxzOo a6njQo1YaUJyk+yhNXG4VBjmXbFoIqvnkN0Ed6K1wrQS+30RbakUhwDhFj6u 9U7HNYpIiVKY265OLFipjNSpWGtzJ4qt+tvX4HMiAikOrtCUDpyZXk0mmytA 08dcrdWSrO/CLkWx82s0QtsMOwM6FVQEGIsigYpHXixtu857nIG+scnkyDf2 7RPCq92M5GyF0nLK2TEGIIm8EmICfhUml2OjPEBgA9qpGteMqjfqe39rjokB tHGHm2an0h9D1ZggowXZovBGd4BmeYDlCmvy8/dimnIQvQzQo0/hcO1HnFVF BJAPMXADeVWe6mAcHeE2+r2909+vApEhkIeHFqc2wt86Uv6uB7d9vx7DJFtH sTW4lS5QBlfVEOnjzOU452k6y0vowFh823nsw7g5Fcl7x1n8aghZGmOB4rqC VTxD4cv4jB7JPRleFJ87/oMhTl4weausrS9/j3vKiO1SaEMvuSr6BX/tVkUB J4IoKliSrDIpfWqfKzN0UgZQbhOtY0zdVvTndTLF0Ok5xFi42HlIr0RRIXY2 J1oZKVd6/Y1thpYn2KJXGH/fci6GLVfRrMWbbIi77T9EE8gE3LhbZ+uuZDbS 5OGKdgPKYWBxe5ZSNRQp4gIUhDG5msTyaEeoelCAdF0wq9XG45kvfhu0q495 yj43m7h/DtqLCdwGtjmmAgLXGcrLuEeL/rA2OtadQGMyVTh9Uap90aPXucru tGwsTdbDeySxX69QYtBJcE1Q2kX4CSR8k0hlqwsLb2NpOpBPgvNTLlC79cLF r4tkXCITigL9z2RsLZmCCcfsxZG2HtlJdSp/SyElI/LHN1iCtgq2JVIdWvie 0D0ho0b8+cXxBHxVvmIbM7SNcVYua2qy/KO+3MWlzWYE7VTqFFzjnwnaE8Ns lJEiDhloE0SmMocg8ape3Dvnt3xGyKgFmYXiQrg/opiLzpIM0xPMmsjdgscT xmlrMXib/dZdM2Rk3dgaB9OEeHvhJy2UMjqmMbqPL759zJAKyMa9OHhoxZti adxdA0XE5XCCVoKs29or633gE+DxoJOh4LF+Vh+oWKNrkik+ynlMzAeopMnx r9/xXNgVFnh7z6aReVZjbFeniCB5eUEsyv+4mLgtjoq/4YNASAoIiFZL97O3 mgwFX3gHkcGiC5A8AVKWMcEYqgCuF+2s73d5cg79FLRDX35k00RzTg0TVO5Q /UZDhIj3q995RQDNACFLDDqfl6na0gTYZLz5OyQDR+mtCY1m4F9Qw7CTj2jW AvnbsHnbmHoYjsugie0yqlaRAmMcQx0jOgMXipEbYO/rRC3qfYE7ovuxugzV EKCbbtY6dNx2fpVs+++lMwDccEBzkxS4vHjSkrgym6LacNodYaBwqLO2GVkc Dnv9GFOzHmXabCGgv5I1wyIkXQfk+eyhcTvXe0VVyOPIXYMsDbXPknoIGOrq DOlrG6UaB40n8miiETeL49KIQ+SJA6NqQ2l9jCaF7QExaRQoj7SiXHS3zXwE r0si8qTRS3FHL6Q7aMsq4fm4bMMEISNokq7ij14i00D4jhCtz2FmeVoNVvTw BQklbIYPMaPcD9QBVn5nsu63C0zcVTFTI33Pro3a++8Um5bFCbOFlARvA5eB kopJXqVDKGHdT5WbH0r5cVOG76RrZD48pRqZhC7+oalW7/P6ha2HxN2esonk bAwBlaaSYyPMws0UoZt/UGiCgmFRgy1D1hgaFYu+TVs69hA6MkNqgtYmdk1a joTLn9BPbhESPmX8yibrWP/uNW4uhrbQ1zfk+YYKhgmZtHomPv/lSjPeorHN Rij3LdRcY04cmnck/JaME1RU5MEClcAKFwNW2/t2J/SX78k1Aee1AZWbTKzU R422nyJkyjjLL7UeMVikE3iuq7L4Jy4OtnbjqFaZUZ5EK413hM2g2GT+aepI 4jQ70W3o//wu0DjTcRQUTA6Vj4wVu/xxSwNrxUJ+S3ItZk+K//pnzc22/Zj8 KtLKa/GBwOiU6qdfVvSwiion/oBSbd9XsvJ9gsThyQwtoLes8QhTVa7DjnHh GlEtj7DXEQNu4VRQ9OlkOLSeSsQS4/+/mtDH18OW7tSEQtqearajAgOisNnW f17Fgx9mVREqxliM0wFgl/feNIWTlQEKcppKdWQESC+EyMr0TZpjBHBJKfBY CDlfujL3R0be72SahMdpCFxsnoxLzbJ+rOMYVIZuKnn7R4fU1QZtwrO7e46J Gac7lEYvIWYJYqcMgXw23GNGlZDjiaNPvjhUxz/vbPB+g2m2BnHl1UavLUJl bWJr+QBzTOMDQWjRtumswmv4A/1R3GATkrdwqeB68+A2gnHdbESbZ/vqYqv/ gNUmZkcG+POnLw18R7UarcEmnMngE20dqQwq8PbZmLA15HvIRrQ0hExge1P4 v/dILKOgCu9nV8Ds0+DK+Rtu1PLMjSioWAvvKHR5eqsX+DdCRmYKbf/7kMHd 2zyGGbx8cy5uG1SX3cw7znlwKi9tv6C14IzeURUFLNQ9goy25z9qGD0UnALx 0+MuEpW5Nh4qIw4Jejp0clVHeLNx8VYislHHqcC1zTnS2jOgi12BW+81sFvP cG++JK6tsMmUcMgNLKWslXGXD9F6qrbjM/qqxdDmQ7IngkRLd6k1uyO8022J lHKdUIhPB+ed30BXW1n1iZnTQq0hgYzX5DPmZwhJn9C4xpxmPXTIAXq9qMn1 3X44KOCZsByqkSZTyyBDdi+8qS/uMIZF0pkzRQdf/X6AwM3gbgGyFbR5PnGq JL26om2DK5YBlxpLbmB3V9yE64jak/V8ufSGS967VPKEYjLC7FVhRiRfLdna jYnpSjXQ4ed/uEF0Db2pBfs6CNxivbYjyve/vLI7zl8f0FOC9kqoYItDZN2t ygm5DWXPqZKnkwcTZKS9GAFuaLJvNoVIvmZCrXL8xkZDaAsegNuuU3bG6XDk oZ2Da2NUVPnnW/WZaVOXCpEDythq1l0RqcfE6hf+KNtkyNhLOjBBm3v0IHSd D/v60zsTN0PAvAhExKDaXYib8JoNLx7lIdqqeAxxqg7XLr2jPtmUmVOLNRDZ UIknjWXX7ViYqes36Yj9j4qRvPc9b19ibR7iazQU/IejSbXK1EMp/wcOWc36 cOQEWQ1NfFGqsD58bJwHitoIKaIWnI/KjEQUYYR7zeHBYlVFD4sGfmhO32sa rj5KTY5SCGKs2GYEozDOu7dzRoynwJaCsgr5KpHuSpBfWsiVBKeRUNmlwmPQ dZ/ElVCGZ0RW8iqriKk+GR2m8fOsQoYl9YlDUnwstRUC/a2bGV1UjP3yqJGi tl3n113KANrzTL6YlJULIPXhh2C4zqeDzHjvdOegx3ekXbACFaoZaACo9Mwg J8eUjUDZmBlwShPknxx6L+russa63fxAAxwhU+Cc/HvftPm3WbZ0VbaXJ5QA OlMG9ElVL8HrrTXGk/3l/9EwaX/sPDZNer5K2WynSRFi5OTRD0Z+YTI8PTiu PjNqR6Bd2ZfzAD8eja/IcZk8ZAPeqQjlKj9pNWy5k4cQDbh719clDx/ONl1B RutGjTt03R5cmUhow1KautSAQcUK6rKkBkUv/x6SatocO1kTUX+4VQzyFn5U mKCorQsxAM3B7PG6/95AdM4bfE6JEb1AkM8+8K3XQ+juHtBXhtxqnIs956ti wmShCcs9CcbH8+RN3YxD56VERT2l4VmugP3d0gGGonIwqDxunI59eHsutk2i V0pQJjg0gTRyCdm3cdsqgAxpBQaLF9PbrD/Hy0f4Dcp2zAj1Y5hSIWrIg/iB DM0ovRBjjldowJNsLPpDvH30C/COKlmVVL1epO1I2nnDqUPyrGP9oQuUvh5S WdqKAl0/5IUhtAJNGtQtKsXzIR2BwRzjBWOj2uzMqLYh8y6ZcoHLp9+G18ta w4yMo2SWhGWlW6TCZPVTCUoLjf5cTVK2+r5cQTToqmFC1q/E3U2GO0ewvyGj jDI0HXFQ2ETphX0tleoYWD80ZYQzTZiOUm+//fAQajQbZcYQ4Q95pGOs8yAR NhIlrVzlME+5e2MDBiwbva3K/vL63LpGp135YGEJH0wyIvRF8FnpiNvpashH yEDOGoP28T3VVOkCHp3FQ0mOGxNQqIuoz+kd27NWdcmzmoCiTI3JRW/iXu58 So4OmTKGCLzS4xzOUU/KVjEMTvRtWIZ5gsXG5RmUP1s1VAstQZ4MpsnVtVgT MESZ5AA1FjfsGlLxxS40LzFYOO2fmwyVJ5W9s7gMQh6irI0sI9ZNk0UYEms6 wcz2FAE+bpJtSJVTV4+c3lq9CfIxdyrMU/GgRoQD83gP83TxAC0ynY1DboDf oFiiejU6zzFN24j5Ru0hDl3wUDHk1N1UP765YKj/S3AOlblcDOszfntL/Y1v euowkkUZKNtsZqXf/vMSrePoDqfmWXouN9duEZslJYUQE3PYKarc3Wr8CDEI EveOH9DLdYQPuqG5BUzd0Ig119dv0tD3LKPG5icB60lrUupNeR/+4LRjoy1q EYCKXUmg9mcDArhN/7BJ2J/CbRkDgOM6fR1pN3XZvS92O+yFO4HGS1C4ik2F EBe2q0gdl8xVTeoERX7T+1Paz3ubfd1MqeAVGji2IT7y5NDDLmeKwmDfuY9v JB5QbJ7EsYj4l+hZTqCNmtT5VOMKW5iOscydm2z1TZxd/p43f6x3kcrLOZ8n xIIlZYoq8EldDcypZoe2chAxEYxSb111gVThrqD3c8k+K+No0TIBOWn0in4H Gw1VCNTR8LB6AXe1Nn8stpmintC7UJFBIktu1IZYEb5KJlkaEYIYfrfvDHn5 PCgcfRA/bWka36tcgdQMuOuRkV8VH0RxvGrCRspVXf2zk6MLKRzf7whgfVZo 70hTgTyPqeSUrDzDFmsydKAnpjs6A3KUIX39WGtTUTheEsQCTzanppL2HRGN newmQ26oS1CC/JzqYjkglLxP56hQstGzsdmVglyHRsvvc+atno65WFOvVlsP d/KS4OiA5PEzuLYzpARC1CNDpnwdVEoUoSHO8EXhkAalRD0/4WN9aZq/q9Wb hyAOzacbMxccdX2Vx9enngJNdJEbsSP08fRRlqaM0wrhzxdnOEZdWMSwBbdP FIGlSFTTnJyi2ghd/qqxSeuy6sHVyUPNnwe/83+3Ptsml31pgptfPkVDS3kH Nc9UoEslWrBEGViUVEHLGHIthmwLbIa2GBLZDjv68jokV4liXo3GYMMyt+Mj dCwxk9TkMse9qD0912TCWtF3rY8Ivzt04NOu+oiWwp6wUL9pez7v8X0Tmh+1 EDl4YZnebvyoZPtag8ub3gluvYeOz9mx4CfK8LhQM02Gap+6JiVbJGmqegBn 18nZLUUZYnaaoEi1hOEpsMo2ujHZsmA9tnPEhS4OL7Vo8vkHTd0o+DvAjzoV iH52YCfTdaeEin1UQGYLQivB9QvpswypmZT5M2y6RDJnJf5okrZizk2jc0SE uRPmYp1itX4Hevp1baEBievwEVNGY1VjOSeAtSZ9SlmnOx3yPvEpqDjJv2eQ PByVvJ8FuqEq94TnRFzvpeIep5VMGlSV5N5VtjlCT+8g6nlCKcyYOwL8n6Wu WfCYak1Idf+wQURJT/gvLEVV8bs7T6Yp9a/AXbPpBY7c11GAiHJJELQENR+z Rmvz/v4o8DSuMnBV8yJWoWCmXmqOzPUIrRI8KsZKlH/luKW4yI4rxiyy2kLL VgigvjsPXKMlsneeEo5dhso/ZOOEAYVY82xry3k2swPwCamz6z6SdZ9dbN0m ybvJGDSsDLkOj/9EMQhEhtM0NuaAIQWDVfd5hWSmjfiuLYgRCyg2+kOph6XX VkqsdGO0c+BTT4dyOjV3uZqHzuPsAYr1rVhXMRBv0b+LdnRS27zX0umt/mk/ G3Y9nC6zjUzDEe2gJ7eAlgdqMn0KT+htY7vwFFDAwtvQQ558vcCdYDnC1QTF MBSTbnibPDrNHnNRPKDqFb+BN++ayO5aLLNCKZeyIYI2bPwmWw8187b1eksd ER+st/euxO93l9t+Z+1cbKZUXBZcZ4okg79dxQxVjMihK1Aa7agBf/hcIylr oOI1bvK58UL6sVeKY+hixdfzcqu8HQYexaM5FvQBvpzbrDIy2gtUl5yufiaJ OOaFWLXae3+DLp8nKKe68r9Hv6zPkgKT7IeO2U8ZKzHNNlFcdaFIBO0fqq56 zuDW2CtHa3RZx/ff6Fa6wQHG5CH+YjofnEqIjWZoHlMj1Hkyscp5itAh9Jw1 V1f6ApU/6FIUyx8T3eAcU27zc91Iiw+swyFq4dLYlBNG5ghrRbf70Ft6YS/k af0z4CDftG3aTvhUTKhfd8Vv0OvKXz9DKGxzG5DeH0wcGz5o7hmLbOyqzdSl j4Z0QK7PajGMlWEd/E3Q8pWsZAxBE98l6+z2lINjHmh5J2tjQwZvODkP0ABn 0hE7byBlVPwT4i04jbDZSWPlcrqK7A5VG+wL7hyqs7cbqB3NJhYXrEUj/K3y TlH88bNraWI0IKwEKVD9OTcysFKhvfmYaTqGLAev0sfi6RZcwc5J8wd0HaXF sLVy03GanLmYJoimRu+O3j5Sbp/7dC/yzDCHLp+xCgY2SG0IVbjO2A6tYIlj iMh2tU2wNK1dSBF2sxJHNj0m6zbv7ldAo3olsk0s2ccQm9i1KyDa3G7xHDjX g2/b8JR9qZLOgqDpRCUaF9IQokvi6azat7+uGprMoLPIUwnQystRwekzJ9oc 7+zC+7KI67QA9Rf110wZihxI8sGqrFepPgjB0YWyrDlBJUczAnj7DoGrT3oD NUzcVDcBStepON86gr2Uu7dnUQ/MiM8Jbp11NegDyLd3640lS/z/I9WGAblB Xbbh8bOYSENWwPVdSTYTjZd/EL6DUL8BAKvbw7Ute0Z6spcPfvEzpESFG3yc tRV9Jp08w4T3AcDfgvI48nmhE/amYbc2wgI/LXrHkzOi5CTUOW4UiKYYuUTb ynsumbkvOgLtezS14aQVHPtHqslvYi8aibmZKztIehEYaE1xMBcyTKtjaECH Nmy1mVhKxc/VFzR0W4qUC7Wgz7hROKmialtOmQ3TdLDlaYHfR9mutiyXsbi6 7S4KhDro5ozIn9aat+Qja97GFgIHCIpMTb6D8rFu120Vip0MgcNTwI+g28cn EqlVeKfaIaqLgZVbc9Vi3O1XqZYusKCR85OBMiezrKc8Q9FPoGZmNCxf4nWU iw5dchdHbekSX/zGHn7DgHExwIcuyYg4O0XOGHdwzLp17DtXO1mIuju77/u/ iLjf1JSogprhcmgTYZFLErx3nLY86O0Dpc2UEJXttAv9/ITUZlq6GyjcUANG PrESKSD3GdZp6BllxX5BpoZtMzQFPXNuY1sSsnFEsUi5N4Sw88/SZ4M6wUuH 7/dgKJcfKTYJkLUqEFqEwQOtYjcq6hn4ki1LgbqF8ne9J55/R9chfsJ1ghQa 4Exj8zWR2IyEWCoWpB5/5Zy7e/I/uEKkTB5UNZ5ctCGLu7rhAknHJx3IJXsX 4uoXdHd2gwFDgSkEUShz7eM5V5TEeZpSkuVV51COhopzijU2oOdGaPAGCrft VBvxvPMqxjBaO2HISdvaHDnHU1fs46aucAVx26lROK5eqm8Qg5MlTUZqu4Vr oAU2kYHmQox8PTfk6xF9mlB0odfyHe0mPp1Pga6NQpwN+HxzJtnDlP8rV5lh Abv1z+GUF2/Q17tN6EV7KqztyzfUBEU5xNg0p9dzn6FBSmhK2n6HJ/N8H1OY 64oTRiZATYQO64QypRT1EnAq2MBG77rmwWqqvWdud4niUptokWejDGi5ic6I 0rFKFWhcLIe5jss+Dx+igKt75PbP65IbnXm9FEViU7DeyMvGUcjoYHUPfyVU CHlXGf8eoprdoLULLn+9hy5K2ncowSN5y3U8hmJzKpNFKIJeeZ7/8qhqtg52 LiN/OXpxTCiWnMk3eeQRKA2BKRm0Si5mhzzzdI9PjRac1eHQFtqg2D+tUiDD 9YkM5aEicrm0E17fYLrz7aPO9Q3U9Xa7asRXi2ZGZSRsKMCag4zl6oPr++hT uLbQWBTbhNuV1cJdCcazDZOFiDIVl2W/PiVKB9vY3atpt9yVdGT/UJ0uQYe/ w1v7chBbKADTIpffQZRfRzyCEgxCfYTjy2GhXUIKmx+hUzTg7t4h+239inPF DSkuokTR6NFhrbxr2pcnWm09HkoNVFjNof6e95lSF1lUkwedDaw31IVQnl2c Yi4lqMKPd3/QIndTbtQI/biDopQ1qLRMFl1JQguKQ8PZDgzewJOr1Tu9zLi9 gWquECemYGuaUkSj4YF4IRJ/tlAbVaqIbXdzwJDVfGVkkbA/JTVrw5UWQikZ 3myoBJ6rTI0kbm5OsfJnqG4iTvZ4HmK1N7WXC49qjE8uMOGJkjJ8dwixfqxI ElvWjEj7H5scrtt+YlYstrniKknxwSbnNvVdwoUA9GV03/Nvwh7fkZCGx5Un m1LzISGktiMo5LWkwACFCVWhMlRYw3IZJ4Ix09dxsTCyyqC+Dmrgqwp4F7+h aHYE0+2Rw1e8j3FYzUrsAYoLmba2+mT/VEh3GoDDrb65qqW5Z65AWtUi8AJa AFVY2ErAsrhMkJgIdu82k4I/9xGQR7bYZalN12FVa5SMS8DYlsQDulC8QELD GXLUxt4dsEhzCNbLrok/CezMX39csduu1gWPnO5iv0E/1v2DBnbFZMW2s9R+ +xtdpWxY1NTIuNUuVG34mziyWVbFlXmJSXC9MmSklyl3FM9eU2rWB6cUGYub oAtwI268XQ28ahiVXueZ9tmEshL1BVRzfgNUdxAKJ1Mh9LD4we73IPVYjnSn iXOBAspVY9X66e0FInTarNYQnW6gEU75u5NyPnGM0XBuunqzT4D12MO8vN/g 9IdywzJCD+DbNnzZNyHfG6UgxyZ4Mpa2g4GAzGKNaSwQZXn85XwTpl/r3WB+ cV6TNxqt9r5xYqh0d5avl2+x2O3ytSDsa4kte8fdML0rW/+MSELjeB5qHRP0 XdVXzZH2gxmX2pBz20y31w/uFEjfFUfc3z9c/a1wS+gthu/p0oQWa4zavR6X nwYEXV1E9Julj82r28uDqEKavK1hMVDvmAe/XDrb8FOniej/k+vsn9cePkJk HxbnAXbhN/YrZHGHlps5PXOik1zmT3ymOOEPvAMi+XlmY5PfXxVCPqaKJMc8 2IpULdk5U9mN+BaIWnxmvy6jb2hVtvKBPmSyviRWxdH8rIp7Qk1haSUnD/fZ pKubmo8DmCsLV2PTP0XIdBNG7CSu0+yorcUgaTtbFC3qi6ceXW7vfWrMm1Xl g8qe0JjMEbDryCsV8vBJw3dMr4/ftMyz5doDer/eFpOpqVEwNkyQUSzHS675 z+IhPRL3yfeUEVukLcpxh8Z0+SvZpr+zkjtKHhdnngO1JJzI3k+vgvfYchIN 5morEsQX9vQRQ4O+n3jFaL6UUigy92qHTcoy2YDb9W4q+3jyNVQCm/VoTTE5 +J+xDkOB40QcBf2gHYbuxHISsYGklt0Oov7nU7RNO+o0C7LQviZna1VwyRKq rEYXvrMYOT20jArQpnvcQwS7PwuxbZZWyQ0uAw6PShDGP8pSwZeS2ZitUTp2 +nsb4oSKKV2p36Mj1wXUuFvyVUHqFhZxI9ltTSjt60C3f8CQYcPKBiHOuNTa /D04LvUaqWF0aAW9W5qgu6iVxTU2AxfVPWJlxhKjNON9YvTHrxiazCKDgeOu O7lYhnkhIlIS3gJv4caI89DCTfDp6o70/dOlg2pwQ0zPKHVcUGRZXPmJuuYF fl/WYowBzHAObKrbQQj8+oA87ElwDjOHE62YZCSGoJW4xZOpDZyqV7Nih/wO tQGsGTqyesg+OKsfeIEiV+AbFjQdj7TQl5M6BLrPu7hs705UDIPm3sEWo3IE pGUk5Kj5Ta9Dna59tSZrwgXORl+v3zzkXB3pO60x1kx22RyPSUPL/VLTZVwr 3g8NCBHKixTBrtfTF/xl292ZQ0T1FKAjU5QgpYMi5mtUrHSz7YNfN+kP7/Ky lLTds2dTE1IhIzdPJIJdon5ibm951XHICuek0Z9CMxNRYBcPKGS9VUYrEfUj apa1l8RRd4WnS3rn76AZrCkz4jfoFfPVh/WBCYRWyCVThWSzHvmMUGT3SHD6 x17RonJfGPYcaiA68qnI7IGsuHHU6U99NhjwUhjSadhL0/sJvq7xvY7p7b2E Nkk7fVToS+xUYtYoDBL/ER7qcHNPkpxFsHmNbdKkZLnHmKKlAjwxoB2NLdUJ 5xX0rRdricqhAEP60PuWPy+PZSnYaQmRIwKO/EYelnhGiy5b1mUaF+QFKbmp 8JNat4xyRfrxr4RGoJvAkBMEBhedOKsSZ2oeisx/kyOoiIossXcbDuX87zso mBMhcDqEdBq02/sPmMj5vdmSKM5b3iGRKVt3+XUUEHuC9o8yWxBNNHkUGvzu bI0vRqs1DEetmzWs1K3NhAIOrpeQ7+8h51q6GA3VQrdVjah4tT7mjm2SChBa ObnoS7nz32gXzpTZCibg5LLXmLLiohlxzSwyDDr6RMij8E7jSpNitSy6LamZ lJ3KdGP9VKEfcywiEFC64jAyPKJaqXItAyp5mvoeTJujr4pHZH6UtNkXjlmh +NA2w6uDzsh9YW69+B7E/iDt8KLu71GAhBFUEk6rXUoUIqhEARn0YzeM2G/g UWJMGiz9/ski6+gHLWigokB2twhv3HWDG6Hyb896IPQLZ72+8CEziVeUd0QR pDBSfK1HERzhuOg5jTbGnKQp3uGXT+cW42kKTzKmubBplhhGl+6skS6LdB79 yf9th2/1aXOwBGUMhZvFNiTNu2dRTk6EvPKDylNh8m1LmlHRSe3n/1zFbDoF A35gD++dTElGbsYOG2RsQCwN34+6uX8d3GWyJUg4eofwHlvfImwORYGd6BmY 22ZpJdfRcfWL5Xl/ffhym6GMJBWvQ+oTlOclCPuh0k9rc8HrHRPm11kIB3kS eGrwmKwiyXX2mJKjCDWIzZAKa3Ci1pK2eZtjA8KvaGxQkboHXY29FcGv3+gc u1WqmBdhkPiK3AOLClZYr/5gewEV5Hr4tii0tggPULTi3z/Jtk3X6aZaE+CE NkRV/6OHfZnH05C+mQHgEETblslWV3cIHRfvHj4efnnS8niM1BXpufIKVjTw 2aS1qu5aTiqNcafCef9ARBGdqkP7WqdaXKzSxFRwHJlnNrWwLbF8V0mzYydj 8g4G/uUP/HC+Q2jMUL2jdhjdaw206y1yZe6CPLqGPfi4iIrZv3M18zM6AVah MZuSt3KdW5RxKe5iyT0YGjZC9wKhMjYfFzmR/Qwpzp3qSoUYlaAgsCflLnT3 WI0qWrgbtljTkBWhn0ooacex8vosw89EQq316MKQFgeh/6AWV7xnkhk7NpAn fQQ/pVIaRXbjnnebYtkithKOUTxEW07BZPdXH/ivgpnK/jsJI4SZc2nU+HDx 00ZTNi/OFw+xEEeRcj2mWM9DnT08wKEDMvhrg/OtM1AS23Uw2VE9NouSz9Ua ZusjyG/tNBWD2r7F9V1xDuHh7RG6oznU0AthokPWsVd3KjJU0jXxjfVORddd Oq01c90Z6H3dwufPmyNDoRshxlRNMU6Z6JWYuByJU0980leHpBpQvFX5zFef Obb57iqwJWtRLa4yfT7JpW6HoRHFfEE0jGZLp05kePlpbdOXX58QZYAhaJOR 7j5Rah4zLLa4bOS4p3bpUMMqLOqLYky4/IQOwWyuQCk+ThZOqyxaxUETFMeZ 77LVgLua6UIDDjGqbivHX4+QLf0GWQaXfEYNJMWrR8jB81ENV6LRg9eCbbB+ 8iaVHbrn+2Msma4ifPVpyiVSPjDLDRLMG24VS8E72obLaU2ZA1f7nofR+Ncd 1B+FFggetcmn4sa4ZWvQy8aVu+3c1idVHxW3eUsTFnJdSNztp62W6q6FYuMU vSteWvAURSfHNJ8cbls7EGHhhaF8kv7Cfn8kEzz90K5Ejy6FISgHFtfU0JHQ +Cr25iTfHsAMitv5H/jpA+3MQ0KbjVqjvIsyg5lWR1ycqq6oD8GezkKNcUPy jQjccy4T3N56FSniWNxCtB+QwDnNcfc78pe/s8E8uagRCjXcKLr111Rq2tEy UXe/4laESDRelOnk4/+5TL45PqwwWrGkKSVXvYjjFWD+HX1DuS3bRgTJY/P6 LaGn5g8+9TAVCgIfqqdTZxZoRS2DknjHoPuqHgKtm0KAHK/PFC7vU8pbREi0 xU7JLSbaXeSxdN6aLfeIGdrrSN4ER3jhq8cNyfoGW6jYzeQpPHrQGwaeQ2CS Mt+UxK7Qp9RaTzYVx+rgHvrashE2wcsa2lRMaHelNToUoRshlm/oTcn11rWz fjvBx5XPFOGscWz1MEph0znpp9ESkum9Tzu2eH8ubWqt2LFLx+8Lpfdixiy6 KkjtjbMNvjrCQ2D0YgtvLTU1P3ki9oC2iCShlWzzVOCxNaORAWamSDFG35b4 g7SScuGwfnfN+xwxS53PfcQunEMd7QmrNFikGsNh8sgtUZzwvC3zA2b4oD3G DTrRosNbOYXiwwO8QRJp3cwWaoETQ//euGgCNmTchsfr4ian++yWkne9gTg6 Bl0lUyzlVNTZYTA6WZZORu5COfadZLzSo7fwNe0OGO/spdbiSBMB995P8GSt IiArcCq2AWKsMUNhYw/NZNIDxMdTMey9OchnE8S8YgeXqtJry/B/7qg+7CY5 eOmTQ/PmnXLnA0M+64dsgS44G75WVaD0+u7HR0ueXRX/BR2JpGD1uvjuLPhK 4YRQ//jJ1pLLd9MKH/LFyjbaLeBLC8HVxVlMevq7wJvbCrUEuTCQYKCjh2Zl UNlSbkJLmQPVkGETTS47dRG6dCdHMRoRNTcq5HE/rF0x3DcN4fcC+iEiBkCt P64/vMuJfvDkMgS/RM2lWYs3ODubu/79SV/BD4zIXB0beXYHwSPSFJg8znsS cTmhWzfBdgH+gZyt8D16lvhNr26D9WkzmoreQb3qSpFzirh5rW2U8V1SdEgY 67yvPbz04fZ+/Kk2mU0J6pA05PziONOXqpMWhS5YqqL+3/qPVUy7zhB+N2eN 0bkpp1qJcbRg187xI6kylH8aMzKwzkzWVNNVnz4UFw932TTTwVPFiU0zdCeO EzbZFnZQQEhWpSCQkeLR/rPssILuz2O21CCgtH085HoFLT1YXSj2v+vDHo1/ +0ni/VcyjVq7au58RB6/81aqgUQz3a2UgwogYlm4qgi4n2/VNZj5SsXboHeQ SUQ9VrDI637OYVW3XXHm4yr7vcQGdj0GVjdX6ikE0T9K0PlvsTWzGlh3VT45 Ve/I/J9/wt2IdNvjcLEFLVRz5+g//n5Hsc2sGl7zxIkIGR5+9lZ/Szd/Z3Ez etaA7CQT5T3KegzVrRmRXkjD1VhPfwiu4rd9uLIxmY2FgoshTBWCZJTzgDRL r9Ymgs2TFeW2TwvnkjnEqosinL8W2yZszBPERj9BxceFPYSksDOcVIwSO/Iu vpfEDhnh43aeU2w+8/+BX9s+x2PHru3+f6B7cwwjjUzkEJrc35gmm7S5CCHO H+KUH7waJlYGtRCbEN/WQ2K83bjQjGhXrIlaJxPs4DRNNriBDzbKNKdeXX0o 0apTfk++QXhWXl0FDu1cHjfVFfu1CKGIAUnGkP743aCAKSq46ObLQ5Gw5TRm Nzs/WFnlQ6wga84caiaWDjTMWeTambKjJf1657KPTNIqohxUcSLNSqsia/Sj U5/VeBhL7OB2uB/3lwiGokmvhpInJIlznX8ySJPickxNCINJaezXvNB9TWic mzXJhM/nhLylH0S4KKMicnuwA4tkka9QW+HHmK77B8fPVb2x3WL9qLh072xb t6y0M4NF95PceE8ygCtLSbtpJphCk/aYrbWvfaGwY3n5WU0jQK+9uCFf22IK mQYqUwdxwOYT0xuXF7akiEOEqYdnrw8yL+7xkmwAyig2Ppu8GxVt1L3a8xDe RobgkCPdepadTNAK+fN7hNPRsWuqDkNNLsLsYW208b/XcaDRElr8Bt3I+NrH uOVsB9xJppT9IHHhv7dMlKNZd01ibh3cnM0C16ZosAq1eWwIKPsbOxuYWpsZ rJ9Tmir81rVjxPycFyXU06QVHTtsbl5NYzIEoz20/4bSoEULjRBjAwZtBVar byslJo+OAvrONYHVgY8tigX7nJiQkM49Pl2UbCZTc7D66vzpGTKKo5kRYkdA GI4blPN2g35TisrNauXv+q6xL09Q3GUyBoomhtm2gohPrhmRMgfdbQSPBoqN efYfq93xgXi9zDnzYXaKKJWUGk3nGxaF7RZwf56xRY3DmV5c3F8UqPgjdA0d VTzoD/L8ffvwibK3EltFCFkpmlxa69NKzXgzvH7KJtmteaU3CEuInjhLKela 4j1la5gjncLopjYK8PcHk7x+L34/ptj0a07oxYLjjLigr755LbJNbNX/LzLG Gxj+S1320UxwMEEjk+EX6ttTCPzCmXZu2mBp5LERPDDc3hDyjgPP02uMuZPv UEISCma+PBokZ9TFnmO9Kh/yf6i5o/R51PB/8TbYjd6DryifECO1aRIU8voj rcRxrPKc+BRrExQTta3d+C14ui6+jdeZHxbK2YacWM/0HcDaaVc71EAjcl5b Hb6cBWPCRoYrQkEBrajPdWTovkkPxbJF52DlDjVLzj50XWwPJ7678MlRXUd4 yRlyS6qkqmSn7ThJ37XDOl6QDV1VCmNeqQs+oHXV1gkWaWS2OFtHWlCtd4bz kd2WrLW0Ld4ztqFQdHUt8lYjrNuabSBrGJcQzwoBwYlT7u6FmBHChTMGmunV fgwL8M1qqqFX01z8hluaabfsXXaTsaYpI4rwe73kGmU7HVs3Ybp2uLF/bmx1 zOUMaSWTC9VXcQsjo6VyK/Y5FlBeHbOifLaShGyq7w+u7+vyFGkQwyYKbrHl BCIGF5cuQ6mu0Ghb1KErl7KCPOpd3EEpPZ2XVCwJEhnhl+jnYIfNCEWkXS3O s4G3rBhPIlxGFwZndgyuzr5SaUqbK6h2mP2YjFW04oM2BHIo30k+vIwgpcqf 0ArFukOLu/sK3tVNITGj4E1OmZP5WCUhie7URcGbjej3yEbYB2X4WqtmeV2j WXh5BJgEpV8Nk/UusHXNP2wVEsqj0GgnrxW2uKouVvDIV7/Fydq2BDJoY1vc ZikyuC+Fi1HYPFZdlC8NHZRd+pT76y/OM6nZKsLKs42JjGLZbdDRPVz5dYAZ I/XFVz+tz1QOxKUKfZsrtPSha7veeLg59rWA+d39jLNppgcUTTzs+b7k5qzE SnX8HXxRYDKj6W4HeHKajuDkIJZeCD5c1OebYCobZcPjspO32ZBCnag1ijJn qbl0cVLUfm5GS3lTuxuOw4e9Pocygo7PIuRlVJIOo/FA0Y8Kxm8kALwuBXyQ ZnLbSLCKuOfwTaiAVJj/SElZNBTZnTexvf5oN7wPnfpzH7NhxmAQ3eOEe9Sq DNvLCpGwQ532Y+5PbaVPZ6iXz1ClUvvRXCJEApRpHKQfiuQNaP9p/avjEE7K kmi3EiCw76wyXrJpIEpaqaHkFITbMNRyjBOSv+kZrSydPz0aHvxg2QySQ0X+ ZCVatLShlzJZzU3wa8hFkFRmxs/uHV2y94rt+WAzy2gRejooiKsjyAkySJVm Oyhl3pmZ7V8MFG9MbfYgRbXbLx9D2sz7HFppBdRlkXtlRa4t/xOxC/7bcAtg jH6Pz+9c7sjH5xQhexdP9VL3NcHn6RmW/T++Abo+6oQgzdTmHQbS1ZkNeYtZ ghYpQf25tCB7BOB/Zal2dnN9rupxXfuUTXQbrBJ0ZBlq39DK9yE9PxEonFoc Wnf6Q8g7N0F/0+yORSjrWa12y610SAGckMOqwMX1BDI0sibBwqpIts+XEpqw 28riJwYofJHSk8lHZgcdlGiyRc5064OiHPKPbdn7eRmiocKuBV7eBNHP+nVc EAyT9mChOxJHxxGawKJ9uCjQy2xWKnGWboQWmixhyUpF5Itkx/3/ZlzgHkd9 tgUp1c+9gEypvw25LRNOn7NA9ksxUKDlN6lxc/VYmnDV8Iti1oUF7RRq7E0q L97dwiWi6dfD5ZhwqTJMMxJwBtsdptPr3mOBtlST/MQfHyE0liIbSaUwBfit eBmp1Dq6Z84J3T62L0594PCRuPzLpVaqn6S6SoYUAdeyUkr4iN3i3qJ46PFB 71zhNfm2khL8s369VmxfaCQz0HLC3Y7ZDX9tqQAKKbHxjhvt6OsUXWq/OFUS uX70tQUgcq0hvaQpRgQFDrxIxVYCKi/mdqBvvxk4N02QxNqCSZaUuEVTBLoD 99WjqJbLHAimfHZJla4Ex4xz65i5y57L7+1r8g3peQLyY3lcDwPE7/ANOulZ 7fkPlPeuaO3xRj8F6wwZ/s2IjQpBstLUPCZjDS+be9230fg+Q67s+fxcfhXr qTwldAxlMrbkNLivH2TmD6Zs63GNZfLCr2Lx+fd9QN02/vQcxnOffJDMGIVR +7yfCyYwdRkVT7fCes2M/D6pffXUbpxrsplrYXMs1eqirtjb1ivekQ2jwobs UqHR9xlWrMtuHPrh0MCAQx+0TOb5ej1Z23EhWgUCsQElzPuof9WbZ6ghqNQU RK5cp1Ip3oh29aNznjHwOD4dLH7czBwRTL4v/xaoguhY6n/dc29/+rCr3nN3 VTLTPgkYWY0Lc0L4ho3IPKl2bfM4ZGZw0u5K1UOhFRoGcPMpz6ttRFhathf4 x0HWasXfjnk3H+dUx8S11ce/7CXgnvncyNZSonq9g3dkyMwX1VSh53dt8db/ 1aXBfw2eOV5/i2kUKgp7up3Z0/Nf56KnV9VXnMUHVVTmpHbCBdwKl8q0RgV3 nqovHydTFoxjF6xz+QpV0jzcOpW8EXsiV5oLtqjNIgK2UmZ7NcWx6bSlwhbO mlS8DuX8eEa0LPW9gR5+grCV0iDoV1p558K9pvSK8TT/RYOsuACSFbjGs8WU tT57CQWCbfANbiJP1gfBRm2yvhvGklNosz9fCgql8vDgwmxZH0Xszm4Nwzg6 exciuDQZuBBx56Ne2trYe4xUBE09FDN1zoCnYpHMe6VaMUItw3Bxstprp3fA /ZlzTRhBNmV4rNgA8YNDfCloi1QrPbhyn6WZBMons21cA/Tsd/Y+uylWqHzV /uf6V6h+KwQbcc2N4A8CDGeza+nbp8zd9EZAy0iVPzi2aeAHbyoVhkBJNfij Lg2T55zEroR4SaPHDhv0ZAOoTil/vsYYPOMHw7GngpFwpLuockKESMAcG3be 5qluR+2vvIiFy5f8y4a4xa0WUwuShZ24OdrBfq0xi2Kz2dEDtGWPYPk7lrIV u3YZV10BsuKghJaIOoG2m/VJg75wFn5x51vmF7/3/a3tzQqh2XYox5k5DfDb fIdNyhmr8QXa1GqWfO5do6KdnqZDh/O4bGfGJim6NA4je+mOS8F0jYDW6K8S gqFcXLTpmCyKv/+QSqe6p4pzOmUT5dnnHEF2agRtoXl6fD1oWq7Hg9h2+dT0 OsQqT8ot0I0z1l8ZO2vyfa7i2o+i5Mb4Y4NB1JYuy/bpP1jaQRGTvjOv4jZL Si3y27pAVZJ8RFOzGCwHk0uw510tu7GSFBqQKYfsmrUYuw/PF3BxO9oC/09q eXw9hdLZNntUdIJ+runGiZWzuAJFGBftrKuMWDxFBfSlQP/jnULjrPg251nl 7FzQube0Bn4ApiI6Fy3Wousc+C1ccSxI1vd62XH1nHzzFqdLfqyXEMtmBgsm QcVz2Zlxxz5977QC3DhEq5Ydk9SPL4/0Lh5JYgrwKxoUrRLuueLwG6wJDIMp Ro/tt5fctQ/zjvdfPjUFldNArhrIgz44ZSAnXnLXlE6H5GjZF7aIUGsNgHTa r+tqfCANbbWIhcrw/2j7IolW8bu9DP1H5927LjwrYNszlE8zGJI2K4iSRMF9 ty6liRexRPGAh9i8hPfpzVv88ME3V9ZlvAglZq5NjIudYFu70sUwpc4QaTG8 SqyvUu/tMpVBJnauQdfLvXu00GlTdUAoc6cSY030HtB726eNd5YeQ6kEc56a Sm6uSvDMu776Av9CSHlKfi59AZIm9bIMWfdduUg9DAHMQ39eNS2B1+za5I7p A0ITU2pz9RSCl0j5itYzIJsKIGdX1lk1eF1eZMjUlGZtkXg9u6mzdSgVXxxs Ntpseh9NvHQb28m3zTbRyWyEQmIKBi7qWCstg8qhjx/9tlQxYOez/r3GwQbJ CVBcoM9K8kEtfmSudSyOtdGz0sjAYEiQGllt6v6ieVxHJzJAvWYXAaA98l+P /wm17DyrWCcz8Quvt2Auohd2baKGYnB4vQ61cQxo24EhECqNaMVZxfjudgyR CznPTa7URk3tju1//bRQxrGODj4QXOVKJZMJ7kqSu0gubOQuxhzE0NOmt2K+ eylQmW+mm5CBEyIrUhweRAyzTGR+Gn1upezs8D5foRpgmTdg3+r9kvF3duPd 25vtXHCfioWxFY6kvbaS53iFnoJqzhS8tNDhxSIlCcUa0y1wWoKUGAMKLuO1 DR7sFxI1WCljURsc/nXmf0GNXP3lT3PWvrHZkbF8l1zDjBOLMNzP1EJg2Mpl lWvF5Fh7PESt9Tt2mJdnORiuRWXhzniTHTPPHpzAB1cYcMrGb2jJZB80Vdan S3hKzKHeV/jKPqXmbzMmgi01lYhUY329mobXkmWmVh+1hufnMxQQmaq924BK WsWnODaXEtATnS3Z/5Jm4Psnzuo2AxR40zPi678xKRuYJjCZOF0J5fggrZng p09Wv+LPn94VuvKF3AePGfpiXrWTVkgUdwrV86naN3p4nMSbUE3qgSturuFk TIQvzeoOyRev9hhddMX8fU2JTKtMDXgLvAIaMPi2zdhKQNndPYXSzBmIIn2Y KtKpFA8/aeAQ0sZ0cExhFDfo0IvN2VWeSZ1BIWa2u96AD7Cm4uRsJ+rh4I6T NHD6unFPEnU1b3hECQiqL4r44wiFkYwEMqKmaK0NonY859hgxKGllW3KKQo1 7S6XtPVzhDYBBTtctWMzS5Hfg8aQTAvhO4QZP9MPk1fh/X+/oCbeWuvCTZ5Z al5BNco0tcSv86DyrJmMgzSsLuuuXzLKGG4DczC4HS1psOY4Xm22kDbOdRGv g0TsMkfZTow7fw7GZcfPDc8vQ+BYgFnCyMeLc9VquFWIGSPZxR1d1J8ffllT UzJ+yhAgg7OWsRFIxyQOKk1hlEDZlGUdN6Cnm5yLxugwp5+fHioNOgeePaIh 0+oW0aLeQS4+k2mlrC26fYDOQPMOoV0jfl3fViTHb6KzCTnAh46D8CwxAtaY uKryiOEiDrLzQmkWJm2/EMdS6Rw7IM8K4YLj+tWm/w5tzIHDcForKLjgLBhO 3++s368hY1PNlAoZBfJKsLx+ljo+TtsvLjPInroRXQ6I+ompmbHII9fbunC6 Vux3iwy7ILHDBEeLDs1AjcXUWU+ZVz25mBKv6SF3o6XwGKNc9KmDupt1fVZ/ dSfzAAtlfVpupSAV+HaVXfEUZW493PUJ8pYdJYl239uMgquN3LeaX40pbsU9 kPTXvcuFonqLKfOavEZxyzVqXrhzzAUw5kyjZ/Sk4X9/ZdvoVIyTjRhVKEAl wrtQZs5taW0E52/7MThkKNuG0lL47q+5NmQbxf247NH5jzCyWSk/6B+j1/HL RzUWleibvqWUJv789Sb7TZnm4fyoVmKJisPIumi7JbAyOW2di8tyUTc//yu0 I36TyOCxOcjdNuwY3EvLl2gKdTvSORwrV0JERoektkavv7NvEt9rD+aKTZU4 YCsrQig/a3Ss5dSv60lBAP5KaFSiuod7/iq19QOsj4sIPI/eildAbDwh3s1w 9SHlmVN1YAuOSRsXSOmOrhzEbRKvrMHbY3Pi8JOxahdp8Oy4O9KbrB4LyMSP aa5qqELK+avNhW3hqslxyqk4Qu4bWnJDPnFkbj2YBWaUCap8KLPAj7Pk05Yn HNK8kl/iyCmH9YsE3mkuF2EYu32atGcEnAv2qushRFiwM6tx1ExhyiznDirt QdBzbK9l5ZnlOoDZgItOnImc6LWrAcR5js1xe1XVOguxxFbOQWNhQVwNeMPb eI0rThJZRYY7Umrl+/D4XBfKLRuZwGUi3QOLuKLMRU5Ug1Nnea0VmhHDsqOA /XUFkTnRh1biDHswhYj99+3kGcvHJTOH3PWI5DvSTnPLjt6VvUnPITicvYbY 1PZW0/cA/1zUFSkiMVHYFsy31zR87nqVrPN9TjfColBp6lYLq2RxhXtNqp/l UWTRlCxqYHThW812N202neIgjV4KO9s4VHtqyg4lzc8veFGOWqim7KYML40L Kn57MbBVFB4TZ7CoH5pybg9UWR/eVe8c0w6IqPYdSuD6rEobcSzOuqKWsTCe QRMw2YdyBEVa7fwBPi+DWeYIRURJORA8B1Gv013eRhYwnaWAMRNSJ6M+1/l7 geBw/LtJnV4r7ibh5EUpLdcbZs4Q9I4r9/ohTVyoGSdo80rqrW1fn6DMoBNs G+CiTz5bDnAfMdrd29+r9do4AOX+p1vSxZFKkCEeTwUFXcdOrQz+vLNMnlXW ZNgG6YMwg8z2uayl0KTtCgL1XQ5WaI2V7Qa840zHlN8Zu9uEprm1Mzk7Rr77 ihjsH7yC8xV9nKwzwsy9yjMTCLCRl8ZWxzefsOR+qqURrTfYry+01qBOXhGO OMEhah3Bfin6KKk2h+5RUPApqaA4PVTYOs/u9xnG8c2iAP4cdIYxljK2KBDh YCm3gnbtZaE+xlMKX7BrwoTq5jrZVm4wHdyAgoml8vXtCBp+JzmObcWy0XHY F89wiyhTEN0T4RnaLHWnQuvfUKJ+WECQMXsSUknzjrLk+VWOzX5k424ZoVAy M3pQlFmXWP2uNCg6VVna5+3uSYxevUNgqbRwhuTnZgvBEdWf0sfZtCGLY7wk eXCxTisVNS9Cw0uJ7/DX72RM3CApKrZhIeTg1MGQPGiFCERb1jKEn4B0NkHr 1yapMjj7NWZDwdkxZWjO46LZLZcbOjx7FezGxDNSX0fnyH04dzZtpclxVDJB Dx9GPbIUkxbk2X9na0dAg1CxRqdr8d+9IiWXNAKQjtAG2LV1oaAxKeVCb3Ps yX8MkIptxD40594K6fUMvqbraI7iUNyVINNyh3lqeu28wj7voZceH1NgAhXF ltTaP0W2UzQbQx1u9kmHOhHop9CAKefTyPgIC/udc8gbnhGqd0F17a1ThTRG 1XRk7DsJZEST73DC+79h0TRgTP0cIBEnQ/gkSgUhFkCI3aEXYAj3Y5OZorM7 grOfd7XkrSSFdRXqt+gq4xr9QwHnoWxkU0Pdx+247FoU66Wgdv83o4PVD8oE ROvN7IpdI6zW0xa5mV6MkBh1UUalkI+NICu0pdFZc79vK7Q4dNoNNQhUbM6L 4P1vGBPO8bG3+962SxZ+F4hIvo3ihCLz8SXkZh3HHNMsZLng7RDuQIHfIVOQ Ndc6HPpUZWaIGMbmbnf9+CelsE136ByJT8KbsWN3Vzgz3gP6xu9A8bhtGjRw pjb+sCw3cF19jhuUP/xeUHZ6Z6JCT1G4xCEFJqWhsFNoPolYoyOdTzv2n9sS NmJyyYUpOddKse+oCP3zFGmrT4EbO4eSWJrBxNmjy5WqDQbUa4HCo8SxTtD0 htBtwG8ZiclaDapyot41brwwqPv76EzTolvvpKCfcqlaPnZW7rqI6I3eMukE p1rNnrZUeGHgCs87I0E+4QEK05beV+u/nPMEdXRiEyXaWUnrv+gDCykybZA6 4/qkUxxvfxWTy0YAJBosC9yiHd4v7fqa1t8EApwIjmjPbGvUM/vrazaFDZ9j SVAxuzRPzscdzObrC2+n4/s9Ou6CJnAujHsV6eH1XT0j/97xkIc+omGC35UI xAw68YVYh70jyfR2F4T8cVls9QR+BRUAfN7kGyJuT/Se10kxORqZx2wbUMol ZtcSp2Ko9ReONbcsKzU6j76jedzxSdTohoLAEUCT3PwR3lCNCAXrl02HOu/q HWojxgxxSFJAKZM4lspFoYToTWYIwiwnRHJDCpZtsVUCyjW5gAAXtmy9Onu0 V+MH2wMJRFBz5kZscxgZyOgWbk5K2VZ96P94DY122oxI3VyC4QJxcHgwrrWn W2+d0Mkx7LzRi3t4jZYsOGOAY0eIZoQpQHxoxQEYGnL/2BQgo+Ig3uPcPmXd ePLvl0VvPf61/69oyQNrrN2l0IUPdju6K/CsJ4SjDWLtRdIk2s105G8kQeGD 1faO9s3tE/o/0EmpTzPdzMfIhrr/YJCIkH1WhwwJSHYl6w4Z8uYWunrGTU6I +bVQ6iVtFDJKpJaBc0wTJEyQIkvSg9/FDap3k/eX0X3HWl/kGkS0/UyhDE+g T1fBJehVsy1GH52/P5Va5rRFcZ4JcnqxkQjajCgsdGa5UndO+yyvyv7dvGfT iqTVYh46i8nBz8EZh2Q3L5VIyTo2YJItH1j+sJNDGXb9Epy92xwzGTNWaEKn GEzT8ZSjmV43E6iUbpqwNZj0+G5OFJwT0yIlDvErswlZzVL5qZQXkB8NXf/J QjanG2tR5LN4EzqhYLV2vUjojEaOGk2dUWhuiFStiCnCbWLe8INrtWYMpGkF xRDLZkAeUXAeggWlRv4DSRldb9m+WCz418PdECFILDFbqkTPL+A/kjaZLie0 MSg5czVFGtXkO9JWwnTRujcWcMFPOJ7VN1Qv9xE+B8WZGHR2RKmbpJxWpLD7 UDnKS1ZGJgvtELAASq09pzP0v5c1OyqWXyLqeUGECBJXVgE6+Bg2y52hoUU0 qOq9yOFLE5c/8C+mePCAtEJoJJrU0feSGtRJgRFZdE2mpcBBtls2bX3Nxyq3 zzU3tvB6DZwc6mGXoRdWpRXltljXkZTHqQVqATmfSy88HAkM0Cw1qdIVLKpA o5VNIj31N43ZGvjFslWwLWqxs8RiZBWXshqSb+AvFyi1z/rT4D205daO4kek xjr7VFkCGWuOHBo/QIcf1fDwCB2Fo0fPIbqpVvhHzy9mYPVzmh328InWNd7J uDvMiZ6RkdNtGwpWTikPT7U2F0kKhcEVFgq1FImio+Cbo+OlpjVjasIhR6jF TNnuMq+fqmuwj2MhBOU88plT5TMYAfyyp72rIhPZQNzuaa5efjjokjfbn4gq DT7mSoDYStc/KEUn47qY7VWYEto26HXG+V2BLEBbpYw6NVDHVVHNYHxWu4Nt 3tPt+TyvKfWUeDO8W2MbR0qglUmIRARgB/rSdtwcV0610OQY3yg3MrnooZq8 JZVYHGtMqBHBJvb/YJ+ZjGXxrgGo99cNJipoudc3lMYhi9fkPCJ1QrCD8oR7 tkHqMfnyFVFNOIRS7/Ddp3e2MJ0LaJ8r9HuKwOoOCvu7mdvH2JPTPES1h7ey DGiY4rGfZ+H+H0zkoa4NozU8bT5iFwN8KC++rouzlF8UIEVPCPOMsqBTke0s Um3A11VYGNMegypaRyvffnlrqQQ6dCcOmcvOiC7AXbej+aC+DCtzk+0CFLax wtPeYTo85NpMYlZrXwvRNnrfGItdLIaokxUbY2adfccE/hLU737RD+qX788v MbduYH1Ug/LckVuaSO9qgzLclJb6cY+IojxBHZ+C2sPdn6HBL0G+4fwaiozF GU+Qu5FKyuRM5mlCd6Y4rWsmKCnjjvPZ3WctTdSNzYORE4wsNLkcE0mz0DUa fmZ59r5SesCuHiGC2gd+e0c9xbT+wBUK98m46BWGr6j5kCEm0E3eKL3fWHQ1 b34CvGL4eZ+SLRQ7FLGIyz4oIGTllUF/wPXcVBzcalU+xVzijrjYr1cc+9H5 FGQvuEOWZQWlThgcW8vsQ7rjRzNj+G11zeWHF2sD84aOECBmeYJBhXkJnpBr U/xbh4qG7ugbZnDoUOnS6l8/k62WJItSQp5X7hLidF2Ecc7TZuMy6I2JRlah 1NjmWRzrcZlNzGwoUXBPA92m2v8Ihilbq2IV231iViSHzrntwyvj1WrZmMdC Jgy4PBSr87onsTIoaL7aBnS1zA/F19tTyjaTigYiF9pzmRbk+xuLYfS5vApf z06Tw4mBa2lX1AD9CQU3k9PE8eUEISERA8d9CsWcdHG1RE6rNDuE5uYnFICy eu19dgY1wXZvnyvGaHhWg3t7wRe8I6zxDQQh8meQttaA7/ydtZPzg1tUMZlK avaJ3yQGbWCbtdLyzDl1yH56etAU4MHLSntnE8yusjNuK85ukBBV0FZLDBVq pZ64tYcC+yY6sQbqFnsg7KyLysPVfrnCuTYly85KCwUKS3H6tKba7MSKb4x1 IMJOHkJA6ujjHfqgzwv4GpZNLLOFat2kWoUR9pqhcFLhmid8i0H6tyl6B8sO 4ZgvdxCAqWMH7l/gElfvdHrNMf12J5LecNSxU/fIR1UbaGh8KGEFOj6y/6+h Z9l6JZaICCdUbf9eyzaXCiknztbUh04H4ZWEhmRNXpGe8s9LiG1HQaZONibE oBfjBvGiigpANIGKaTaBgd3SAQ2STGruP11d9vv/STV0zDMzekdBnUnw898k MDX7uMSIhFk2GVznE1Qv8D6lHa3E8zOEnm+APRGq96mWmshMco1HEjcazlXT wSMNzqB8QZfB0BCtInHsb6x16xBlc4wZF/gzQF3yixcXnsVlfrGDynNjMthw v3NsKkeS/M2bN2Wr/xnwOUYcng1gdTcaiY0JQcjTQ22dRypNNk1OYbOqe821 yZEelwIx14CyVE5zNJaucSk+cxvHoVnEYcwnLr9v4boF0iVH73Eg5RIZQxCh aLGhL9V3FCdHeAiog5Vz3ZlInd15lMRZHzelYia4aW2zI098pXvrQmBc7qLP TVaSg/B77ji+ft7n6Kg8ATSLKLiRshWvq8iLzjky/JmtQytwP8tZNS0WUqEd B743JYSOtq6LNk11GVh/h/HfJWI5Lg/c/HVHqyDXa5NvzizkaNLYO5THdujH KypAWH0jNIIsp+XkHrL84RLKBkp19RWNuCN8FUWrKXTa+cY8CXzgZ43c2dE5 daldqdT7r9iFwgQoPiDyGsLklzCq/9wSbScjRTBLebiF0ov+5CmbDO1qsEHh E/R/88MZ+YZtX1olmSkUk4rOD7z9A29ou3G1iCKbDIoJ/RhbyYsOnRWiEBdp 0kWPVmLQfXeXo2XdeYUQw0w+KopsumVLIjZtku8zxHqaJOQBJRlDJbMjk/ry lYwPFEUJtWeZsD+W3QBFPQdkfrB0NsR8bmg5YbjzfgU3JlIXXCidJpuLExkm dQ/qS6LAEBcG/Y2j8T1Phqsrtwz0151vhlI+FlfobR1dT9S6tVYf8+vIKACe mySHLA1/FmoMW+dKNCsz6Lo9MuHVVNuS5/qeY5RWm5Gz550+lzo/gyeV6aWA Zn6q8BvFsaOb/57QTt1mQF1R57vNz6F1e/ybjY8kobkS0evDe087CAUiJbZB GyeBtn0bmFvOnhGQCHQm3R+ofNvw6DRdR0prtTmRfExUNMXdpk+MUNki8D6U 5DD877c8v5B5m0n96P0sq4s8rx9iwVv3dIpHmZQMXuT3pKqvf0ENH7cNvUdf KJxiy4OzU+3INxch8TW3iqVkLTH60aH4ha40d/WVIQRTZiWUPBkyfCqjovbr C83rtdRE49Yt3Agk2Oc9PtT5e0450AI4VDt5m43r93Br/NYm0iXPIvWY3XfK U4TUrsaMv/cpuLAphXKJfoJ4FwwrKFj9JrroIBGKnrnK1IFtnZkcjgBDY9CK UqBX0MgZxslGjBS0JZ5k7v3Z9SJpzODM+nc+pRSHbieIrVavxcUHcsjZasZB dTDF5jjSPa4fFXv8z83Gnw+76GWSlA39fEVR9OwGDbOrUsClyujNRc4hJCrX OotrFdWP5v45perons5Cqp8QTsH2GWT2J10JtM2j08oqn5fwBuACZ2vrDl34 8cnl6jbycgkSNgJsGsdCcHYRJRMhbHquwzs2k/BlymhSon7j/yk2MOkJjxgk RFREhWikGKN4a9kURT7wNlhUlMKrNXfxy8dxyu8AMW3TSbuE4lZoITYi2yaA 6Wal5uLnXeVpm6QSeQ7WLlOEsFH0S/LzV0HlR350P3umpNLKjgEujw6xXGHr hvZ1JdcpuMZqF2qlNyg9cnX84CGgMUwNDS8klB527LDzV97hqO5Qpd4ufW7r Q4prhw4e6UZG1b4S9xwOenS2CK3yooOMMZFBElyKRa+XX98TnG7reGZmB4PY hG++BV3dfl1VQWrpTOpeBfr4ht6pmxpj1pVDZUdDexM2JpYY+UjK44QHmdFD NkkOtyoQeI3iXf51GeALbjaNIRQ/FSg7Qn+PpHD9vKsbXf9vSNlCyQ31enI9 u5evj1TCNrhFJKyiLlgVddF3TWmIv4O44VhBAYNfqbetip9fxRoKsoZ6C3rT mNvcQc4a0nIjW89dO7/jyIc8uRgbylcZYb3hDoWOXmotkCjLYlEk1BSyUpu3 8Z/24g6Hvkgr7A3d33/D5aATWO+DmyCx1igTJkW1iO+0pWQouNuQPrxG09Fu zBEua/YxK0xEI0HZPURL1pAOfVJphHlkTF6h1SoVTkLBf5Qcz2MVw4lzxgUX LN9ztRHf/oQi245A4vWFq033kimghDo5KHDsYJUgDVSgJZzHwkMGmB0uhkmT SzlF/bk9/5yRuT/oxDijtq2pRBuMpomuT03T+7FMF1HBrxGtQdwmFkhO+gL0 5gtKfab/5J2Lk6+xFjE+KM46DpIlbUN1s9zTyyuTw53ijunHbVp+yfVYBS4J /MlMQONErUXs6Hzz6GQkkl39BYu8lRpD0EmH12/V2sRmmjPyxqZxLXzXMTac n6DxnMU+RDfD9ZuDB9G12j6OYy8KRmtydB+xaIb/raDVpHmVrZt5lS6ydegx HNxF+F56Nfn8C6348FhHgATEOQgdrvHnRmbHYnMEmZKnPBnTsU3VBz8+oVR7 ebO4VuCRL/k0S0flzDp/JfiJeo6hWTmNCFx3So2eKPfhmlzcW6iD6DWJsdgp WUPMrgYlz3OzRhpBCZKtTh8keCyH70ooW0e5YlEHP9skjduUOqi6nL+zwTmI dpTJoBCSSub5evC20F1CDBY3bCURpD6JcdL1jfBeaZj4DlTUVjsFU9s1FGE/ r9k0Hcm1uUNEboFzhNnVt2LawJNq5SMg8RrQuJzD/H2TZi7wfA/lT2X7SHSp tlBtuEGtuNyPySjTwaaw/8nP/Ijh/wkNNRU9CIjVRvtkjSslorNdw7Z/eyzv 6h4j/NcrBN2yXdmUWW2gVuIDPshaDpCMOnl6xEoMuvQC1ZB+5re/BRryreAM qnlDClcUOyQttQKdC/E++28Au1VwuLa5yTGsbsIs71izwvQTAaK+VFYCjTUf KB2f0I+htwc7kmmfoQZlGiM5GPg3JiSHiRehC6+bCzb8ruvPqh92BQjcc8V4 v4OfeW5BKew5xegnB80oq9cIglFCA9ZSWYk26LuVLYrMQUA6DUyOwPznnALV S4MYYHCJW5Is17OrED5kXkU/qkOhhEbd3WC/Pit08DQlVORRw21ro6uBcbUo g+pL4c2nOt05KZ5kB981mq4k+PlFgUBBvqzLcVaDcEWOWmJ3UaG5YslgqEUW +FyrmeS78yWyK+AiIoibbMWAhdmG+93+ieu5zpCFGa4gkIqz0kk7JK3XO+TM 0mULWntDXQAF6RimQyF35VAYnsrKDdC2simLMii/Bb/eobNji1mooVATOdRh wyR5gJYrJ/56dVB9oq2n3B1O3vyENFW2+HuECUHkSt/oIHQOJZmmjp3ZQnqZ bDDWnXDtx6XWu43RbkyzbYTPPxn4EdjcV9D23rO1U2PZsgVIWDU2k2/x0Z0/ Q+9eqTgypIzJo6Xl4HJZIf2mkA0pGOS5yWo7lNGCqDY/CqFFe7z0rgYCBoN/ aUKJbzUF6wjc0XJhNwMfJ4CoxcP5ZjF7JLsXYqA+usKKhsNwxxQM/GKqpkBk /thoOGs9xTRbNngRGTqquaIvrlbyIP1h9bHPOUONOru+sA7lf6bsN2+L/fYy 6ijYzlx9/5ta5ETbZLvL4qNyLQSEuqXTogzshFwOrlxKDLSlxVVdVJxXRxYr sNPDQpH2hKKnaqN+jb4Khq6FiinwtNCxQIleIgMVOlDDtkJjq4CoUsDP7mK2 mexX4AYbAw2Z4w7qSnoQDQxd4GQt2ZOM4cXRxsH0wUfHi/wbPvLcnp7oTxgZ rElmHcD2xSnn6ULM3AxwyGrIt7F440aLOvSfZQEJrTSknENv2sbLlCszaTuU g8tUkkkWNaGLYodgw9DLDSt4xrULhcJuo0GIIzSZZBZCHptoUO6ayOEQ92GL cZe+6s05EjQ2IwUIJ3AJytJJisIQ0mDMp0bSHZmfd3A7fvZF35EdvLgOi/IK tSxEQ7tabHOOl7WN5S1sG8KvldrHlAdRlw+a73YrRJbGNcRaS8HMkIUhFcO/ RqR+d7lFTSe4WKrCIG5ZtmW6Q2Z9WvpvZdVyl03eggig3U7wDzZcEZ9GY907 G3d39FsrSY/MygoEWGOqLpj3eGd7boAJfgJc0zS5KVG3R9wpm+b4fSonxwgG Hlr0kpLfQ3VdQiDMG/0FaAS9mWoizvAjJk6beV9gAsKKDh0lJu7Nzx5foFEu mzkPzrjRWDvlMXWv7k0xhgm9WRk0dVoKRF156vMKbnbdVEVQTdUp1Lbf/443 SJ9JGfygy1BnQbQI6ilgr/voYqJr5oTyZDkt40GZdyBd8JATM5IcjIBtnyWF vpcXqI0Ls3yYja29txy3zy6HVIIG0yaz62gtdqVM2SdMqHNndsRtXxO0O5sQ Au21txNkR0XcVgR81ei55LRs7nxCUGH5WxAjqYghf735VAypOaAMTViMViec tPShKI3PEZhEWYOmydHiVH6GtnaRFAJ+IliODjFRa3mK0Ku2LVpP1qBIYrwd tKpaHZ244V05vUPf9HxlobHbYCmhvYeTQsM36lSiBGSX2s579dqGOK1pB756 8avCO97kEbgfHqX2vahusC43KCH0oHs6pMp8urjZGfki3L+6mKiJs/W4f0ul 8q70H+bZoTTBovXwdQivFovpar19vaFOC9VhSHZGyTRrmCG31tEJUFOr2+2o HQJmjXG1c+DH85AbQupUceIYHNoXTxDiEtxk553p2LTjOysLVmOzGbiEGznH 7BO+pEGsRDt6dQS85VcPdUkpevgJY0gKxe/mOsXG/D1JRBRoliFeeWJn9W0x 7r428P4dxcahlsYdkquct5walWtlQpFynlz0SntXZNxDiJkjFP8/6t5jyXId yRb9lxxfo0GLYWitI0P9xP3/2XMnGJtwEO7EzrJ6VrcH3WbV51QysQGXS1i+ iOwYwECnBE1QsfqkK7j7R1xibSn48MPAHY8lFfO8s0HH6RHngX58/S1mbh5j NPNAraExZzdFZYtJJ1MXcMj14HNzeXfGquvuzWsk6KQgztTOb6DVc80cGLsK lBPSbPO5M1sdZcXVw56Uwk7d9XaBnSlZCcQIYUHppDwTF4Q04JGcSz+WR3tW 2wv0YkB5Lkmk6fLOBRu2bQ8S+JLLmhRe+6YkC4bEtJxqEaazAhBrCt/vF359 ZhvmkdN6mMZoVDSJkpIBy1iwSTfrwSQuidekip1goUkzFezlbTCe8qi1MSgH XAahAzFWvq/1qi0dofqYYrES6Iry/PzAeeatulhUboK/biLwEcIK4bbGeEy+ jlljTugWypaMFoZy2/jzHRdIBjVNgX/XOhb1xO4Gt/lrLBT0sYXVZ96GBVBA yTYZLm/0Cwag/7RGPX+PsA0o5ZIwuTnxudg60a8N6DGiQgpjyky6z8c7UpZy CWDJyDr3X2/Rlb8Xtd3zTk94wGpwBjLYlfGX2B2+GZUppNT7+g6dsCI7C+ig PArlZ1N/Lu0bM9fj5oL3GIq1pHU0Bn5XKKHSpmY8CD4+Iv9kQyHU0EXD8aLd 8p/RBdGwD8bQxmV2yRHO+OVSI8CExAeIvzMj3TpOBItdbXe0TeZh1+6cN6I+ tU2mCzI87DAudUiNfRm641qoINwYHoo1gDLJNooWskv42u8Ei/iBvCM59XwK /5A2bcxAbWHk1o/lPAaNOq+4VGq4cFomw5U3iLpRm2R3QKZfoxwRRfkaj6s4 dMDpo6iP8OkMxwhCoKS8QYqYCID463QZsdFVERpwQy1jUwNAbO4012yi/2Mj wJHkqXQP/i9McN5zUIn0my6ibE9SmrjdcwjPlihic3MXdl5hc9QZXpQrugds Prl7NtDGqDo4Q0mCRqVIGOGPWRrhKK+bxf3YBlwjbC9l3zWVPOBoX7wu2KMV mahnB1D4GEa7nwV8bkX0FKccs+Y76Guqmv33u05vrDOJfFfwGl0xgkvNsHyX Xlqm+sY3U31511aN9fvKc1UVcZsh4G66doheeUqI9WDLXxY77QtFaq12xPK3 WWx6tEdORSVdeF9P8JrMJiwYbSDroEcuW0wwLgPb4diY6bQuJCKmI3q7TamQ Klp/vTk3Fv/5IaNAVpXQeHrYgkNg3c6hkqODaOTl2/F6Bml8RhHXDAs1WTRI 5JWAB8+YdSOvNifIYkS/t44C7G+OOHsO8L4oQhkFFwL0nWasiGABiNko2wx2 RKDUSjVNeL66hzM5FD9XCASlvT2uai0eMZ8kNNfbe12cJxsJr+F8bD2iwLXp jCR/Q9vFq8up8Qb0ChoO5xodLKaCb+dmOkc6juSBk9svhuNDRavcdc+oBI3/ Zl1IqdVcIkIZn70mGjFEQ4FdsaoUW5Umz9xjMvFV25Hp252H5LqB8GDQmGJW asgzRxhGeePnOcmoWcbhW02anTi386jrK2OjaqYPKcJjC1kHfi/FDktiLqD3 wSX7wf9r0kEVvLXgp/WRraf7Ew0/FvzdjGv900ea+o3eZqT20zsUkWU4ncOE CtO5p/rx8WJUISvUHvVwzXWIsVWOGglnG8JxWbo3+hr7UNWgUOMTPkXAVJ+8 IlCV1mNZWUg0MfqxZminOBvSWanGEb+L7NZ3+DL4ImRPn13QdnLBFUGWNS0T kB93GZDeNyxOSeNCkpjQzydoJbv5Vgsfi0BGEyR5YBabijYgNO5meai+Tk6S nuARxR0o1Oe31d5Skr+bDTh9Kep7mveMXnhnXSFS+tdGPkKDiaqY2+OtlKM/ Ui4OqPSANeq16a01K0fOlEsdWWml2bHtwrXuzlxWNLBBdLBowG5b1gUnwtVi GXSydNue2VEawTIgL0BHJUv0v57AP+cp1smgy/YUnLLsUmhn8FClNVF6YL0Q GapJW0wBNnrn31EV1R468DMRypvkomAby44ZolUb1MVYA+w0tuw+d2mET+8Q ZxUpaGbSTQo+yOqebC7DPEnSsEy0qYTNPBo0eCWt2c4u0XFr60uFEyBEqwcB QVaL7LbVjfOtfLEd0vqAUnWCElvNm/CNMPedX5D3FTMIIhe0IIWLxFTlsntd S7gZwJzuEm7eL7111MLOI+zQaJc11z8wko3ztEaXdUJrFbpPf0cB8LzwDoSB 6ZVXfovp9X5efC0ORv/Yq813eNNM8CuizoxMo5qRlrhDL+8ueEWNRpRLE0re eAlLbTm/SKNcgyDjR7zUj9MFURrh/iZCviXaL5iPw6H05dTlDQdxcME2nbAW ase1CINABjXVjORqn9rDZXSOmm/mgEJ+UKTmYQKO7cOdOjXjmJ9WMH2r0Lcb n9KWUWpzgpZd5yRQ3A5VbQPKi8WifQjytHYQvU7y7srb4qO1HuX/sG7y12mO xaGiwpDCjbWQni2xtDzSR2DOC7Zo19TdwgBqyGT4He0iO8ThyN5mR5H6mB1S ijJ0DUM4snpY3kXLuw0+S/FIIhISoAmHBs1vzRarWvdeO5upNToqMUHVYAb9 edlJJFSePZzO6IJ+BxL79zbqMtps7NSMt2iT0vo4C+c/iOMTFBzX8WTGWAHV 7zLJ7B76zzdUcWqr9Qu5Rk/KJAHdPWqJq3eWV8ssNbAgmKsTOMNAWvfkZsMU U0hRfHXGZWNMlQ390cjP8DA7LYUZM1P/fEMbCDrttZCEFbLsBmEa8hU4VqbI ebtTqV19w7fFSL85RFwJFSFSllrTG5yW0zWhzcZD8AGkDaPquhfQsl/vznvK 13QqYR6H+MhM/QW9l6Cib3YUMm+pInPnStzhgOz/NtbHrSwm6viGqAV0PFv6 RuhBaPcrj/mrRSXkWPiDZUjk42kymvqSeWT6QM8dORa/AOKLNjoyeBych8CD NloV4TMeVnSlnbOUxq8hN8cp5lJfs9OmfrfeiaxDgzEoZ7p12PtLcnk7sIG/ GOI2fDS0vP0H5AWkxNRIrZkoe32t+0BTvprDSH5AL5lpzwb/M2GVRmjbg8Bj XM9RrCFbpy1IFYLAwMWNVd0t+4G8fekXxgndYUKvNCkd28R7lKd7zR4dsgBE +Uo51P58QM4KdNmjIcxOeVHj4cEiXKzFhUfTpInF8CEvuH4Hf0DDXUedImXV 4ZBh8tBkagbAUPfvXYtmyOOOxIaB0tcGrB2ddyIb4eoNEu12jGOidZM1SQ+Z aDG2zfM5q+KdOYjwXMOanjTeYrmC/PhBMZKO5QLUDhDxhNEOs87uoZIHp3sH QyqS1z6efSys/Qo09L97HR7fULCXspPgSyf4X4kIg/XlLdtJCPxXtfKWIpOm tS21U8L2vDeCOsxvPlzyvhGxcqhYD0Uua0fGYbJMzqnBkMUxCrx1qrfyqSZl rxpqNHK0Bt7G5LQopc5Kh3qjh52Nq8mNgrunF8w//7BuLpMqNql0cG7RFxB+ F0+545T1wVErUyj+jXUPL06kGxgRcqSUNlHeUj1eQClFLQFtjpDAfSpIrWOm kbvBQd69b+m3pEP7fIgo/NSGLw05XE3Olm6AVfvo7YOLEXpqRqbCkKyihXpU LfVF+Z1+5+NX1H7bqPuMgE0IswSBXAMuWBCDQ4Ux8o1jFDsNd8AabVIPHXKY k77GHOdNWqPLCiEQumoT2NkZaxQLJZltiO2DQr1Qt8AT90XAT9r+mUXAppJ7 /x/t1s+/jVFNjQNnO+tN2sgXvLx9V7RhixcZiLn7egwf3mk6QjUWQmDImlqb cuKRjQWvLzo2w9rue6rHB9DQVYCOmv78EKqxEVVJMOuqmQgtkSKoAkdZkSyD SoazXNYfdpJw9enRivhPtYaY9U61SyqPccJYtWZErLcKB2JgqCJsXzPy/MyF PBdIlaQWKvRBjUDUjonRnOzGrm3jVTHGr4IrN0X0fZIT2O2dR+PdNnxBLxzN hEzhJisQhBv3xIzTrSvBDrJppWIveOj+bXh5CibS5jcmqIV08JsvZUSUNsrH TpPy1vBe9/WH6qKc3Z2Fft34UFj3lB/slZvgXSiy5+GUxXeIEjIT5VglmcdX tMqj6Ap0aZsSxDPiaiXMRA1X5jrbSLMOroIsXAYcyijR3/HlGk60YUpAVwz9 R3G47cOwuoDSgnh0rfwtb9VNJ3nz9Ah+5c507KCDc2OV83RtZaCJnyzyWBjM ueQbBeGzQeyO+XWjWjCURUaehfx9sLlosa0dGhqlBcRL81sH/ioswsWjgvPN tMm4yVqluzYElebBVU6KpmFtArYSuWii9G6EsA2EVsDSM5bGz+SUZwzsjqXx HXQ/eo7pq55ogPziNTQSbNPenYGUxWuKZAYyKI6t0Dg+2G6tW+3/zrMPejMD cQn1ybBrF+iBMjKzLXYHRMkWBjFX5nzfmkXCaFUX8T7N917x5Zhi0/E8DnEh NMFMbHearhJDaueTD83EQ4iqJSRBXZ4NJaQMIYc6+tICnL8a3iAuVBedO4Hw fGq07liLeYcwsqAEkhq750mIV6OHKwNEKjQL3AXckIiU8vvPrNWWkusy/CzZ NEMnRlyi7X8XE6CjIU/W9PE3FeTx3KQi7/bfxxOOOERLgMLzc2NKyU++NSIT VplIwgI9WJnbPBYVqKiXNZP1JvZmj4d39oicEzIe80jLtkH5mb0yoDLTFpIq N8D4hV62IzNi4b0gkcv1+omn52ASNaUwJvoJdzZpsPsZpFLJtJnWG5F9Yrfv blHirzQJFUJEdDZadM2VRafWczVKbNIWXEUsi98uifnkymZN1Xlxyjip6Hg/ wczx8I/Z+o+06VVpewutmdtQK7Fuc9Cc6ZaCMvS5m18+8fAgimrbC1g3t06p LSvC5ZigMFZGSGGsaZVJRaqE3tOBMIAaN9CH7i3Wn79SSI2hSvAGQ0FK8n3l OohoQuOqNHcnnPvh4TrkPRDIxRsSPiloH4Xng15cHfbmSxt9vCLz8K8Xlwmu Fz+Ytqhdp4bmCJJWTIGd5R8hIKH9WAOpVcIWFiWaOsH1+xb6AU1/emjF1GTg XPKx+q97ipSOuQJryEItc7iyftlh9icgf0/1YipfNTeziLRzLA6slsRpAKTw OJup7Q7UcaVCmC624jJETamSxjgoul0O7Nyjhik1xm8ua5qmxlYgFhqo5GNZ 2AtF7HdaDHoaBRxoZ6isXz336tavpQYo1KShiS2ZJsGDcq74jzHcuNsnrZ0n B+tQuFBlZwgCaASusiPgJILeVz0vqEOQfCrueE/f4PtMM/CwyNGH/zSy/iOs 4SkC7GmZFbjgShqEX4M9znDzFFpuQ8bMsxU9uuYUSgiHdmfRrMpQXI3WbNDa EpO93fMD/Dq1i7p0ozoGXx2d1YoX8mJr2JBKGToyayanq+GFR5v2hs33j3DH qcGWC8ZO3obCjBmTQ5JJftUKYsAJN/tagKO6t1/wAxry3P47ZcH+ZGa3Lng+ Q0cVorsybx0Qyk0MyYmxKacVAjVw2PrmjArFoMNLTtCc7NzeF4h3gQxtTYjo oaNYNcrMb0x9sA2ekf/m7Vzx1xiOlRC6hChA/abRoWKC3GE5PUoBpQQFp6Eh TN7oNAecMsT8oHcwFZcXOElKf4h1c2k1TWDGHAw5uUwVCxe3XpUdYXeLbhFb KYD7p5w09fkxBroMn3KyXK9Qz2L+WZOULs3l1PD2nF0n0Mbg9YRQWM8PuliP PW8tNQYYs3Mx2PZlKL939FOvnSv2kfUe2uN8Vznua4+gzgfOZmSbx6yJKK1s u+zO3xP+/HbaWbI1hY4mqMnFUk9xqBSewINjufp8ed+kGq2U4U8MZYwjaEK8 xli0tOr2xmo/GWWjxIzrDhHnobJOqdn0Cyo8BCGa3I480+ctunqSRBYN1Jse UoZuaLMC5HKUIpfHhgkuQ8EQs+sZgf2Gh/cHu+iR0jWq8X6C0l5p3sFFiL7O eXo1hM00nX+GKTukaf3ZVgsvlxkqRbpqgL8dsroEQdUulb5IAMdAVFf4HUM9 nIPecYI+W3X18KpZ7Sn8Q5Z8LOq2TQhS9uyRsrynzqhWmCjVlY1DDU04oCQv yE6/rFeaPjg4IIcunJ7IHPXNtFoyiXWqWfDyuDoiYGygJwzFiHBjFnpqVGro iAgRsCixMWpjWR8xbYMhQJhmy8Cri5EmDQH6MRc6Ixt/L0KKjVkZSq6nHCls uLm+XLGQc3QEDLQzum8F4rEfKKRFXg7iMSB5/0+LxVZwj50JufXmoGTqQSHj QW8neEwiSv/0E/KFI+nNZXiqKhpDTBgEhjIXzWIqfujtjm8U5brsI9lzfvqB d5bILj0FyJNQXpT2ds9EZCPWpHJLWB5zxTZY97rFjKx9fncfOReQ4NoBaejs lLeaExUT6DuQllR7qgOo92IgwWSzx2/jlKEQm5k6kHMBeI05yXBvDn6O1FjX yRaXy/bJQ0UJRfgcuthbcHYL7U6msgXQvSEjxgSpGWaDcFTlXxyRLdhe2zjB e8pOUMZ7uQm5gBEaE2SFOBCldROSCTSIYxjorC3pMg1/d+u8jIlg8ij2VUHG 6Pd+nMWl8a183f/rSgYjS5++lMHPaUpRkfbSwA2BXKOs5lKy5pY8MenG8oAH rWxBFdoGBC77sKMYcBVQT/EPLSP+F33of36sN9Qn0luI1C7notXZHUrLw90h y7/60iJCDOKCk2WZ7k6yz1vDwvlzceNnRzgQDJJ0roSV96PKXXT9Fzw6Ixcw rqSAA/Vco0ZofXSo7hNbJADjbtn2nuhzTz45iVDoJXcYSKoo1NdZrP3Wae9/ 4ZNa+yn0RY7IVPnDZDlWyg/a1dxMe8eAjvt40vMHvVDsKdAGaR/B28SP+HhP DLX1wOXUX+vXliZozbPaQe5fZlt+7moSZfM0LwWE0DC4UAkD04c9Vf6ba8i1 W0u3iLgFi6qrAt6K97tVPb3XXZkTGcR2eQVH58lsF/ImtEJpwdsf2WB2Bvvi vPSg8Llc0zZ3PV4nb1qb+ZQtvr+c+dnooOx34FE/PfwXT6N/it6aDV/L5gDp zsBfjpk8C9QX1Mdpkawi2v3XSER1jvHyK6ZMZTQ0OiBPyYd2jjA699CBalGL wImWij5ltAKQ9w53V6gWSO4mam8h1U8Ffu/AzhJSi2fm0xNdmGmHW7riwcbu Hb6gpoobbgaKYU15Cd59ifJhJ44hvAcOsvwyxhCmzu/Qa21VavxsfQyXlkcr djmcc4byRYujMUUb7BI4/bu15kbHikZS0mUoznC6OCgld/j0rhaTL/XH8b7t UA0YtbDNBaT7k8tF2rWaOmFVCqViHCTTs8IQ3hd82ZC2GLV/Vd0e/RmVQzbx LJiIzlM6RX5kU4/Om8FY2iAu0qg+Zj+LVQHuVfvkibp6sAEF8ODPbALcCP6y HTIsyOHGaXl4aSlViqev0BRRXbyglEfUsG0/ndIK7Pac59bXFjvtNTIPKbDs H/LDg4maMrrQrkVPuSFQk9mu6t8Go4sE5LG2hEhpgYqgiN+zCfn6BgXyTHuB 5+UNmrMPQsZ2FE2Gn9tBi9T3NhJX7ynH+UlVoSHiissuPR2vSMw6E0bdlA9G FtE+hLOAxR/U/YL339tpstFttD0d4lmCSYNeSKweITQ7fpS3QZodqJi6dfk6 PI8x2Q0PwsF/OoVkguPz3s5Srca+D6HI9vuy6wf4xeaiiuLdnMLdBqQS4WN5 Wc9Cmfznk2Uf3MM9lKfG1AFYo0TrlE0i3N9/8g75z2gavz//DNGOm6AAPZI1 U8ilexzRklqxLT0WsEklnFdosiEJg2SU2Ku9/+CbJkX8/7gEy8lbMKrp3uCx ucnGbFnw/q5k34B7xNqre9NnnlWQrHvt8gwrr2nrFm6Es4PyYoL4fgxRtWic MayLNWZSSGETWWh3kArnH261lUH+JMR/R0CxTYTor9U6WGhxTLq9E3MTSDVC 7rzNFAUNtXaGLJyc5cbPrLqN87rFwbOZtwNx2REe/bjMQVPNZ+gaM1oDZDvS ZSTBXCin1uFepq+vNXoXvX3zgXBoinpMfuaiZsMPmIZ1+3hQSw3DQYNX6D26 /iYXF3CaicJZ5qoGIUTDexJ2ApGNM7Tp4ZfANJkpByWkLQKiQk9xa3VIm72U QVHNZIwlsDcibsP6sWPcI1/M+6zWxYIOE8rsRHk+/vSYIQNv92jwwQEtm1jC JNtWQsOqhzfABMqgbQdD+HYWlaWMWVvARTZ5uczlGjOUbmrUK2QkwDIls5N3 xnuxh/i8RJ8r8rlzY2a0K7oWY4ZCnOiVCQ35m8e9kSIn7KHIzi41JL35/qxZ 1zo3ebPgeBlMIc892hJRxTWJlBaqxcOV18WCsrYndUpDCEtedrZgVQVDUoNW LPUDMzZMwfod75gLlBhrzhXy84TNW2T98diEAHVis1cfhI4xM33C/E8+bMh9 Ef31NFx7y+MAsgCEdc7S1JuHggHEn8ll34U1Va/tC8rwsIle8EoVBAivCYV2 gOdb1CAKjJ9gNcd2klYhD9IG3R2PfflYUKB0PKaiRR5jWajwtOTOfKzIs+lW lYvfRnaG6ibuGAl93VhVElq1TIkGrT8hoLHgeC23vlXFMMb3ik53aRzvDxqe YBsP0NM0qEJLkm2kNr2ubmZ2Y2aOezXi/d/sA11LIFN/yhCZhYfFAMNmPJAt f73qYY3UXtBGQafp5bHz07nzOWxGNcmjcoTSxf+RFSTn0m5eBM6HBmAtzXNS xheNNa5Rf/ibkRGx+WioJieD6436rgqVI7ercMFGsrvaUTFpmogdLROIDr4w ISsbVQS4WVuotuMKg8W9OqmOG/TeHlApiF/IN/zDAq/uLvRSMNIhqUHUtjZF bIu7GzsWSGtUiGySIIsIlMroroBf3kwuJJy1PQ/GwXtLWY29t70VtQi+O2zW Ql+h/OkSPt1skkFUSU3a6tSqqHOVTIv4SO0AV862FfZ9b+DxeQEdpaOBNipv J2SrWJHEwU05PP5Gf7a5a9hiXU/WBxPlkejTLVr/koYSUrSHWp5au3LaCu1o BmJMu/Jjq4N6jA+pZUooXNZDsR2gFWfeKEXDAHoyQXDgPfBY+zMTrKEAoCKR O+CrgDR5C5/cZUPcPPro02Ym6nNUU9Ihm4Z2wgCA+hvVkl2oy9w+2sInu1PI /P1GoUVytP9tF91dw1/WRPf5PITcqFY459OkUTSZZ5wo1kcqmOapDS6qdwqb m1OLI7nNVUDXv5QNHSAMDevQJY6SCwYQLFZjA+iKy6MwqrvASSANYh5i5qzf abhowJCN5nrRxEbQih8vk/fFrXIODiZfXhUwVaWKi2ErByglaI4Vdg6RSxSx LDqJLMTYYFGjl5+FDkvJReT7nVmUFiteWoS/gNFa8UgcbqwEB93TBRiEEKN8 GPRlYcd07Ps1+aIGXXniIckHu+Dh4SPrIWOgJ2mYSbzRCdmv2lkQrAwMGtXv 62T9nDZrqWeIFBmKMSJJK4yb2GsC7Ttth/jZ49pkYK2LNaKXD/vxAXqJuMET JaUVzvlLbXAE4HEe7Zl/k8vEgQHUA3sQ878faANBRv2QsBwqDnpSTIyM+rvp zy7YmkFu/uGC4H4s50IiYyr3syfjQwezC/3cFOAA3EgSZGW8tnu2IX4rnPgU gy7VhJBm3nxy1JbOWXR6wTFafU+I4Ce7D1IFOTG0VSHHPFM+k0uCoPX3JbrW EjbYjOGFa13AmSw0h+Xmh6RpGSe7y6xJJuOK2hflbnZEefEWQqRSDRqhaRNu sQScp6BaG3EkS75Y3rI0BEGIdhFKtR53uJpYfyWoiumeeC7sc4RCVODssxoT EDAHZXJIQpyRzy67sKP1dhldx+I4wLvD4YZAds59MeMF9dJQVOSFwHo1djcC 909oJdLQaRAJBQ/OuZFgJ7R+8CCa7cCgAYLXOGUwhf/JjSg+s29FFYP1KCnv BoMcy2vLNrVliLhKXg+8W0j/fvL3q/ONU45xekZLONb0K3HWIkdAYVbHDouC iipbJ6fAp89kDdXrT9ZpKOtyFuzJWMg6PHPXLON29oWVBhiaRCCM9s+2Rz15 TyG3iyKX4gRJ0AgiGayyKkLUWiFYMQwfIDoa3VOLgB8fzT6TyjRrZFRxCNoa YoJxpNvtzApQRdN12O32sELWqESq9LziYtLd+13wxmxmATpAkp1CKBGEnQey e85lrTGCKSFfHFDXLfV7k9/e6vIl5XYYr5ANh+rRbGcyrgQ40vpz+4zn66jC dkvkHdwirxB1xt5cPhurtkkVKCzbdIwuOdmlErD5wHDybKHdaxUSbDLTr25Y l47LJLc5SZi0aZfGTEcMDh98WA/4IAz7Y7UPdB3rEU6Qoa7n1OqkmVW5rL4x 6ZbNG47g2X38TTEaqvKEyAwLT45cBSGVDaqpyUpwK0gj7Xzy15d1Zci5lpMO HRA0XCSx/mWJCqHLJR/QH3F7irZXV1kX0n61J4DSF0pI77gx266l18CZkq6C 2Q1VahhPPpUegGKQEUiglY6CB5UsaTygDt2Zu6u9pfHVXzQVpCKh2hn0bo9s BKuZ2HsCVUcsZXlfkcsQzAwwWCnuuOGMNgc2ErCVuNWF+1KXB4OlOLSxBv5Q ue66OoWiO7YDwZgm62OBSRxroOe2gua8OWV9rpBjDXywlT/4FTKZzmQFB52o nSA3e8OXtOzCG26UbVbz7J2llffudX2/d+gNTkKWtd5MPix7vv7R7kiv1/XW UPWCsAoIPEbJndnHD9QIjYGtgzJ4yqnofOxEgo3iamteO5y+/IQu4Du8was7 KGSpuiLEXAu1uy8S/V33Kck2a/7qbXHA+xJuQb3RoR1KnIvyDbXmDZuZeZ5J tUUcNJEBWrJmOTvmcY5D2QawMcIah3LWlYU8Cx24Qa37jVRSCg5tS4OPY0xH JbrEQkHeolDFBXhFw4NLAjHKCA37+73XJeZScwn4q095ViJiwwUb3awq/43D 5nqtpVZCHqCxwmc/vupQGDV0if+/rZzzcBJSGa1R2jlOSCAKlqQ5hlLlCjao a1s7bPGqN7uaPQuKnxtkrpIK0yNjI1lI6KwRCbvDi7ZoUzYyLwMWBIzQy2p0 miFJNkNrOGULVYalbbFAeONWHSjT1ZgbqmPaut9KnlNFvbBqMThpjKAMVvLF snHsmoySB2RHyVaG+NdWsgneH+8xlXnE4dAzuqZmoxSRauw7NG440km1oxOx RmrO2OvJaVvsY+ne7uRaR+U3tEJoleAvho4aDVt6wIl+qZKaXl9WCVsHq96h R3rcUfh+PIshbZd2Liucy0ZFNo7NZI2lnSbVOGAKNlbrzl+nNEUoiZWkAXB7 HqGE26KaUW3OwCl7MUZzG5mgUmxOeWwj4zTcWghw3YReodxfocjIFHSbHBT7 yUA+FXYyRyiE8RA7ir00U1DQZ8i2cT+nBromOlKDQhZD8iizd1j1XYsbXfoA EbzeG7PdPmVVrnFD0wl5yhn66SMn2SVx52arOLYC/fV65+q7m1cHj5NQSrTy iMB2KcgMGO5TbSxyQm3xzE0t1/sbsWyHNs78YSfC9085FwBjJcGCEtw+p8Sn Z3YUnEoaqo6V3csR90ArWsWdfULxZig8RWUIvSEV6hx/qty80kER0qwyhEHV unnZH1P9/ZtN9KSSMFDehwn+QLLqJO69rAqP97YFYh+xnjXJTzNJoqeT+3kd bIiUuBlnjXDjiEIM0Q3kjdJbSwVhcl0dKK4eUG1APNT3CwTabhayEF+0g5bF DO44WaohxHrVzlfELNGUwSlvnZJXsLvPRQG+wgfi9Y1elePvu+KyOrM2tXtN 4WPJeAXHeknnFESxq/sPH4v3I91raNyOobRyHXCJjQVXNeSoG2aR4BxGxoLM POigyvQNzX8mu9igIe7ZbFxrYkKKSHnUWqOc+Q+t6IZqD9F6+Rii2u6K5i0n 9K/KMVNMxjG9rDLsfKh11yyfavnYoHF3vGPG9PcNgkCkK1kNjYSDf9dxdSMT bxfPCteMgNRg55YhdEJasWtd/vuy/j76RXS8srCBShO66jIi3LNo3SAti7Pr UHF7hAbfnYUerImzcGMctMC+Pst6omZkw8AGjDFKbZmX/9HIPMiLTwuZajOk +h/2Vbi+yvDTkZyLlLcJPfWsRIBiqQPeRN3mXf6+1rVMUJP22u+gVy8fLLRD DSIKfTKjWbgOQxLULALCx9CuOHi0UR1xvdubwJ8/QSKgirgoJhagwbODEuqM /TTj1LeP0Ebp7t6A4fTMok40jWIaF5wO5WiZCCEca7S54WpFeb35S0dHu17I 0hKf5PrUZL2drDozzyjhOktsLQbp2TFsTeKbq1zEMrwfFYpAI6MTdfeElD1S mCMVYoKWIhO1Ybrlkr+16h7HYKnWVD/+YaD3bpPbUgwNjnmsdsXD4jjfJfgF 5sOgRkHD0IxUCt0dKP7Nc4xFWnaFtf8/gPC8u09KN2yNbK1FJavAXQXJfTx7 3QgeysO8FU8C1wF+qBx7iiV3rxa9ods3FtGhzWGrxSznBQ2NoLIZXM/Xcdbg PFrpoqPMHuv3s9O+GZ9bdGqBCDxoNMkfcQqhwd+LS/Cms9R28tG5KA+bHh6g X90qJf8v+lZ8nieUiGvvBiJYUT0uDIresZyBwu0qNU9DPhtlUXpnuhTar0e4 SIm0QRFbfwUV+5A1uSDWBz9xavr6IckNmwL8+brgN1nZ19OMVI462qFl7aSi CjwObRcq0+zj9gB+AfWCEFYoGGBdXkVdpJRriLXGIZSjSOWBqFzkYWJzi8e0 gn5HkGzMuPmA3zxvxuh6Dhw26tbFbUAPet5h6dyINhZC1F53FDFcwcV1vQLt +9HmONPQ18LdpTSDOYYenFDCJ2WaFCJ76a5TEjhhg6NFkYrxeZ+hj6JkLoPA bDinSGIzGfTJrPohRNJ2DZvVlNMuq+HuzKIRS33YULFbuPuhWJyxMhEspTK2 9gp68Iyhv0Rbh1ycQtuJ/+fM8aw/FAKJhay3wKCYab+sKlini6HCEl0PNabf /KedPDxd+VhcTulOAiG0ELq0r+9u3dar0cAl1JYVD2CH8fv26LKhHDi0d4Fa MkcizXckLaTo15eOe+jKmuqTQy98/YbZ1wuUttqU7VCwG4eDsrJ3HqHTcpP/ tCg2tAj7vR7OQA3ubJHq4E/84iUkMy8Ya6YTvLGIcU3wUeUGZzhWb602+Ll6 Df9FJT6tTZyDIEe/uYQqUJHBScaltkXFhT+joIFRpRA7Js2Us+0vAl9Re7jj so3TV6h/CLL2yIJ4jmaLauEgJLjS8bQzniWK+eLx0alCsa/WAAbCYEQYgUBy Yb1tTEHB/wMvfBGc7O8Eb5+hb27k5SwUFJDFjSEaASNn/M8ilPVMTeuZ160K N2FjfnFlnHd0IKWVcxO0HkJl1i0cSsXrW09o9lhX9J+BZxNDSt16t5qe/aRc TE/X3AZlAyTDYFqcDql4+f7TOPq1SV5k1mrKUMGWwboACb0OzmyNL4xPKJUY UsuTFYaVrF6AKWSUUTf2Co5te27R1aP7glNVpJLQERfccJUVO6Dase9qtcAH KN8LeYTfcH9APdFYlqL9tkZyPq8Dzo9/VekABhjeVTVh0a/TafkC/zxiFblR EckKpW9ycvNpcyidnVRRXQBxFLFMVXcNDZ7enVIULA5Fp0NBx+LbPaAB0I9k W9rmyAfv2EqdnSN9ZoMzi84a3LuoODbx0X1qRme6zq+OOvNLBVEKAkFBMm5E sq6icY0SeNJw7T2aXNCirWkuRiGHvMg6iQnazk25FlW1byCo5W2Z6TIUecZh aTt00rwDaNSZCOPweGY6oHJxghdUKms2WlyeG+X8ZpkcvEWXVW3JPeHWc3uJ eUDJJ5bBZ7+MuHhPWW2rtexwV4NY2zENDn586VtRxaIcNsJLDxN8WpgDK/P1 598JTUDJfY5eQ0X9O88es4hlxcKDbcv6PMbzTQhK9uWGCAzPLyittlhK41Ce +1cVg6mLRldJI056v+2e5IBu4HM2KFUdldPYcA0iEns2CIUMYVwz5RapSM2+ HIUS0U5erpHu/majvNmEk7lqRoWRsb/Ejqn7GkzEvmQdwJpJheh3pkKXp3DU jZElfDL8q8q3i+gmlrDVh/OqWZ7zrV8924SsjFMhZXtTodMH55MhvarV0U7w TxtHx1fMjuk/Gwu1kK8+KOGwf3z0Vqmt9qY1qAwXc2T2jxKXqqiIxBa4qJNI CD1EDmvKJzPL3PvL7AoAuPlihYJcsdRRDLvOjJYcWcSDrkk8eEQaGR17646P U+RRdlqSoKaQtSWSZcLkmBsEwA/XWiCLJNYd4ZCqHXk38DIIRdzaFKcYi3kj P5VnOQTIkSefuugdbTce9WzIGbMDY728TiFuzzjMUAarNrvokSJJLjl46hTZ 1YS8Q8C++8KGelN4QDpH6YDkM09sF9psY02jz5l5hzhyl4030yxFg/86w+B5 fIw9eho0Y3A5Avx9eI9eGUozNFBu5GV3tIZuMa1tKwsFBfUUi+tPH9DKbmpM tBuwFZviiE5r2rsMDw/OWbVtqXB4Aa+VTGQZ56rW1k7FZuxdqNgDuqcqdYAq F+fBhi0l1BgVzOQhzUgCraNzNmPkX3/VZJlL+iVDbGji79DLpcbiUhuEU8FF bdg5QknPwYRDNo2iu0ynPHw12nWrNF89HtV8Ccmn0cjyqKkPR+zzSDOSebXI 6EqtNKJluA5cjEUlQBt6Gt41HDNa55vZkEcLehvHfA5rwN1mi+OaLkpOdSN2 S783+++ZySFQ3GtQKAStFQHfkTmnHM/q2ZtMPFtrCdRsy2XMyfNUz6yJze1I ztrJmJSTwDBiFepiDg06e1BhJE3Qwueedc0qimRM2NKC4bTjFFBBSJL4Zsk7 1htFF/xjiFGNXDf44C637/eTv3+CcpYs+r1N0GVkCDn9u3DUHFasgBejuDwh XXvHpuTh1i1GwSsiQcG/muCdxkElPd7yu1BxB7TeCG3DODdFE7WTS7abt+zL 2HeVe3Pwr+JMVgt7EBY3uIA/jxX28vDGE8Smba67/0kLiIaszeG8PaQQk4ll oBDNhi3OxCFWw8Y3PWP1p2c0Bt86VeClNxjI+AKCI/SZrHyv2hnQSEp9huTz DYQ3Syln1ltsM0WlbJliMDjarn91jeoRWryk318hdnC58MYSsg4jweUObELn 2tz7hki9s1fst/IbVN0rNAuGTEaS0maywSfiTz8qeIx/SfKZRzmoz6OolHfW Mw+3UDPOt3LFDwcX4TIESfNxvQutZ1FqGJ2C8BBf7NaDSYs/8x9KfFARSRPF sI9NXP1Xv+10eIQ71RrKCg5F5z3V/LPsSuaiFxZ9qgMEM22YQ61rmXYoaZNu Uq1MI2idoNzcgwe59/n5QuXWTe/jMs5WsinkCuapsQbD3ppmnMrWi9tx6o7K 1+tNDCV+UAYE5OwweaMJSY50luyTWzRSh+SdKqwPOrNC12160fb7PkIxQDSS bJzFpl3xBeZmZJzfQ44bba8jzrQMwqRbAK2ZbV23bJws6rFyZYEg7oXUyh7v cF+PEHFFORiZAPFwl00zj074++N8QRDUlFX+/oF2CGU/dFiqLF03PILrbD21 FIZ6J0wIpExSw84aGyarGhvhOUiOKNtAKeJ9NxYcOrErqAPsBq7oEdMGp6oF 61DeWyc0IlPHNI7GePhB/R4L9fTD+tbQLuFHG0k1nF0ZBii96AwvDAQDDdU/ vBXVm99VNdhjyMXDYVUodGi5BO09o3rP2qN3BEBEAFKFXIYCUenSebKfen0a leo4MUJ0nuBXLbIy3ZqWjQlYJBOv0x3uVstKRalBY7sQ8bNXKMLMJv96j3dX O8/fAytSMQwk/mEmbU8ClE9j1xk6vU0aS/Bgpgw9ThI8gVgbhJSa57Zjg1Ah rSPifX1PAeLyG2mFm70lwu3QXU4XpRxmrcZFsrxw/6pPdWPqml5BmepcUdyh neP1FUoZbTpH51WYXPKqFKWMqqYoTqh98cwdwwOv44Sg9ZRR4Ueuxy/O0U96 y+rEqALVSWb7M3YRv9WDHZor/SqX8LyRa+gX7TYsIP3UOV9edD9J8GrmquEO aS0i+5rSxuKPu0wMKAD/8SLERKsEg34DBnoJZfofKm13vG9bszHADoZ4KfO+ 3AavGmAfSp6jA4wdtPzZWfEQ/K8cwpZBGBR/G7WSSmvlNcKT2A5pMjT4Ji7U bwalqoYpGLwnI9n2udpa+jBGetCm1PUtUy8ZnHYluoMalASywbatrh/bmtiU 0LBCpV6p+PUDFa/e1F4O3hU6pdrW4lLYm/Di69kRtKc2omBYA+xzJk2QsQpR vv38t/uo/BZrlnRyk8dlKtf+Zn6/HnIB85Ed2timB2KRhhyauizIGwtfRUa3 OuBbQ4kYN3rKbIUOT32OLPVX2zEHOWgKKt7m7zU+f7EuzkVHZddsZ+tJ79Sg hdkRrQ/P+iZFJBQW0GzHvT7t66+HvnJTO6QIQdsrTSWZxnogb8sWsaoixdTW 3GMd8uQUdAY95vfbbYpFOquiXyAxR4UF0jpArG9WwTZTAzBtxuDgPqsujff5 Hj6o4Zg6yBITCr42tVjzidywOdhin0WSxBDPNKhJ2RB2xAS/7pOKW8gy1IBw sglhsP1bIJS6AdJPMw/R8oK9EsYMnQ372ylWWx24kMO2w2bHC91x32hCyKNr U8K56A4bD3pGpx7iID5akiqCh7SGkLo0uH8ahazPmXWHG21y3MPbvEOFuCUE QHqD6i3kQDStx+Tu/ZJL6yvAk97I0wqh+7Q+f4IvS7B1LO6s8ZP2ZgflOCrS qe3QYDx40x2M355q3TlGtM22uDInzkLN62f9WXPxuh0a1ZGMlfMEP5x1vWXO 73V9f9BW6Q5oCaNq8onvbHZkhkdRFOuCNGpoFHLY2e2+vOHerrWEhAJB5cSO 8Wuzk67aunO64yizS91l/GQOegPPKHi71Ry2SAaBFkcYIvBO82i08+f/DOmz btdk8A9P3uJGuXN7Xx/hFLYoblTCROJeziOtzi6OdNT2oBk2on4HJP8dt7TP 25QsNcFIoZimF2vu/po3i5dD+U0DPGbY4CF6othU7hXl99dQ0jZ+vcrjnGex nuEFUblNiY2pEQkS8I1kKW2llPbxiUbeVMAmo/0Fslx4DgJ7hSG2NJ8pQz8q beQ0Ga13JLO/rl201GPIQJ+OtDhvWUlUfqZfYLIrC+8YVwOLhqA2yCoUV1/a FvejZscXHeITytEf45YulwyyukP7F5Drho9vayzV/nAGeuKgE3WR+Bcq9+J7 WEU68cuXwYhEi36/DN5vkaQOEW0ZdePdwCcLlM1fjchh57/lm/06H6mmjk+Q lgxdnBin3BQs9BMs3qqn3VhQAMY2W19xjLcmZqZ6PExyTmJe0C8Enjs3zM4k 3ZRmREqF7XlCwShUoWyoOEdjaVz6+s6LO6Tld6iKEjV5C2iWZVzSI5dW0EjN cbHHXC8tO8YhHbsPfYPCnwufS99IqT0ayiDParLxNG2Xm0qHX5/V5xodOp/B uYmR7PYvNOKOOnBkKEOto5Xk0N7fZadJaz5mLY5D+WC17Yp8HMreV+hpmrEN MsTC5HVqXfOEkMteX60bI/eyut1/bVDnGBWC21iAVhMnX1JSpdIHNdoUki7a htyAoTvLKyoULtMhiOYX7HXd4KNsyPJ/o9ON+yOqUk9o9mUHUc9pO7gpHCrf 2sMKSqNkiQIXcjuP/nr28OfQbzUOiV5RFwLj2Hx3EMyfxlCYFlXrcnHA4nfB Lzqo+XFQISMXbEDRUT1SP9ROFu0GyEbdOt9IkmxNyxGgBgoon9/e6Kqpe8Cd xGa+/r+pzXZ1YxfniQqpiVgcH0IWWNuy2eKoIOnhFncpPoeX9wBxzDeq2rir cFYPFjnsns1Ddm2XrSIGcilyuAR3b2PpR2mTDGc8c19jM0TfLR9KmtOhHZla 8SPX0Y64WDu7CcqGzSrFOlwlQ/811CMLuphGbXUxM/PWSCQ2y5Kt/9k3X9D7 zOiOOrrNoH+Ec/1hyggWKwLFhyEamPKqdQHhWDvhZrfXwv8m5p8nk4vFBo0E QUMVCvUAwbWMKH60CubJtTDj0Wae6HYedthXForGDZMu4BZTxRxcQ7FsOnkW KrJ0VdXiRyTd/j6xyULRJAlUX1xk78NWWFIhoBTynBcmD4KOFeSouUatdMLE vqfBCKCKEZoY92aq9w/J6a36rIUHjg/O70hhysvslbg6hL8Iwcj4i9cna4rp TiXWBy2bzzE0rEpOnnHX2nTMRyrrSXlvd5DmTzch2e2EEkqhOMGLcySf1ZG3 22AUbqWPtFiQwcVjIojPnxk6CMqOSLib8Dq0YkVCcaa2teQcFFT586tSYUjq wMEXGLiCvrdl/Y0Q9w9elalqHXoTtJvwyAn1j0HKb2ShgqUfG3jASN3CeYQ3 6x0N8NvzZEoSa2wI0cEjwGH7scNmVTK3cgK8DSFpjFgHwrsTtP4kMCKXDdQ6 Sjs1li5YK/Qcs6YaQGI3f5hCoIRscl6Gyn9cwdXRDa4ozpgyU/zC+r39Ibd1 IZHw+7URY0DS87B17dcPV+86KbNdbGko0SdoH/2wmg47FU5Bt5nZcpUPFX6G uhJr/d4M7ePGehfIyhArYGRY1qs4gufl5ewLKXPYv3sRWEIUZrLzgrKBQF3G hZtUQQUcBG7URicGTXRbMezaPgTHsWpPRuLtDbK5JwP1EJ3HlG0H5cx2JHMr bRFxStJ0ltlo/IgiAkYUUX6D78kJtHN5M5s0UGtk+Fk2ftiMx0W7Z0EsBzlq 4wZG01pLPhxXL5A5qcOQdoimVUYbflFoWRvpApBum2DN+5MS3eTFapf52NvX aNTcYdWgfrjqwXg7qArGUgGdC61B+pgk6o4F4ckjHEakat8adSsQJh3qjyY9 JisxqoqQ7RDnh9Lqtn3E+ZvzadsFQ+WLm23nLZMOducKbeW4XycgDcoV/WNu XHObVUFKNE0ESm3BexwdlwlucyYV7fgxoB7JB784vf63P71lH7dUwKgi6jik MkPkYWRcVQY/UbP5kZF66zBST7iPj/Je++7d6NKbVctiBIPHFAZbYmY92Ekb Y8tYVKIK0EzObQ1X/J5dWauoqQX8jD4iGN01J00k1vtw6Y5qgDYiGOZwKzI6 WcCP1IP33vyFrtnQaKbhcacpQuaWqGCjeW3Q/BdNoSVAyfUnxGW9QWgkRE1a 65Lg6mdG7bpGcXrJemni9PQYbAmqKwUQDhP6JZPmCeS+AHxtZLEZ46j5GAgk kr0I29Jh3yHt+j24sOV8aDMLvgRjazTJiCXL3rGP6V5mq6A9cMWBagOevvDQ 4eE/vzIaUWsy4AR/EIsswEuCjY4M/TKv3rKFHuEuAlU4dgAFP7OYTn1tsgoK HSv9EKBA2Cn7WHTbhmd/jHFPzyD27R7VYgmh2EA5MukYx+qh8asytzN782CH UgxBFyKroOTwBInekV0GVMaQxLUickpczdlmbV8wBmQpN6gW6BWyr/PaJlWw jcfkCx9t3YEnFAD3KP40dik4yAb8/RudwCJXuOvMDb2HXnhKPKH0OZu4RfbA Fc8T0jfl0SW7XIY/lQKX88iKICGxBm6p6yXs3wzzcApHSv1lTMCNLTT5jtca YNaeW+zR2KwdnWWgSgu9Ff7vl96+ZEh5pCv1zufJ6MVmceDFcdhlZNV3fLC5 E24CnfFTCkgYEr7+/tGoTH27tYpwpwL8H5HJwCLVjC+F9zD679fXspcIf7/z 59zn3AxesWY1PgY1dsorQryLrlyUmmp48yBjy2SESvggc1xOr5Iyjk5ZvEcE TYxEq4iyDHkt4uLY0VCOB+rlPuX44KL27JLxFO3lNfpR2FgMa4456Y0riqbU bhkDeBhjQsaDl1CkfoQTfrVZbY3dY7B2SkYnM1Iq7Vao9QUZ2uRCizFFZfIO uffn3OS4XYHgDAIyqC9Tjv52lGWWLKLpI3Z720Lp14qauSgvryhD2ow0g0Vd ofqcuYy9U1sMtdjcyPD3Ez8fQ45bwS2De76I+g2mf6SCVAV2N3Tkxn9qR7PG 2QnB1Vm+yPdQfBYZcyqxAUX/BAV0/k9rDZ9MA2ocZHJAszyhO2QX0/Z76ldP kLkdLUFxzwSNdkojM4LM70ESVDGdpdM+HDM49HFI82CMLZPeXnNoimeLOmkG QkhowHj/KBmTj3DLhZsiAl4vzrMqIMG1zcKkn3Us7FKWtszCVVT0ZM0kqcmR CK3D5MyO2u/bW8hF7mddkCWH++HoLZMBBbQgNMCtGr+s4rnoMeU9p5ePSws9 E0U26pxxz5+jYgegatSnSt7xl6/ElQL+9mTufYhrX+hhR6W/jUPEcdaOjWls wRYWA5ARq3Q6M6wBjJUSyHPO1mw0S0wwqFaP0vF/Rseyg6gJGcW4UqcXSB0r sHAJ99hsQClWQeMxE+/Hid+slKttSTz8SI7uFHa1yp9eoUDakgr+C5uFEXnq DkTpEgpL0wAQ0BHcB6fJ+290bEYJfjKuss3EXXTl77denScovOgLQ0OqCXcL Tbc8IvG8M3Qzso7YAVIONT+k0VxmIszA8/lEu9SxE0WmVIJWlZAT/6F4QDRB c4PL+LXvErA+PixjY0w7O94TB9ehgwvD4AE1cLso5bigLX4CbnLDA+dhmB1R KejnIyoDdaf2Lzb6Ru45Ii0fZ6BpeNwpeDMWp5IRCgpFqkAtgC6CWoQRvz9b l92ma4KeDw7cJqE3Xb+4pfiE8jM34qQD/gYuyRX9+71RitaW2mYo0eC58hgm 3dvuFS6S9a08gEjuaAq06CfoJZTf6nHcPkC9QEeFVmtsBF3RReJMI1ihEyif DU16RwgSFyyc0HE8Iqwp0nPFlAN/aOAF/dgrq5Jql75yIUk/NyCgQqdC/2Di 3Oe3jgXvsy528N/TaQGWstqvg4CwdEyA0HvKBl9vUJNrKp2plUUhcU1F4cdk DZLzzZRtB7C/8uhsmlJIwUv43L/nZlkY1CUmanFDa9fc30HZOWujImsbfjNN aDIBMrX2PspF+/WZN3orIIAcX7SBIjC2f9tIBpmKX5memAmld6Qe+fPKq2K1 RKydIfgFE8jUuN5Gd+fECxm/kckL/PaUlpUqTz7GkgCE0doLnKGneOKAthE+ FNUGTi5v3EZ9AJ27J0978x1jaICM0HWgpTKEkpHZZU0D3LOQlCthGh+K8PWG WfuK8re00Qy4WQ3GO2OEY+UnfgVpXTWbQwhibRNUh+hW2Wvo3q4iBGOadaGd UBPK3hwnyjNXkNorGrrkdczKqEQsbVHfYYaSTy9aaQpeS8i5x7lzWzoKd0BG U1S31oyJUUKH3dESenp0UD1swKwGA0hCpD43R93dc9UzarE1brXAI/ykqud9 8/vNr+caIjHVSrRqtkrzLDuu7ocb9qQvQvL1B/9Ho98DsfYvlF8UqOTQtEsZ S/fg9Mr2Hz8DTtn9yB1oytmrNo7O7wwkZnQ+pp4A+1yo+VlBZRzoWQ6+KxRj UQgx7xzo7w9/8mlD0Y+g+RUF/5TVfshbU9Ad9AuDZliUdr0JEN6jiV3tgr/n VoewMcRyKmg4ZijIJDdhtm2AOqYRrhckB6lyCAR3l33ckQ55uddJJSIfA2Ut BBGTWm+/WnOBdWbKujXDMsLIoU4MEYInbv5mGV1i5XXggd9Cbt0yER16Y6fs oohb0x2riBlXtahrE9jlEFU5hCi9uft3HbymjY5KEPfwCo3LJLKQCFOqpGFx 0l/9X4ceAd3xwu0VFDVzkFzxBYh610aIuIK9GLyXRg+NjxLV1BwND+ELvYzj eT5HV0TSNhiHlFBIZ5LKOit8NJsaeN/u3IbwzehgpVNhybLjj8c71KGlYGxk Q+CC0LYKDIwXbJPTrGr0/PJQtpgbHfl0702KW78b+Bf9rK/o2KSxXtgu9sEU p4yjWLR7Gfj820IjTteAGjqcGHUg+nMjM8gdqjo7+CXXIespxFjsg1k8zJeB CpoAhQ0KB0coe5rp/wgAdztUGARpZCvrwj+ewD/iNunYQw0/GWjUiZQuHX9w XOpocxyuH6p7gCZz8FaCvNN+u8H4RgJvSOhBpf/RGNqq1FKTxzYp+7Oa23OP zCcSE6DIhUIn59L3MVUu961JhURDwnyZ9tMvGjX1YFHVsu3Ue2UIctJCFYmL tuzGBWS4Lw8q2+aU2Rvc2bL0r/FhI/TitaUaisjwwhgRh/TMx5euAjeVrDT3 hO0vTozNW41aD1UmwjBN5NfDXEJOquXz8WiMOvyqWfgu91Bnh27tBXq1BkWZ oXbI0GHwPi3d6maeOeYiTzlkllhf44x/JIOjrCWmoAGdC+kVUZSCnVxUG/Gu ptjhNpgeYf5/GqLGoBcOXP2uUMj9j11UParPzAYiWSybsSOVNJ3VuYNjGIUU oUCqim5nPHr2hGy2JqShWozPrnUFHuiCynf7RsIriQrmB6wIJAyVFk1XARL+ 4m1ZZzc+Q24mu1tWwzb1NWwLm6uE9WZOul+a+YAQvij7vt5/oXgxqR2yQv6i RqfwP2zbNmx4b8aKh+BRdF1HYXlydZ1VtGROZj1aqMagjbBiFRr4qHUjuJDF ffzaVyjs3sWTvbzTC0aFKoMnNdtaFzYVv5HgiCTJubaPN2LF04rYevx2u27/ qgO+jbHwRxr9AuMnaEAzy5DKfUvrmfeiy1KhCRRj8lcO7kQwfZB1rVtrQuF4 UgSMUahdCzVeczf617j9bnisTaAQuRgr7NdNGtmocrV28xhiUbSmKRnC3aTR GoVPyfzKfdMji0+vtXMSFq0nUCsnKoil0VcXVzhj+mi8VqVzLa9IdsJYOXST STqZ3vjh5zrlvBV10zaioACEi3m/sMuhE+of6LYVBR2OTVd/pSKEFHKiY7Fp X5eYEZGKMRcVnCPFFbuWT1E3lk9ZXr0tbAem2T8Ip73HUNbF66dDcILECT0I z385Yt821DNn+EwIczavV+O3eP+6/x3ZNnAzHdIUnRsyc2ncK12OLdlai6Oe 9QZ3F2yftz4WX0C6YQnRTdGqIifY37uzMIxgZ3DV2llInKe2VtPdbu4gCHsV F7O3tR8yEbfujkoCD+S3OSVb1cJbZMPdqkfOaE1cOAubofq1NZbaEzqFpaSL xtNw0Hwoy8CZ52YQ61t5x7Gv1Wq2cdRlNsZtrk6cTYb0QglBZZDWrBpkdI4W alqiRq53lii5Vbf2JERDvYeMUdhK69Fwm/rAkeIxoFv3vzT2xmLycCliduVv xwj0BO8onyxBKTpBZ+d5KRnWRyu51tx4THwXhY8gbYUdzs3bj/WZSjb91xX+ RqxnuhJ/J+8OosEGqJdmjyUblBc0P1lMDuRBGiFkd9CmprRQFabUMzM94ODO M/SJVBQrBnQhimU9u+dCsoPJGboNSKHKPscd/6HnvymVVny9u/AfTEqnTAT7 jzT8Ku4pxU2sXW8OQHR8N7U9vUL7vl27eY1SyBHZ1OxjC+LZNorcIx6mbvbm 8Z1rUCmHvED3sLUHtSjo5qEB1Nztrdv57nZIpXblpuTh6mqaYlWwc/BrBLEe sY/flDZB4Z4F4fT438LtYOVNi40NZ0VW5FihL3ryXqW5zeFv8NU3FIeBZI6Q AmrAeeuYC8EWjdvHJq+MK/mjfplTDdg/fLJbdT8sV6CKWKyLeLLVqLb1mHii 2SERniXrKfTNJXTE0MFz2GimtSyO57HFbQ7JQaMf+LLFZ9/Y2Wn2tsGYQv2I 2RdyIUv/4CoF+Hu3FtfiiVZclTTlYIOV4+33d9Saij4k6OTRnT1Z1keNZasg NLWR6xoaTnM7lgOU6DkH40jh6BR6WvmsCHB3hMfUbSFTaOiYAvSFKGnCOSfo tNQawmpALFxQRS8DNPkZldgjIYEQiCnX90SjW5e6I/yeoHydkEuww+A+eTDZ O1It+Nne3WreWI99ah41T+gns/1EZ7AOBTek3tJBsU/u58HqMq+oyB/Z5Qmd mhv9hF3d2iJuExqCWB7TJYUWcSfqflw5FdUGIm219ZODFko130uhcdwaAMEZ tLKJ7AcTQhBUKbOFufjNz7fRFunAdVD9v6tacneBdbghtwFl6ifs59xIk8mW vh26G99NbEcPLuPYC0pv0Tfl+jPHIttKZzoZ+duIVR6WV2WhaNHZlhrCrzXq ag0qA2+7sjyfX1rF7abIziosVmV5v7UD+B6a663S5/sgnjOIy8qSrAc1u7IT SvwOgihZZSkdXSMiNLCDsQwtth6kJrjYbWGBfnbQkeqx1oidUpmUEpn/Dorz ONS30THLAeTvhVaFolCLbaYQZnDimHLMDgN1nfuMualopz30PLmQ9LugyscP dCDG//c6YnNGzSqzBGnLBb1/bZvrkOcRDGGU6ibtwxj41i9YzRXxFz0GG1Oc tQeuM+u8BK++iXlyz9zu5yLaiheFPh7RcYNHSpYEEW1Ss14yOHPU3Do/h4IP aeAcPPakYYqgfQecnaiO/vMN18fQbf4svhgh/iSmUmLkxYvpe5Ek+U9NjKp2 /yZCcUyuhfXwgQnVDLnNfe2iszNhldcXzT2A/0o0kTVmhXMcurtzm1TYbjFQ z2nC6Y+wDGdMf+bJu2lvrtyMNvRHaKAxT8oS+Y8vzvvtijkqxKLAYRfni8Oo mLhMcj0UegO3w+EhFD6GNOj7UxBAB69/o9dbKUsTY5ys02m0meIWicG7lgUn VqJjy5nqTmPm3tiIofcu/L0HEa0yb6eeYfGRjpz7/PPQO/1x55cqjpwzRGQ0 h4JClAcp7YjzrilaLNlaqYW9pfjJc8ZBHDlY7UzEkq/ILR1Zc+7MhUR1k+Yp LswtYeZ2iTXQ5hlCY4N+g0qNi4YYTnTKQYQyTXg2vNZNRzI09S0rXl5MSFtc DdRjkEqyKpnzGMfXDY6i8IKqzdgQI8mjwa5SaRuvf27hsxrtdA9/DIIElWJH nHzMcKnxlBOmnPXsZW+Xe3aBokabZttnZEMo7gUy8Ow5R4fQsCAEDDEFk++C iM+ekdbdiCSjnwX8EGn4/jLibtsyWTa3XwSQYpZ4PD8/zpi8VctTxvopb0hH JPlxtzXGMmWqW9MhoomOYR5IpK0OxMUN0iUbwzMojJFsa4mdwhiUSpUdSlNc jsEP4LeEq+fNXJ4ykOy7e5tzY9CmcWaNrZYeS3IMJnvbhYhihNU0OUwQhqMV 90vP9yiMR7ETOkM1nXGH3D1n3ojJaN9wC3iZObJ29nE2EEti4fb2Cv3+FlJl M+pUzoi1oWNmLwk0D6ZRcRvgcSAmBjHaugdJuH1wMXgKJP//RX51H3I3pr56 ++NdnLdnVe0G5eIUghO1/QTgtombUe3QLYHqDHWMCzyUJSI9eWjmyDIaAomf NPpiDYsKde/IHOtQRop+Ow+LJ+syxKA5u4MjPT/Ji0vR+hpxAQ9dtWpZKYOn bW2iJLWdNEJjH76tYFyB/XUAN7aIu60zDKhUpuSjYtcOo1LT/DXerklkM9Xv jxyd2rouhADtIurK8St/bkWS0MObhooxQ+Bfm88WGvYCpfA8KKWgfej5J6ti DCwWlyWd5KgaHI0MUVn3C7OAlXe6xzM4uOJ9axe2UqsOQuiEMhWRLSn5MsKW kFiv84ZmKTohd8+UQ2pP9uTBmmQ2o3kLpwOPKkeC9/g378mi0bSvFaJwFZJT rMYpVWH27GLJYPSS4q+RTS41BMu4ZyVDVGh2u0M5zeW+j0n19B9R56pV5Uah +ZSzGql3BIXSiO4y9Qn/i0Ih/+0Pd/AbGCp3Y53GQGd8s8v717ysoT1q/ITG RK8XkiVbBJ2eoRYgAZEGO696F2+OI4n4O8sbfjJP3Hm0QzBS6bbZT/++hzc6 j7xXlA1uixMkbLJYJ6XmKJd5CPtudR/7/hvWXt7i0r3Xlo7oSKW0Kj04ZwDL Laad9a3t4JhAR8Gv8YX7T1JlAlvha+zsIFzMCkfIBTuQoHpwwjvkka6j3AHa zF1+QB6j5A2ogkNEeyaiu3uk7eTc2YWisTE6vDwIdChER+hukqs5Mj4USCCd RjjMHn5xfzxGl3un5hlKJJANdgaDN18hZrOZT6Hy82Rw3MzPURiU43aSKQ4D VxCm3VONvnlDIATBiWmcpk85pHYDfaTyedFocK4h9/yT+FRVUZxCn5roIhpK AIftlJWgIKwxkzMldK/GTAODHmcmVA8wckOBeTo3ICzkBht4N0qAjsq67NSH Yr/5gSIEdWCdkzq3jxNcHW6MPmJBNv5hSnQeMIgU7j+b+rc38iEBDLWCsWOc 9znctOfB97ZfKEs2ZcT0DkUFlkYH9V4DtdkpMZu9nUIYVVFc30jn3Tvj5tdG d0le5wlCnSOf3hSZHEYbSqfYGa4N4B1V38XtoFr7rFXY0pBm1riDin+Q+LeW EN0JSihCVyPOFHXNA6coV2on1w7Xoe1R6wQJGt5fyoMqE8KiH5Kqb/QxRNDb Wt3rFIOTYaZvb8EWe2vakfjgUB7ZDOY+NuplHzZ+zGOzFI3kZzhaU2a43UH3 44XRJm7vDjK0vM3e1AMKUnDKWJChN0nKOBu7cgjvj1HnTCdrPqBsmFOq9eNu dh1yjq6qNn5lR5oOZUUk79ODtl5tbrJXCJFO1goKVTzqWDdmhALagzb7YYKM bnfgS3c36G1N816GFk/D8xPWXVwV4ZKZ/8BBo501mWQkS+hS3whP7TqootVV aZXlPCFYUw0GOS6ZBF+I6SOcbHeIESZoxBYYIzrW/IVakrYgqCGNq4PAo2kE j4fcCrqM+VPgphyVFLN8yqdfRiWKkrYJ/p5QEJl2lE1rDO5aZGuazDcoMW+S hquoYtpxVLmDWsJuduQmazPBbS400z2u8EbzuGSegUqefDIK9Shb5HXZnPf6 FxG7m2lbyAnegfHFmXAPGLbT6A9K4tvFCUaIEY+oyUp0RENEJ17jNro5R4ve bnq7PERYgpMSWTVXVyYnuq5LGhH3HqKxgA/jajfvsm8RNDw+eo0PbnZ4TL5a 3Va34BG+0W5yb8QiE8eG7ZZZaOtYXmCwqhFd458ezR9ohuntTkR+vEhwgYhL m40OPahVK244MAeah5qqIcDzTd4Kiw7wtag44ySJ2W94dHAcf+iuHGtkGyNx dxBuMYs7N67pRfjFTGcYq6X6/uInKbsdUyDSCmnpRbWFF68a5WNqKxZqqzcz QtL+/J++QfDZhdON8o+B6hvqUOM5bytBUSnG6EazMgnDEWWRfBQX5deX2mtq +ukSOsl59L9iI/B6B1pKdla5eWyyyfyCj4+oZJvFJunzB+pHQ+9uRpVhBZ2/ o2PMGunBirnAb9TIKQl1esU/QOEGeNzdh1a5UXxZXTQ/aU8XIioiOJsGJ/As onGT7gzvt1N3oyjYMl9eAouvFoxvSLprh1YRR7DElrup3rmhtlGRBjPBJrpq PL2foGEtP9DG/ewLozIdvTuL5nFYs7PS46x1ETQJiiyRFpcLNrGtTwzaS+h3 1DwB2qjYvUJecBRIZ0x2UN9AXuYysKDq701udCXkt9UEWOWmgLKEMkHw7x3O +2hEQLFek0yy/MiHnVBBL9VKC/O4SuoTjiMyPNwOmKoqfJ9S1J6gOIxVCfUP HOk2/wXunI1rjAXHKuDocPABdbf+0xgMVsjQO2M9lRWFoIuxRduWJ8jZqbQT 7JBahXcrCh0eakmISVv3hJ8X1HKixJ6kdJiQ5WaEkTCrNWJSY2zG+/vWnzfL m0QTdyyWLq/gH9KbWavxaMfjo0r/IN8BD8Y0OLX5rTOKcHvmCdXHvrjQQa8i eAfX+MGJtAhWjhMyk6d9psyYKuFWQ72qETEnj0pOrjxGEPLWIHhOwQUtaMCN bpCPVT/glTCujC2LgHV9DFUCSgmqJB1rTyx/TmKxVRfmhTjrcZldejSeYfJl lw7y0Dzg/GhKUBHNabO/RBasRpM/QqJumyWMQUXA7LRYiz1/Q7dgaNCNCe0H tdFjUygW0Z6d3Ujg8rujOkw4qzDqFtFudnd0GxZY8Prp3gWEC6tWQpQBuDdG CjYEgsAXYH6UXRlk8+Gzp6hLV1QBheGl5gmCbx7b29cTqbZUV7axENR+TLFO O+gXXZEab7Pax1WyZWtEQVQenp8NUEE0748oI+jOp84CNHEzPDvCEnxXcfr2 PCYT6SO0kHIgiHvNDyd5kUgb2m0FWzZsEYpII7e6iCq2p/v1AEUFZRHEoGbv 2fJnHCcqOxe/OGuhZ8tOG+hg0nlEYhsnYk+u76wqynpV1+awsotae95EsO4o ulJ2ofg61RuMeezOmKQeYkTEAXDuQt1/G/jPWxcbK7bgNAqB5FLP72nT74wl jwjHswKnjzK+5/oLa93N+i3EhDLQrpBEx1rNQfk9/vmRK5Kgi7NOl0zBf/4b 2h5tZjvWeqgsAromjX2+1OpH26hS8/m7vi0eHiOaKrjOhv83TD+cRh8ahTtn 85Thj0x8M8rlb5SgauhSQ1F5ViWDWiLvTLJPbesu5rzCZrtITzArAiu+RWUS 6Z/HeAUz4EeFojIi6Pl+OagttlX97KuYQxFO7QM+LFPNmcJloLJb+wglVPiQ IIFvb1DM5U7/4fTkjc2sfKCwt8ceobkOR+QSqB+Q71KE4wRbgJdsykJtXW84 NEzCf3c4eDAun0dayTfk0F2I7tNpCMV5uqrnkkeIleGw8JJ2Zyq21SND7HUm WMo0Jp3cX8SFkd+s5nBxql3bkRCWGit1V+5xUMc43R+6Esbo/jeivTyigs9G ohz1RSFtJ2k1163qiyhbIS0Md3stC5RNH1cfOmu657KQdCYoNusZG2UWDILW BgMD842/F+D5zdk4P1sKikA5CZezHaMAG7Ee0pBzKN6OG1N0Vi/LNkNQp/mE m0bx2A61P2wcQ1bVA5b/yPdxGVdYqHljDiqsc9eDrfJNUiUI08NG0xtMF36E +sfoTsxrUFX4PHV7yg80OyIIMcKPvjwi5sJ8fEDUb1YdUAPO0P08ZAMpsH1Q wr4Zwg3JI6J/rUISl0Sgev0MuqDRV1tFmzWU+7aYDHTtdpmlYpl5O9Pw22XN 1MXHOO5JTdy/B1USxPql0EM51FHWzeyNfiqnIWByoNhcwU+xQ0yLaUKYh+t2 1SdQwVK9arjIGn6PrFtPRYZCtx0VN91/4jTatncY/WW0NWWJISCKr7QvktTb PBJ0Kp4Ex0F1obduL+8Qm46J0AfawY/zoVF19Qqiosohj2S7f6VhE2pz3gPA PzxkVQJuRYuBJALNsB11W6gR2+3s2BVJ7rVSG2vzmCnnISJf6VRkY6o5llXJ znAqbsksqE5CMxdaJEpiLu8223mduprwpxcxWWpsDRdcTRn+MM0vvkapf4Mw wF2s8MWDyapx00wQ06eUUkHYMRsOdlylrW3HVWL/1sSCyTvVtVV9u7MouFdH WK+iR8Gz7Pmx2qDEhaDNSEREltqGPc/z84C6C+Q8rUe7Wq99q4zTXFBWJHBB x49oU1HEUZ40/JZGDgOPl7hUJz08rgyhydTBCvOpQek6QY+qrge0Q4nmEPWc lxgwwfM3vHFPmRrQC0HnrlXRVmckRCxrrhtTY9E0J8ABEfU84b/a5X9XK64n 1OOjHCNoMKFTM4Eo1FPwDlcTQP5TvVnwgOwUkX07WL7eOZ081XFCAxbIpyoa ZtokQDyTKvJWI+AiahwFucpB/ynPbt6/4TA1uakRAZ4upWD5vMobqJrYeGXK esNLu5D9ZOBt9aS9D8D16xi03iiGmBiwXM95iKjDclC3SDPZ7WpBVpv51u0g f29+IjTXFA1jMkoV++BlJQhWIhmeZos5E5cCq56lTNO5ftSLp2yF3EGOhk/B EdOlPs+irQaNbmKBsGlZwUV+FiaNXc+Hc+PbnZuDO4cyLJnT94doNTpPGEJo zXryPqm9qd2rNSUWUEyk1R4iXSpocAbkyzplatPABwS5ClIEepwX+lxQgxvE 1llIhurQB4T3+JBs6yworDI5kAa8XNt4PojXdRnahT3huY+3FArOr3paIbvJ 56wyjyZhwy3aYjXxi09epPk23R3mb/S6eEmmY/2RrS0bIJEjNApLPxoc2+pW XCRjtlJ4OgXICGgiyLaDrGINVEGNCGjgJaQpEQQCpEcFxB64+5BtT2L29NrC XwDpLtmwEo8MnmxmMqXCKD6a/ojmJCi55uXlzueVtUZvlu8moU4LdDeB2/AI MkYe+uCykqdwjGHNT/mTz58RSLIJYjlqNRlICqMG24JYF/T+uXF5PWID6xSC EKOkunp7HW3Ba9GL7eHPnSCTHi3ftdP5HCFxkiwuyeBSSEO7t7u8cIAr+w2U Oo6h0HWZod1xZm0DwC70g05qIWMKie8nmMa9DYFHkzGqCFj9J1qKR7JxFvIF coFyNlEuh0/+uhC29hBGIXAJsTF8STwqtiAHlEOFYTVadEbTG+AdirVz50wr BKrgSjuXWGvouituAEdmkYduJ+cjrL29LeD9G5TobqvdZFFBP2ndqi2QVpNb xQdrc6PMM6CIhGM8o0JM8krl4tss05FKENSaKSeo3Tk1RZZYb5XKbd12hBy2 xm9Gcee1Jv7NgT+38KzsVgYgQJEKAS46tunk54xxwfUP2l6toFoFJSY0RDIh 6/0nqFKrVOjPqJEdZVzDExqRnGrgfnAc+s+WOj1kd79XcH5dwXlSf7yZ4hLx OvHLbG5Qirzmlok+Rn0zDk2M3PxPt3Xc9wP8PzShIGPThD1cZCuMXMEDGnSf Sal5ZgJxkxwoqqTB295xr75/ckvdVQF0oK3XUHcM6Y8xeizFba41HZSXac3s lJn4/769xwcoU8MG2BUd1HM6RE/ihPD1bN9kkm7uR5I5s0vnZGYlrigM/q4/ ddaObuWdN7PtZ7uqaO4JO6hGtykajuW40Ry2Q4FExPCJt+XpHFlzW6ahwxkg 5D0iHXuUz80AqqBj6wVnrdEmTo55n484N95CjzSKNTv4+whOTvWmZVclYgwb 6meDaujN5AXh913CEr+OJNai3FZcZuAMLGanGBpm+lbOXgHSA1QL8t34fnLa UvfomeoLCbsAfNg1LKsWoV1s0LdiAdem7clHXwQUOOzJKdQwW6NNdImYAryG FjU8pJGNebSV8R6aD1pnJ21z0Cu4+RDrPhGvStWlzZzxFV9rdmFcxQNr63Qt 1m6tl5fr7wgfNRQvW/eupIKf0GHViJFN7pfWbzV2TM0UbeUgyBYRY4ZmdvED rZ3b4GF0DjNHzZDBNgVJcZiMEG07xhj0sd01APl+hbek6PzV+ozXIAbeX7W7 iStC3aZhHw4qxf5OsjeCBW+4aaMjQXiACUu0Img4Vl2yVAdfWtgR/hYFp5r+ 6L0iHL4H7SgvPaDOgklQjzdfPjR+h3TY6AYnI96DCjHQ3XIfINXQeWpLLAl9 hAbfQr02aBrOfrRxKdFOKfIfTVF+i8sKE2kf3iB+UeiTn2fczrSnO4YnQsUc mhsKp23/LqDIai98nV9ZneanS2ubnBwCcoLnIq1QQ6ZgVVMB8+fZGVCpKS7K 4EJ1A7mhSAVX8EMFhRE0/XGkgt8tGVoNgH1gARXrOmjKv+XFl4qesNYavjYq nk7EkmYRZ9UqrArCK50JJklmv9f19Rm+lDIPNRp9Q2Uf25XM4HY2ZNUo3gsI OJIXUkRZbj+Pt5kh6/1dwHizOdmIrzIpZ8Z6oVH7s0G4Dqq0Q8nqjDz4O303 qpi/VqO0BDcI7W+JxCqxjeYOOlnbAr/HhAgh2ru4JAHpuWGYoBiIjLNsi4qE Y8fM1Q42q3aDPwSNcQHF3EIZU3MTy4dHCBOJTn4clDk4vo+i9S4nNIZNbiNz LYeHWt14UiYU4S0mz92cp5wtOegIrwCKeugzm8KcWBuzsSLHpuzN4oT1dxGK hGOfd6bXjw/Qf88PfKVJQkybIDMXlYCBSQTXUfhQQMmVSgiH6KM+Hxn+eFVU itts9wi3ofGcgEbYTVnrJE3aWQqDKvu3oVpym+lsQt2XEPU2a5xfwtk3tM55 AYP403+DoEGwbEiowrCEXFxnodAKukhvCfPrW8jbabPLcGjsGbLzht+P8tx1 1NZvTlicYv/SARyujULXuvjqAnpVS6aVTqGET3LOsA0Fg5XrqZ3zX0gzRQid LHx9Gpbp5zqbRIgvfF5hKnAi8uzSAn66xm5NC/wE8onQe0xQsebUa3z+PmOT u+kjEdEAFZyKmu8jWRXH0Oic7ewBxtwkfx/V8yu0EJk8qmxQ+ghaXm5pIe7B faNjpAcWg1bjBlgXtSemsvn+iNbRfYWBpxUnVO/iW15u9OGTC013LmLk1v5m cTxgobJnV1CEKwKHcBC3Ju/hnHns4aFz6Lpf4K9B7oA4sftNWGaKUPjNo3fe BOxaG98xLY8BQTHBmmYmKlQzvGOD07SZ5Md3hFesILgbY3skoBrg5VOkHaVJ 0DlDFg5ESI5069xrg8ZPExldWc3z1xR+z9jw8Q0uqWns7DT8URMkgdbZcFB0 B/6WZfN0+NQBlOc+nOv6b85OU2UzyAEBHtoR/gGjHqiF3jIAo85qK8d26Cef oSvPrbmhR9tWrWek3jHi8XuYVBHXsw7x5HXb9SviIDYLFGhjAwLUdW5WsGO0 +KxjJHEiiYVta8vooRZXJbEJWKSXkMt4n6Y4Y2bpoOhHRg2puzkuIkK5Fb9n /w7rrm2fFfT27HTM26G0CtCcOuVb+QcO+LUzGJFlQdY+rQ/VOCiQnqCZPRnt pVmZLkFNLjHZtLyjqodk8vzpoHk2g/qTi2tVdmAxvqRkwwZH5zX2ZiZbYkE0 JgoTY9nCjGr3HcIDnGcwSZQ0evqx0PbRvOxUnBXoSGPW/PIyAKqW8DTSp671 I0KAc9zDZ1xcGygYtyioDKfrsqc+a3Xby0qk+uAVqc341EaFn/dte18RQ0E3 friNQFKYEpc9vNsI1CSNp6WYKH4LSZzM5T41aLWW/RVprsQ9oEy2CLEUMMDC qMnY2Ix3y/vaX6Ak3zUzOH9D3MKWFJq0nSy2uwKsmqsXorHNPpJPZST3Rpw7 Ouc7CpO/Z/r9GRdtjIqLrXOA+k1TsxkhI8jdZDX0EOUQy03Airs33H+Afqe0 wNVmConyWhnXhtbBkQfqPNKUxXPDeoqjEC4hEll5uv/8jIRAwhOMaGkA/6Zj ZevTEaLOMp1x4YSo3pne3SLSiQzoEibkgAZ2TMPLDD/ne7pI9JNR/hiiAv24 lEvR9piWn18uFzL2Wtgmb3Gpo3096SIgCtbrZt5DBu2bOe1YEsgaRdN1kJEf Z9dxYX6sPS/E1AnilCU2FvvuCiUAGE23pvxAfI2pDmeBRndBsNXg49IvgoFU XUslREgbO6Zh1n4w/NvNFpInLnSwTHBUUeXcC1zVIb/4HOf71ZixaGx5XCBs 4bEyxuWibVcXB+KmZHUrmAxqk8pnffccFy/aqplEA12U7phjAaeHyQ9Ck2qR IJnHa66Xw2gc15qygqVDu+dn7QqptbHgRWZjiC5wvTlfE6gy7RtNYKvQMMQi HYMSByEvD9EpQ9enPqH7rh/LYJknuCKaLzUhjceYrm1N6UqalSSuef2m/0oh oCC9KkO0PdB5e7LWNQAQ2dNmRcBGSJyQN+ULe3GuraUJwhvkRSsVB02vRIkn bOIGLVjWCoFzUjwMFa5cVnrTMJpgoNdQOmqB2pTlrzWNlIBsVdAENZQ+gE7G d+BsVTg+ic5RvS+o39C13RXedpeswgj6zEuH6HXruip3kCv+WJnJxGS6Cna/ p31yBs05XUN5by0UnlkLFE3FCRAZa1yT64aK3VLhMJvIt/OwqI5XC2qDuj2I Kx1crXNVJKTK0BiDiPO8Q85ArQjfz8+HKf9lStkSZx7ohRUOeKlhLBGa7VFU 5rPVsUG27RCK13VvjhO8qaKOvaG/XgWopGlam7MwXIRiErOn2LDhZ1tNVJF4 YjFVJVfQC/qy/RTmYHBj7dZMEeGxkw9RObmZYLHyWQcqBCj2vetCcs/o+voN IsBWZwhhihCIF/bK2KB/UMwli5i8pU/TprdOOehQP0YbWpFZMw/3FRns0imY PK2rNDx4XjExAwkGf1PlTIXl37QX99ACd8w1M7q2RMtCmtiazKUCDBpA22wR 8VCLT0UrQLjBT2gFQsY2Dg4W2gu4vRIQhCHyd2blokzdCmyaIlKFxTL98xtC OkU7YsREFegofGxdlG0UyVNTk/HujgRks7g78iu1O1RO2NyEOZahYqjie+JR m2Ae2UaCgjd98fQKc/VgUe//T50ZUBcyZpfJiFHYnHDLYBODG7zA1YKK8YT4 jQhfVxnKRqrtYg2WNjnkFg60i9OfP9Pp3ICJxRXPOsmFixC9MjuTm7NbbCIb fjyUNjFDKzTmJsZ4qPZJz3s9GxRySBD0O3uev7dWF5uqtWhHiqm3vnBojpGz bEfRybUePUOaH5wH4W9vdPXmoGPfDM0tovgTZGbf3I8RO6mNO4tr3GPyUGHp JC31r2c41Ca4Weg9obUqe839fU/7man4LTROxruOLDHv4eNvsIogAQO+vPQk g6KbLGUCGnBPJKeHZVWM7fIQnu9TSo00iTMG8o11lqBGmupM3l43NjcjnFwj af/9fPplN1kNdBTq/6tE6YsUM8L9+HAcrtmhjiXiPrblABz9TiqZbUfskkOz Ix/5yQNLvnXwH5vRI6VZGGIv4hLE2/p4oaGUN+RkE7IF0RAicX0lo3xd0Fiq tW8cAm+biGpuRYFZkNK599p1VNw1onEgvR3hUcCynb1urJo074i33Vbk1APo nZ9DlRtJmW5wJwupmgrWjNBvdyDnQ3s1tBZQv0MaIZjdplxy8BrMsL0IWalx rMuwarMRR34H55h58b9BaN4ZpyIVBcNNFtxkVP/9I4zXWeoMFH707fGOFY0V sEFMfpIdK87vg25k7Rz6+nmVNKdsKeghBJ8ThTvNOC1GzfRwEdC1Ve+hdD9w oLd5dslDXkMbFjtYCHOdXIoxHgEq2928HyANbzkoS+dRTmtnJ5UVhzVk9i0F Dh3a2MBPqQnaSQUkeJS9XXtzTy5tLKZ0rYcb2hdDZSy40gofm5RuxTzMMZRx paYQjKn8mQ4k27OYcqB9MbTiU8pRkI7lzeZ8dmWKVu0zxWXrQYDGb1Hw3ye4 6mnMjUxEDxhB/IKdk2arVLPBlPPv6myk/JR9VE7Gsdx9QYA1G8nIoAMC6HP5 Kx4pXfWfOGccoqxDhbJYIDFCRv6Acj+b9vIaD3+rqSjrs7U513AiFaShMst0 26rjXPirXRjk1QXUZ3MqWBfc3sPTzCbyN4PLDjkXw9B6JTi2bsu6+kT6tF5O svWWdA8eCsfJ4XiaWbRKVAhdhCpqsSS2PqhzLKrFwNnsENKuTkw025GpzcgF QmeSuuAlCkT8oRZRKBILWGpEx6pGuwml4HQPh3Fx731BL9O5k58hY0a3xn0j /L+2s9AboNMYedGjD1rWhZPZfvj7PY5zG8N1iyBuuynDOM/yDccrNUu2Iki0 Z4lgEe+oQlGyZSa9Py+Qdg15ZxliPAon64aHtE9GmD9Wt57wPG630pdJSWYi PD2EXCJNtVBxiDmH+yuzV1k2CpZu9FO1ZXNZBSIxCt0QjV9xAocR/98IHfmm q4Q/Bv56OQjQTN6eyOuWPilr67Wz8/6U6feLP88MWmi3XxxRLy5qKxtksjMx G23LSvwPLTJ/g+7tFxSydgslhcyPvtwhsKQkxqyqB34dVRTVfXewQw47jSpS nzjvNXSScGM9C3liMa/QMjeQEUFKdh1CIxHdJ2y4O59ajZf+QuJODRBHLwQx xxPTWObctmUUbMC3zTn80bUc+mFuc+lyaNoEDxEXtVjCCFpfErlRbUIYnYcg 8dcVzzU2gr1fmWwNoSWaAMdroFsz7G3g44IpsOlBjalDqTjhnGlHEv/hM1mr CUcRGuSA4MLMq8ewiCFoOk0ruTCSv6AfnJBvnLdDmvsH7wz1r4NGAskPLhhe r2tNBf+q11X/7gnKUW9dUnJH/ngDyTRt8c8oiQJ1qQ3sj88Ilm5XJSJEtxKM gbolBNtl1FfL9XtUSd6EWEwTCLopi2Z2Q8nODVKRpK2lusSB+C9Kd8JVqaDC 8naZQjTUdMSjvnRQgeBB+npiG/kg3dojjDUKKLsGB+TjDnzsAf8hskBLQUdE uzkWG8TgYMtiXTULP6EGp/2XxZ3M0nRsbIef/YJXrVgQTk2oLjcIcxOMAT3F AmjFu33TM/ZYkxSA+sYw6zpC9G54c2hVjzNFSVCMxTmqgj8dJW+13P/JxpyC rGt8ezlLxJCPdjjvDTFGxSPhWXpq9K6pEQq0jRstLiVCwNlgF8h0+wj/OeVU G8SZZxcyYcftN+Lzb79A9gbVi1t2wZ7g1dlX8CVxVUVMxILdB8+bzzC3YB54 6dj2XjL9/4CzUYsJOdN4Xd9bX0RxKfXwfzUrvJ6nWCq4Rg0Am0zoMlQdvISo IFsPVGH3PxOK/q0Xzy69MnkzR0CFrikt3HYOPyojgypZAHHg1frzolqGhufT KxoOfeQlXI6t0QcaLUKbA+lQiGcscz2lVhiPn4GtnblG/W+UQJ4Hsoz269cV JL55m7XWtkqngPInLfuX03OUDznKeoOVy8Pe0v/izCSrtzIm/wVJtFHJ/hFF tKtXj7O6OhB7ZLKbmCyrzS50kyblxiB9p+09bKE8MlFMtCID4fzDa7t1eYAq EAl4ObUkGmEjOVizCx4PpIiA+iih2ErXDej7MmlFbW+tCXlS8JcxIniFVTYI ujEs4ZF5BJHFQPMOu5MHo6wnPZoOGdWRcvTcZofB6pbNTqHh1OPnI/RTf9F5 zNee/ERfxnR1dQZfm+FrrDAWY/e9OsSmOhv7+SO0sSbnJE4bH/9vttrTYUjE Ldv/R917ZMmOM2uCe7kL4IEWw7ihtbohN9H7n7UZQXfCQJgRnq/qnHpv0IOu PzMZcMDkJ9AzlKi3kSKC1zs3rWb40OYfOlwZB311bdCVtb4EaDEwYZ9OKOtN UBgNumIQWya3bg+Wef3sINvhr7MmB4ca9+i+O6jteewluooyWQd6FwSOJZVo UmXsvJmKf2Vr0jb/5hkIkmRsJrfgMSa2vjqGXzjUi39tcCKvVDFGZgrKx3do g+k6ylgDLTu6mTKiQsJ2JIUCYqYyPfvpAR0tc9QmdIRujua7r9ZER5FMEB/s PMw3dTIjYgBsjZ4KiLYe4YoiYjUEE9fjTk69P1dWZbdZ+sMl9lgxxMyi2ljk EtQLtoGKiS4CK1IMhWBUmSAIhhg3IWe1WVSjMye0pTrmRgiJXgnWywyXG/Sd 8SgFksvQPtoEExeL+q4o1utZTIXNvsqTohXiBHnJ8bFs1JJIvhGNfmqyk4+p LBlZq4YH6NQDwbmi3hJKCwkc9jWStQj+ok03ZJXTGTfs+uXcPMeYKP86BTjd 6NEr4+Tw4KF63LBAh8DDkEEnFFQxve3p4zk0+VTPQttoA5qPz6u5Y6tGEq/t JN75VEPhhNRfKcsILU0P/JKT1cv8ZtO6fzhtKEIw+YDa6smYseEYW4ZlX+zH 61w2pioV4aUoxM/xT+zzHar2TKuwiNKIOkadmMF+/86W0japRnduiBnO0SKq +PUcnWo0gxAu4FQuxk7/EcBWjJN8o2E+qGUPVQxaK0a52nl8d76shtfNBORS 6DiMVUwaZriqxUBQNXYRY4lCQ2pDf/AOUrtSWL6Fb53zen2RcUVkJLNeXrIr J9UA9cWPbUYjsxe2dV0U05HJfA+9ZybFJFxeFJdXJautEWKEgb0nJCLP+o4L 1jRBug1ditohXVz9GGcjjWxQ1rlJw5Fz6a0eTO50v7Ls7/FaoAvmBnRVlTqX wWkqHGCCy5NRECFYECYLFrXBzDyKocqso+KW9eT0oogr2RzYXNQOqik6yh2k g/rfCWTbGTsK1VOzVOGxo6S7tDmjPEMsYoZN3nh4Rv2FbR05I58VVQVv1j/c dAFlRGkdGeVdyqim39Uj7lOpXAsqcqOWpjoN8DwvU6AoaoLu6LRmftouy4uU hy+fy5xlvQIoSji5aPK8YOFkdflVxbKWH7oEBFJuIPYi26nrB3gEspyZUEQC KmCuM5MPKFAzFMiEUt0l01CmhmntSPGF6K8F8szPlYaeaTNUNzEXIEYLGhp9 dsk6shyKYnfcVMDL4JfXRPkHb4VKxWeoJ+aUk7mRDqutCs/AUXqX5sE4HaEs xOQUqdqNiPkD9GdU28/4BDcKbQhHah+pU/atf4ssvruSqXb2bhcG+ugNxAHd ZCdIj9mPTPh2ZlEnqH9y3dDh7Z1f4QiQXAUD4W6CJBfJEl6g+HALedR3aPB6 Q5nZoIFahLAsDiZf742NW9tvgyV1ggKKLIaYAfWADcaeHSDqLEBvnrtgh8Mp f3xCkEi028Ad4gR/YyaCB4MbeZMijQ9ltz3YIlP7llrQJ/jCzaSYTSh5ppx8 NnzZw87OdGrc6ceeGYTeEFCIX3xs7+dOFZGq9fZGNIY7QH37TRwnHeCUbTav 4tR31Bzp5Ssl5yiNDu0gI5Q7hp83sJUkEvAHn9WKfUTlvuytc8Jq4ufXphjJ IgV6tYy0o2LxzZhksVIt0cUWF8+bEq6D9ICbCZ+KrjrX/lw+Q4xIdHKaUrST R9kcWjYMviq/WE2O7rNbvzThoj7imr2zxc7GT8oXZcOTAOal5HVNKbmD2qZh ILjewP/l2+qijkfRDRCnIFwpqlD4HzBP3ujG8ZanzdF99kKbYy7v0zn8etTI HY/Xwq0vvyo75GWLMOfasteeoNVijJlUUqrbAH2fQ03tSGkTZ6VuON9Bvj3r 8uZc8ZM5dVBiU4D/vjZOQpF8PHrTqW+01Qg7Vybx9Q1rBGqVtu204QSp1WK3 QsHRX5922azXW1YbJkhHlgylGS/FnXEIn8Voz4YDA/Q57VzcQ3q4/Qe3lDod wCdC2YY7htE5DrPH3Arzx8HdVZ6xn8yC7fUiBUW1T1DFcQpRlxX2UMfGUiac bYBmWsuCDAtA1vWHqYeD/rpJym21t3U0cNqYqgal3lh3RWNi65F0wuIiJjsZ tKHrkcC+b6AI60gIeLhgqnWAY9x8NoE4N/heWZV9vdR59rcocCbusH8/vPJ6 IyMPoQOaaqjaWJ3FGtXXDlVj4ZCMpA6ipaewhMndIUQ1af9ypigb0cSHdul5 YYvumLzsBY1T6EqYPtAvLsit/I1bttPko2NEHrTOeWhFUIfmndZzkEUc0bgh QNW7w654jTZQ7oKNWPwFJLj+EbD13BUJqQDgG1ManhnUYpUD1I/K9BBdx2bu 2sGfRraz8ABRDQ4Rq8ytFhbgOFxstEeG1lwIgFSohiGXnrcXPhUwRCNbhibY 6NrMCiGzxMYAga75YlEC7PjFfoLSREd5gHnxY71LW2GBnH2c4mKhOHClB+UM Na/ESNcFFMRM78TlC7xCu4l2Af5WFHgJaZCjm4dfYuIhitvU4vSej8rjOZL2 fRtH0JoQ+hNoshuYRDO5GnbZGfJR4dyMjsJKv6hMv8V0oCo5lOyOD9XsOBBq 72aBuzMlPq5Cc4+b9/rocyv9hHRgNJi1g2pl9ch1j6eZxlzOuHtwXCk+hFh6 KFplYMWPAOY2JnPeuPLVFSIyUU2PfU5phU37QJOXrVWNhyieELZYt6pDZirZ 6VatdwyWphKC4WJXDLkasP2NpgicVptPrZBD77hJEMOGn/t/a7cSJOLIqhkA ZLSHTcVPbSN8ehaUd5uKU+scNdZDgYJQxjQygtMttLY85P2qM+g0GdR96+FQ 3j5zLKadVfMPTdXkfDSimoeM/6xbf3mpsTorpSnheHar8fL+blTr7O6MmwxE WcsXDizwKMSy0h2xE266UhywJ7djSPB7G41ulJtdThr+vsao6D+4B1qrm2Zp Z9y+zoF2MTM3Fyi3TAgC2gXoT1EsXdBvznsO2fW1lQUymocWYlfI8OkFRx9k fh1SwNI5WKH+FYQc4CrN5VWbG/bWGA5Ox6KauFxMXn0iq24bFCw6kSuXFBPE BJMlyNq6Hf6M9aExoaJ3Wjw0m6N9vw7GUi5sQv5/8DoPQa2ZJqPgplpnIEF+ gCwPTRBVcK++TVAU84elNnLqLVHMIE7pxyfWYO01VEnN7mXe03YIkKRbhooP iu0oOhFcQHuv6N7Qwy1HPGMM1KuE2b206kmxtU8oeJmdtYa2PkncwssPl2Im w7WEyHWfeKmB+pdvUJTGlZnJEDa1mkxpLW/kvy6zbWaA0BTmycKZzldtSN+n 6+ReUDyhCbaCCEmtkQCl1KRytl4yebh/Sait0waFaKAM097boXk2axS2XcuO iccG9BDXobh/sbokzz6oSEBe0UMXMaYNWF/nPUVZMVusuW3H1/niVi9yoRW4 R6FpeVRW9jkbHm0ntoKkU0Doxo1Ke+ip909UXNmOH1C9yns0kvrTL3wEN1+n i0/KICLiWKTjf1JrL3usvF1Zr2dcwRoxoN7BdbQXiERdxtMcMmzSdEl3CpkM 60MLRUKQT/kcOqHUwdNFpHW4RY6PKS+PH95ztYHWr7UQGhnF4xwNd9xZ7ofu HqHfpEIw3lic1i6kmIGowS5HTWiWSrJacqsjaaYcdFGT5v+A578h9/zRTETq uk6x6fVp73FM3A0OIfnY+Izx/T0lsO/Oea5RZsFQ7ixUm5MKKauxvSNbyUVf QtPoTa82u6qno12VnTcWGmRazKH/kE7JOF7jxnAj1xxsVtsv5afEtZQ29L5e 5kx+Poas3WZHigs9FEZRHEtK8o9Bg7U/g5xUUnJCcnAqK9Fs/foJuudMkPoJ WRTe6FSkaTjnuf60cjtk5eFJ27eHYkLys7v9zM7NAJ9Krd5oSEi6KCX+dznE uYnSiyPmcWtqxHX0Ot9GjISzyQsyg0+PaExMa3znDH568GMbSNXvUreyF2P0 as4yrfatPWicNK7FGmss5cgbJKZ/3ArBwftoVnlitV8J30RoVJXegWE+fEDS TiSzBCimJwP/fGygTCMHvYFY2IZny5uLbJO6TZ1od9RS/baQdujwIiLjB/qD VoeSHDXbWanczDQTjwEgo+2uDspxmvUKR6AoP8JmqLDqfRIZukauQkJ2GY1t g5B4a1HUPRQuJu+a9+NjeZKV32qKqPNTJJfZLaM8DVp3MYOTq6hQ7t96Lxdz z9fJ+cbeQhucdhgiOEXQ2aw6AFaz5NffUaleXxqq4UIk1AKN7ukfNv0U2GrR yxa6rwL65yZYrMtFUKap27I41SwFJ2ozZtU92KNb3lt0VnUgFNlNHou1sYJz R6/6ZPoJXEI0OUpRhrq+fGn4IefBB1nQmRCn5BIVVKUnzRpcq9SYscvWhC1u f289c/9+MMyqUELIwnfw3lnlalY+xMa8gQWJ68QGJeZDV+Dg9cyYMhWuPc4N mltaLSqBs9ZTwfnYcG2TTKxsmj4oI6BPDV01xaP85701cbtyhoscJ+d0yE2u 4JgnO7dYm0EJWAetJrz81JWC/npIvvjWUaUhrSL6XKYoauuybqA6N0BHM+gs pNUiKcOQ/95+Y46aGt9beGWzW0sYrjBHBXuyDMpbZ1o7EKand2Rjk9oyzsop KRZmO7/44IIEwp9oU8e7iZBCDedvomLLD17gRjXAo6msymXmMNCKyudbN0tj O2fOmqOaZ72j68dmRY6KxJPLKln52Q3CNPMJgc0FmeLz+hJMoAxyKAkh6aAX Kt88s2zACM+1Ay8eyHRwQmFZWbO34vKfi43cpkYh8SkiH+QPu1hgeaEp2UZ1 StiR04iWdm7wy3tMjooDQ3dhIQwqy401BSKdN6Y5WLnFrzRF3JRzLFo8gn+l NWE7q4JL6yZM1FYqhTXHmYGqy/w5ZTO6il8sO9F+ZfnwGnOBTdcR2NgpGaNb ONX+DGWe+iwj0lEM1Zotopmytmo+IfZ8z26Rx9jYHQRk8kPYZslobB0M5bcf 3e5X7gFZY7TvcueOlcOlQ3pqexHQF3JSKqZ288znty5Sd44RceM8L2NfCcsD qkSzM/C+/zDeUg0XY2b9TjT05Q7bcMNiY3xTWwYZNlqhEfa4P29fcNW3XjM+ KmiWXVSDsHPWYQBVfZuxq7iS3BUMrVCBT6g4TXt8Fexk08Jx7Z+yDFsbELwl cQIn8VorcQX5/Q4NPaXTeJWhXIvWGG441XVCL/JkaTOQmEk8ezab3aHUcWDy oHMD/4H6F207Fgu0EdKEGpWA5An6VPZNVuq/u8a1F6UuIns0m+ztoGAd++Z8 C7nkSTUUAKTFb75+1bFQ8tddevAQFrNxY6aF41PtIZknjZMUeDK24ikdOSkP cEW3NAnoT7SbFPSsksI8cxm2gMsxhB0GJIEd+vBtIRaQNxaiT1OCCJbGEDWj g2tBwmVNdUbNGhG5rJCZRu7mKccGcelnizMlEMSZrX4HzjxWSDL84BoXin0b +UqTXER7FD84luJJM6GgN05OD7NSnfPF20nIxGcmFypQgxP1GhIF1DC8oQcr ZTmjl0KpAeq6XTFBeJ0Dah0j2iR42wOF3V86HRQtKnGZh9+ZBqseyTUlFE2b qlceowlCZwOVV8pRdN58vdJRzydN/bQmqNy0YTmNrMgIClmPEslJPEt6ghrc anm5f/sKNy9tpFHQmQiKeAjRdZlGZtncVXbK6AY9zNcQJGXkNLmk0s745PHN 5rANxlBMo9apKjgy3rRMS9cZaoqmnC8kda6mOH46lFrTZgJ/iMlvr9ANxc0Z 45+BTkd6LEXbYXl3HuZYXxAT3BSQiNGdt37iPd98MqrJQSoJ8wh/SLmMA7tB SaOHdQPpeA0qRsQHZTFYP15oaD027RO8QY1TiiwoiuY+RK/EjrLcGWlOV/jj 7KUHbW2nMT1UGM9f1vbcFfC88U3wNmG8Hwj8fs0EyIgXo8HWoFa7D0V+QBhX QE70m7bJuWBw2KEUB2kav887bMalo94Dp/z9grAfqd2K1Q5ipDe59eMba0dR h4kid/n18nYzA/9ZHEUqJcfn708opBvxFIcvAPdCI0VH5hRnt0AE/nqsd9nr JB/0E6I+GilyCM0ahf8p0ZVBnv9XWaXtEePj0TlaL84yX88sfBoVNsvJTjqm qJvlaDMj5DDdRrtWFNWcYDQaUDn0Dzt0+7hxWjfygchqn1Q0kbhBjHSojURq zM0iQTYRWmVr5BnF57tZAKarfEKICu25CoWPw0v0jriURdk1I03ep4Cooi47 JWF5cBFsoiL1Hj0YAgRoQRhstM+L/ByeNv1aRhm/XkKR5jb8yojLW21xPv/n fyjKF6E6aPSzdwaEjUAq1jdIFY/8Zb58iDFulUq8w/mFSqZ1YxmDJxhrG0Er iRnWVPkBsnUsDLiNadc9pPH5nlVujmrGt1iTRb8N7lNjVK2pqxH7kSZWlHar +c6/byH7lluFwsnok8gOXlkRCjSVavhKJ8XhAP/hZKwksX92q5H084fIEEOX GLQZHGENL8t5/ATZgxk12WydvK15CrEI85E3CP8UJveF2cP3Io7rRQqY1Nhm vsm7q3cWjmZv5P330mpLBSbhsepZD1bwAx/WIlZje7GQ/ITmoLEndvf74rCM JLE4GTcluJGBry1ZQqNTuZFliyXTbvu7mmHDqFodq/czYzVVtXJ2NouJRGmJ AO24hh8J8u1IZZCXAg8cOcrzNeE2dj/QIieyLPAoR619jGQ6MeD1XfTfC7yl GbcNqJPPmBKbev3FUULgLYS4tTWBy+IhGyuTByfFrEhfbonk/0MXt+pxPUDg ihQeCAc9G/tZ2192CHpsSANuwEqy7OGqPwK3UFb2vf4bUqJ+N2mGeMD3Wypt 1VyKJMUvKHlb9UsZgbBucrWzGD6LvghX/9xezxtIcsJzv+xTSrzFCY/A1eWI 180Xe8BUPXkxPRJ4P/+gf9eu+VITpuyz4gtKpkHe9m38sVIE+U5BCVfWFm2c KtZmFBUNPo+0FYKedowFc9OCfXYai9l7MMU9TagPa9NMyKVKI+hTC088SnZz XrzCYVzEk2I9dhui2wezqLiuvgCQ8TXExAX6O1K5c9QZm8tc4XQ8sVaI3nAu S+j35xc4mLgpe3D4OkGdZ2Mdl3dtS0s7ZxquT1GT21UrilCuQ92ouh67T18R 9VDIw4N2AymROhDD0hPZBVfleqWmVZYR++vtmHx0IYn70YcvH0PzGINC2IgK rJx9l2Q+X2SdG0dzWc6zARHv4u3uLpJ2TSy2zudJQRnkBmWVBFRxjjrQs+a5 dhXMxkwQ1PeUrM4ec9aZrpsy2r1lr72QR1jeqymqz/VVFifbTdMMP7JJqSAp No4Mr1YXuclaiiJMKtuk+JJdFn4aWtTQEcrkXFnFsff398N4v1X9MZBKJvS9 bgCY//F7eVWwtpVTTufUQ2pXEKCP6MtlrUCNyMzzTbDYN5CfSzZfRjDDMXhF IphZo1VyRrr4hH992EC1jUYUnE1FnXaMPTVKjucZ5yS44aLWhKz0zkAQcnak xi02RJz5xDCqvSXolUBn6+jhZ5k7uuJJ3R6v8f0TTUxIT4qYxcmbZHlpFfae 4DE0CJsxwILG2j7kopDBf+7XA9RBDUreZbhjOizXfY9y/l+VHijDtV98VhXR l45ebzZ20Sc7IXuMcGdGJK131qSnaHBBlwrHtViXMk/y993Cpzb+eglBLJoV fmUQ0fOCNOkGWSELTtIPRvFX7XKQr8a/H8hxeaMi7jQGvZQ4BWbW0r1vzrCf T7zd6aBePqIt7iOVjHxAorb1vJu0MNHM0QbS7A3ytJc1o6C99BKWvEeOVHsD fyTc4VGpVw7XD79Xy6+SqR4L8w4+HNJCMXojKKxjO30ORX8mAdmhIRFUnYZ3 0mL3+3ExohjyuK1HbUFlLHKd6cESzn68L0xGmvYUwkhTtnZwIMTCsExsHp0M wzreC2h8oIMpMYVpmq6fIdoqUtG7GBXao2bugCW8ygLsD4QDL/t2LGVxgLo4 Oi9TPP5dQdmvyXQYVUCm4FWURM9Yvp1LukF8JH4lU98IZ3al5H6cNdtiM82Q TjSYFhQxWbzjdnEn775WNSbX25AfNe9f7KKK0CA9UJZgUSQciA/ybGjYEXDF XmEfjUy/1eLpSE26jFbTpsM5NJuJdhCBwNJ+QtCNGMnekLD1yDFduujXA7Lz 29lggpon+zQ0yxJoE0jBIIPNQXgb9IXQU4ak5aT8+Q8DccPWTgjhDdGosesx LCMlgK6Iwpi2XS+it18oMrqwUmhDtCpL2NMmWTtV2/yj7kH80cFLoi1932oX tqWmDTP5zRXrXnbpLG7tdNZN3pPRpYdPztqjUE5wEoHi8xLBQM2eaY7mxkRe ooux0toMkmVk/zKRDTtqvxcaCWz1J2qFlJ+c/IydHqMscXNkKKhbn0B7wiYa 6zd1wJpT3dfnO59UIGo1c75TzrVbXAFqxSpXu6LnVHssiV1eMxSC7w5Q+O3I D7zdJx0VDXsRLcmjtUZJiMdhMH1m48X2tINN6N6uu6Sgakp7CxffbiAgBoox +HBnDd+j8gqrunVElVWuDjbaDg1DS+UqHPNZinaLWYG/ISCgSZG15JD7+8l5 e1XLQ6BaKFd0A+J90vC7U9/vqFEqftGrHABVsD7PyM34s9nuDaDoIQkusB5a Zvw999YG8rUWybaTgZ9yfisDeGN21WvsBmZTgM+MzuriG6hLv7fBAf2FGGca q8CQI8JcgrBuYmsKk70bVg4j57nfkp5dGIi9m+uKrI8poaG2gL9jrbN98r5T zY9w2SavIQD3Gv7DVXi/9HBH6SglwcW1Whiw8Vc1pYbwEVmcLmUUw101ySQn Mop/HgJKg7fHq7OCasIrJchR7kTdNTEPKWc6m8X97td98LHjggt9M2L6dR6p LQWmStBJ0ZkrD1Eg4BoDIUkthss8YfAXela3af21wz87qULP609eWZM7vP0k hu3A+Ve6x7LfZfhsz1cul+H/urybDe5tyi2kmG4+WLpEbJEq2gw5oszjlD9s JfzzDXGnZSuhRl/AnMIvGmWFjJaSu69DgqLfKZpCiBUGlhe46t0qqCK+POro hqg0DKR/nv8olRo0k1hd1mSrAL9tFiPF9z9EC260rdCEZIpmMbUYqjPZpfRh aVznkSG447475tcLhg+CWIgWd+m2gWiOFJanaC9TJv/uHuHnX9adGeH/EmHB nxvo8TNB7iY49ylD58OBMoXct3XaGmTD6qgntIS3crv39K5d0Zxc2z0NrQ7U waWK7tYVmXeZdJD4KeTmlI4D1y0hFWFo1hvzJkIMISruHmX7dDJ6CFDIfH1p O0oLOSDuub0XEdUOsy2ZTJJjxtqbHrlSHpo8p/Tg2pdVTdxqHJ3QpQan4IXl goTlCUL3Jmi3GYBGhfotUIxEdhbOimtktUFHCmpHnbFAdJM3kD6ke3NzmXPY Dm4d/mzwZgse4r8w1dcy7wSYiIVyQkJH3txon/2WJQtXZIKKyfnmcTa732PZ v2E2Wd/kFz70kQlilDd8v8/QoMVNbrQO8QwhF6PwIe2NwWHXzv73OJdDDpk2 bkcN9PMXGkxFZuTeQlBJOQWO9CbogXo0uSZRUL4bayndvxUVcOQqOhMJEcui 8+BkdPEUY+YWXMSDynuz5+NhcKRmCqjSbcpN3BjDXLpY8mRjSIDeLBY6OsHp jkGrF+ewVra0IJz38P+YgXvz7/P3BI+JDtxcQvIgMmb+g2mCt0XJh27QRyUp D6ZLzOrp+dWoZLa+QM4oiwCpyO77+XW097mZx844oT0aKUJ9UHhAEAX5/IC3 n4hbmEcDI6iTC6yAM44fXiWMobESLu7RbFSAY/19CtA10XlQRk0kFXMQaWGj 4jBjK6aDGx+/1X2B69rQEqzO0H94q/+Lb2AHJzbo1AlXNRu3U1/efGM91EDn Uc/Gmpz04LbfcclskZQdQcV2yngGFXusM99cznQIMBNXdEYQJB8auNYOHZH8 n7GcQNGPDoJ71jLe+BMtmNKmuoH3DZUx/CFElInoc3Gh7PAiRl0a1z2pgwdn F9Q/E8peH10IzrShDCrLPEH/YdNIKmuduLxPHQ0eTspmvclhUhaSqPzwroMq fjir1P0MT8D9RrNfIr5hMpytenZj2qku6UlBF9yl1lSJ7dOpzoYUOn2oH3Uo kjSMyKce1Y/ihaE7dhO2y8CrIsVtTs6RCgwqEQ9RxhRi25jbhGQ9S18fP++u qxwOvHIEV1ykYJqArCHdIIo3EEFK4aNlTRvf6oAIprn1VYGae4oRStEuMfMi +iK8vRL6TcbsvIjajYjDyLOh1djjpGYO0gOks+xKwmaKi4e/kD4aDWYH7Ws2 pb9h1o3c7bBOt8qUYt98ZOct3DE+LP/qkMyG2qQVlno4xhAIxgKfAoWhMnmL diiXHOtgZpp8iY3SJipDL5NQA85bkczPUrHmL1a5kd2VDQeqyTLURKawSFkq 4Q3S02j3FoOerI7esnsF1gYoWZspqmnEflAjSALy105F9O8mB0MfHrSy2Gqq 2HZF/0GXCWnV7aJBPOiGda7QAgWqhR575eIc7WSpiL+LCO9Gjl4DDhk0iXI5 tg2IGYJs4rAKfvRCM6NQkJ/npAM1dzGzLXg2RtDi3vGcoDCb3QYpYfB12Ypi c4+v0F/ozYNLEVUBIX4T6MRaVgjACcgVLRFvDCKmfUDlADf/S+l5/v7GWJ7X qu3gAnxhMQIYqOD7Ld0pJ0tqoJ7ucrW9u0wpbtGkcFM01CDKRrH75Cl4RS+f 2IDLUjBrzeZ22KTf2NbNM+GqTUI4GZqWGN5WkAVCO6tUew3E6v3Q1qM8XFK+ Zy/xeg7tvCYNEUQDPXkPz39s8M5fW6Ua0t2gORGOPoyBXmKHJPiLwgqbxaNG Z0S0m+BEVcar4Xkvs6tdvGiUCtikW2iMtv45Hj5hUmoRa+cHZzx42xcVn7Vg GDPOCaaHn3m+CzY0QDUf4fKgCl6jOSDUvaL+gFnYRNUV9qf4uyTcgPmY576Z BrR/rxAkPVkhGaQVe+Md8WckUBpu6Qz1uWk0SU7QkdPRQosTTFdH7ljgfEE3 3XBcnTZxchm/mb27g4uL8qp3aAfpYO3Trx2/MOoaWhwElAiDxitYalZ9otHo fMjBt/ivHeun5at1r/t5uUMCN2XvO8h9UwzFb5svZOSBXz2YZs+0oxjHWNf/ 3qaQNcm8NlkDhwofIaAUWRt4b2LLPhqZkeTFhopxW7y9izrM+YVyIhRKlEKB R0Tt/puKpDzsbSZ7UJskaPi1DAO9etExN9gZ76EAhp9OWb6LHAbny5y0LbJZ hgFeQvq1mfqg/J9X3x9w7xG3rL/fybu0aXjhoD0aZhkifvAf4kAIofG8OIVW CWU1VIYpd4TMDgOduxd4IpQtA6kTL0VwnMGIwJoKC2DlZOGfGcABx7XDw366 QV9TurnAn3YyFv4f6sqxbh9YQg+aSZv63bHyWuMD9aqC/PDJm+bFxQxBIplo 6jRGREd4K5+i5T10tr0yjBlOX/5a6OLpZ0IXtRgujoDDN+tg10rB8beWQitl lMDtG4JGmrU1pIeAAqYiy49rHOC/2IBttWXPtDe8ixM05QXjt5kf3MDvbLei B2hVCL28Zm6AtL6EUrnnQbaPj5qxOsrvDP1/bTSRbq9cMND5osz5INZosH+Q 1aqW9gz1x1wq4vrCM7uGnLAd4+EcPSKimV1s52EZ353Z/+H+Hqb+Tfn9ZKGq 2TRjThnEUdpC32K+j5PhzPAHtziGMZS4zxOeaNwyGq4e4qKjVG0AnZtUsikI 9QHr17To1NS39RTcoRVi1tWn9tY1Cj7ewdda7VqF3jFPN4QsNlgh2eOk4XYG hM8748UndveJNcFcr5PSEQmTOUN330QxEhbky1qtega1QzCDWchQSSY8/btC cPXm/voUDCLZDWfaJNlL+ZZ2KMimb/sHLBaMWextmRvycm4QYl3fZmh2UeF3 MWjurgMzNxbthASxEFvaMbfHBX97gPIlEYAT7rAQ+qsUl3sz352jl2hTJMiq FquSjCqIfyOCwq+uXQiWwFxQbihPLhR0Qn/SmHgttQQPtp3dSVXYQuzMMnvk 5S9US3rLIoJ4O+H4YVTlK+8pDlFDpP1+gjFEqprgT2cKDY4+N9wAoPFq4G8F D26IpQ4dEc9fzxjrRmNjgX/whKJ3lxe5ajLUDzFBQEwm0937yF64vdPGblx7 TonMuBkL3uw4F9xZV1TMGgcOa/OEnAdRG1k4+YIHGmIAb78dC0znUg7CKOrp zjvTwaJGFybcegv0cAnZrovNdrXBPAFtpOHMog+pE6AP5cbbQ3Cpo5brMbgH lQTdQG4biKZRzV6brdtq1MO+7fjHI6Zo6rPnkAhmIeqN9fjdneDCTWynVLwH HOnrlEUWUqzo4VXWfkaC0uZ4o0MHLdRmGNlljfsuCnI560wVF+vCRf55jdmq rb5TDFAceZ9JwzQ4AvS6GNyPaqIeoQ4GXXC8MR1UV+X99QsFUNM6BwVdAF7f tpY70fyrXOgNxkukR1XG6WZSxpXluFDavcdUdklV6x9wPa9z8qNqGMP+kV6c AqyegYvAFnNNXr+Ts2nDmMrw907IoydoRcLiYX2SdGuNozWfIAlPwHYQJkcG 67kJcWvqBF0WlAAxBKFeqg3LRh7egEFHDHtOIndvUFPPfzgR+VUTZD9RjmEU GaWNqKm1qvuo/n7g9ULH2LgLIWZOoRnVIB2Ys0eKPjaW3oJbL0ESQBrwWF+I fODPs5RLY9psZFOKU8yRkBmIpQyPvTeNyOyOYda6RIbYFo3ycmz4fXO66Uwg 4eCqIed2aTRWUkAxkkYlqihWw6HQZuzKAx7Kie97lzv1G5o7wc+TCnhhQPuJ NxXRVEFCOO1KvAwawJiD73HMjjuER49m9DQI6xzhn0zG1p/dDF5kVnNDE99J zZAlof2DuDqvs8ni63DCH98ZYc7160uz0lKGokJIzdx1gPaiwajuFBHV4AKH WFBYr2Jax5j7A2GVGspmhZYd0PFlgUSWuMllZ7wiji6Pl3auvuFdS8oRl+8Z f2MS0NDzA9qugo8ZaDh2mBgiHfXgbwoPLMChRnlWcf4N19kGerYZNYdyCiwZ h0V12rjRhuTHrNsWwx8W9C3J6TUtcNEaDqdnP1Ynqhmw9ky6rNAqNMkIuIhZ cuNvXshWFSISKpAJvvKEqQSrEuFzbhjJY6UMBgAZrHP94JyjASDDLz9BlVnk dMYw68ew1fJbnGpBO4MJLVixYHx8gASbKFYDKpqE+y3XWvQywrEbwFmwzSYm 82gdUtygk4xch93/hliAp5W5VMApRHBOwiRbGVlvi6dnDemzYqO5XOQKE3XM th8hFqMjOsdG2ZDgovJM886G2RMWRNs13EEEm0mwt69OlfkN+diASi4oAiP0 lYyqdIeeKx5kJScFcSg4Hbdror+fCe4/HVjPxj3QArb2rxx/dKdVMCItrwmv 2XfD17+baOxWFSQYNNPQy1yBT1vsJl75ppqNJ7iHeQdZSFuv9jAl2jYWYhp1 9qecXKoLrf7aZfWeLFnB62ayIFeEx9GCh8SA9DVxrPpwaaHk3W6PoXjHv1UJ Grxcx5BU8Rat2a98BV5B4RbaB0NOeTvTLjakxxTgScLPoUch0+w+wxV/waHZ L0kKFm384A9Ua5FwiF63P1DNO3IPzLw7NLkoj/XPlQP1J5vUYOwiX6jRGNej RLR4a8/vDRRKm/22V1FBTQNZk1ez4eXlUq/ZHZWlVH3xnUMku7+IKsz9FiVn QmKYtPOJ3Ikxh0zv0nzDRhYYK4BAz4hyna3c6b4+4Y5ji5a2uACBqEJwUE1+ YO001AZ6KIyUyFQXdQYWibY2+H7fBgw7JIDZmZVlPQFojNHhEzR8o2aTFBO3 Ny//fbUxqs2dRfNQ6GqhHx82/GDtXk0wTTQblfSDxtqbckGFYvcSfn9LhmE2 aD+llJPyw18/6vLJy+4SebQda7GH3+SMoeYZ0PugoYwt+XWXBNuiInzZotb3 eMhBQ0Olk1P5iYSM/A1Np6KYE43AOpVTHEwdo0bGYxVaGdsLC/tXpE9sNf0j /L1wsRVbR/BsTONaNibfStApf7RQTerQ0/GvdlcvPhaZjiZ/pAiFxAL/2JNi bhmZpggEN25iA1m5C6etsNXnCT6ovcFz2FBWmDKxcztMN01hOZadDXpKOiOf 7d1zsNlvUkcKPkw2B6qcQKsJbhCd4Aa2Fc+YEoE3tluyP15Az7ndQziUIXTZ Umg9I2HVayih2fNUWX7M+NXZNNc9os3n85fVZRjZ6JTqiMMqJ4FjWNiRK0pq rW7xKFfb20nFYFQvNT//IEeBYFOh9ERzENs6bQvbCS4MexMbh8TM00HouMHK D+7hV/eUrNCvdlKIXhj79tRXqZxZGLGIJo1oruC3HgdSes+p9OOvjsXrbCU2 4WzY4f93RGC+JT3mNNfBw+CpZcgPFcWsUSbnuouXGAtbbC3ecD09wa10I9uJ VI0ouxQyHMc3keMEwGXhMWx2bv8gwGUakE02AfdAmlgujUCo2jQSjGuCswgy qRyNIXdBCbejMP/4Ck/eN3IVEPDcZKwjAsIDQu0F2t7OKAehGhg64HapHr3w 8Smjg1D7BGNGA82MMFouPvNOJShseMpVWFB15QowNhR3QVm1JRpDLIaWBRIl RVU2b45tRb1yTUweE49LSndFzq4/nGk1o4LGTzx4Kg5Mp7peGZDOG+LjoNF5 7GMVq9Bwj6jg+XcguhnGzjLMQdcd6EgI7s5/QwHxV3d3TmQMiXeB7CwIVjqr fPoHHSp1W4IuG9K6N7wKMzvjMYvv/AijtE4QxuBe2BWOhUCG/jbLHpWOIxwU lTZqM9pncG8NSijXcLTEem2dA2ooJ3y5k7yQ+Bk0nIbWFdDyT3OZzEg1jnuo yE3RyopGfR8o92QI5cd31iZsimGLggDQhQYn7l95c0xXQGH/1YwkBZSQUlq+ JR/nWpVItHrV5uAmhY68IvhFFvBrWvy9WWuAnza4mIwcMM5/sip3eq18Zs8+ rXTuQ0kEHWDnijvGMLOsysN9hv9R+OzCLCuBBuQJrQpE02I93B9asaRea1Qz dxdnl5VQG1yEsPjQCg3+b05WE9wLlBkOzaGNETQHMzfs6dyEE67v/lr28w4+ j65lHQosByRI8DXO8GqLJzqsk9YD0YEpHe7fTPaG7rYi/CNBx6IJxXwiiyRK ZV57unGctnY27c290uH2wqekNxUOLnsnXKsTvf4menGd22xjSd9WmQTvIkig KZiscqU5Yw72/SHjQLK+rJARcfJmHdFAHNGQ2/X4GUA9zOht/nsfbrIqjnL0 hI1Gp6sQLYvd5LpLswjVVKvYMZ9GbNpsttVFOI4eHrwvjsl0YIY/iHamqAme sA8oiiSlSBhQz14P02iDKijJ9BrLowT/R1Zha2pnUDoRp8Fkuy20lhwGOS6q AYPbrVYrTuByP0alqWKu9SiJ70xuwU9kkMrtN42PTSuRRU5kUyfoOKWoi86u sNn4sCptgZweSb0ZESx8syYrxiHSlny8rKdwgqPS7z+77MAqrUn0wrAhzW3n iSYe/3mVUYeJPDkoArTIlvz7jgB4uh3wOFPLaELLnfMOT3LQQ/kw2tk73Pfv AKUx3X7DYaMjtVd2jPuU+6+vwJJzajMde77bSw2HhVDSLBfuPw9JF2b5ekFQ KBzn32b8ggzSAIwSd13Nq3RRgh58GVfS6xpCdDZqigvjetzbfmHiNOMorcfm URrK9pwg+fUQiVd/E1bY5IrAZ0N2h7aETSYCFhkKkuH1fR2TITWrlJW8uv15 sclpikn1SSG7mQ5Vx6AGKeR500o39wMrZlxtLStenit56W0BjVYKGxmqNYSA DpnPCjN3qPea1Sc/nNy+PPjBJzjs1F1yHNqj94/s47bSgJIRNfltKRSHpu87 FIxab5J9faRbymqdBh81wh/hTOi21hvtphw1JSv/hylK8DY2U5SxD4WmDq3W xDt9+S8sQ4RGHxrqvMlbil4eXCY5Z13PSmJgFuzhx3WlxedmrRd2MfKrgB6I w7JQ7VJvkaZlsmKRAd1EM2wVXM2JurIyXWvJ91voN8JmuGZtRClr5fywxivr hZmtSw2lXVAPJ/FOoSOi2u34P+MiOk3n7wmesNe+6G+ebCCPGYjeDx6LT0Rw oMtw6CIgrzYufoMLHUKRMQFKK50atMd/YESFBX9YKxKOZcO4WDs21Iyrg6ky HQ9qCHZQUhfY+p4Oyl50U0PszhwUPEFfYPi0+bt+1T5oSulMSs3w/EjAHSc6 sRUYW3GtGZXzqlYICvIvxAS5pfr+CIuR/ErRgaiELGHLCuhlzoSoI/E2pjZk rEE47o5I6eeHhfOgM0z0yohqAaoPNK1suw0xqXFz4ONc1XAni2MzZ+Uvf7rJ i5r8WnZGBEUmU7AbnLaI7MUeSq27kdzd61GgVIKsUKQNhZHxhfeFptFabCH7 J5WxCdNys2CVaK3vqATw59xU93BoOsVsREWMf6/Rxi3kHEMGKpY4QbyQBzD5 7BrKL28zQEFXuRfczs+d1dvBlsEy3x1SJDM65ECvAf5/N4YvsrJPuQ8ZR2mu WJSzZ3p+AVVP2IDCtPPoIQ1lwljxzC/FdPlZ6kpDlDhuLobVIub87hGt4TZS ATrEbNGmi8/YmZPn3swHik3o6AfrZQJOPviQVM7vDHQCjRKgRU+hAOm6znu1 bCHr+xpSbtRhedwuTSNY0cSYnZxGHu6gRk2bog6KfBT912UdyVag8hZkndO6 IeF7CIF9IsrFA2Rwqs8dUvRTUJC+2SX0KP2I1yCipHqXuiTEs3utYyccGPQH VJGwevvSfzvsqDFuukEAvHHBy9vEn4eszVaKpbShqG/a11sVVvoIaKF4ffbx E7Qa4nqsDalbsR9i7fenR3GbTexCnx+oO4IbmXgzXKT547VtgB6L/I6sGmwD ct9CTh251cr458PHNI9IKRktQUnqIRHy9ouMENXhYZGy4RTl8KCQ5RDLWoOj UN5mX5g0te9Phl8rJBPGhELqKSelUmnf+lgLQ86OwFP3eh9i79m3885s2g74 i9GzQpl5HnUK9G6nRpb1ZVonVzVF71V3wVOtT/9lY+gAP6I+KzQEgd3wpnGB AN4ygyD6TYhwYLmIynDWgo/eNkJJCSVEZt6PjP+Q88aQhSsBrWRc1uWdjun3 rzVlNtsEakjn0EorVss7cxibE31yj59bGOqlShA6vDOjY8dJDq4DtP25EEjZ M2ZnLMYU1fIBI2WKLmbQCYdQ/XYBKW87HjIKF0Aha0leuM9q3abCE4TnfZgF xP2OyvTLL1QdVOgAk+gU9KJ92OV3sNjtBflETVIHLCcj1PHaZXl49XyNaoab 3I1ivxN0qQX92s3doh2FVmZDFuf3/1Rh9gABaNEVNwjL3qRt411ATnQQhrA7 opw1XlseZzbqeqgnn43aMXu+uYwmNKLjaJ+MOmrGNa3GSQLDw0FtXTSFycN/ M3Wau0PCu/9Ck4xGIz3GeW9qrOc/lwFdzVotNqlmNpEG0CA2+1mzUssH/Pyb jM2b0UQw8M0KXoBvOOVkNMGxciGrhnZsfIr8MMb/FGNnQX046Jsbs4jOrxTB 7N1knfOWH2aujMbW0TO1KxCtxjAAfpacg1pmo4Jx/NYvHVTjZuTR+TnlYley t4LciHXopr8PosEkPdyIkMygnDj2uX2HHj9t4kVAQKfLMdmmnBhT7kjLIddY xyE6ikJayQ6T+ObJ+db/10ePGp7GELJEfYW731r4uTk3yNdB8hqSpJTTPkjJ +fs2Zr8V0nNIK4Rjyq3kqVDYywoUdRLh149UKKNaP1aDiXsfi6BshSNEfC9U pQR4PiJo2U4ErVN0+c9X8tsbbbLZoUTfPSb4v81pa4whCGMfbaJYQrQLtgVF KtmO/di5zn1z8YISlqi/XpcIU8nooOAL4qHaTTVFow8DY4fo5w5a5Z2zvtKh 6JJX0Q6a1QgpxQwvxuRLXR+zWCyvvnh5BxH3/RGhnd7kQaMg+04qlDFOfzbA bSEtmoL+qYtPXi6y/li4EdC2FYYBL3/6Fkzx22xqT43WUi6FunkiYy4O2Bts i+aUATjHz4WUEKNNvRX1v+uoiitNc6ootJaytf8D5MI8LjKxkaeW/VOPrw5a IGWy7jGMjzpLb+h030CHMOJBJLEE4Et1NFgupvcNpoUPctuayKA2hYoF68F8 8etfE5IjT09Dm5cmbYLjFjWscXgHjT6EsdA62AmZuqGH8376/7Iry/mmidYZ V++ezFT+g70jal80VhKCext5dlCRGZ1DRze7wly8pliwJlUWhJiIBDfFjYMy N1vezivkFurAFNwNZo8a/kek4kxRaWj1bLErZQk18tiqhjKxcddVZxrQj/TA 4tnQW1+91nPIWZfQASnE2Rfpxv77YkEfLjeCzfJm5qBTA726iYXuzlZrX/A3 KCoTCsVmnnzQZb45cGM5E4ZoG2lWHlDYQU5Dr+SdNX4HZXof0A6gvhD/t2Pw PkRoJAhf/Q0pzf+DKgjjKkxlzxpu1+HhvxMrCGGBzFUO1+L5KcTQ0QmL8L9W zisyrxpzZ0HnEQrZHNvUJdwNZnnv/PhuVNrKp8BfgNI6IbVaCXR5x6rH2eJv WlWSYyrvCo1LfCkVBaTKfXa2EZU1ECSiRsPVP/xsYlT9R5vC8elvG5skbCaX 4LGt0KWj58kv1Ap2iyZ1qEQaorFM+VijR/vAFBtHcUBkEojzNeUWjg03RPlE ldyOzh3U6jPm6r/Qw5Rv7IXCYCOk+n49hxO+/tCobEcuwrzGz64Y7/Iajex0 OJVy6vjYkhauwjEW4LbAhaw7YevwsQ+3UIZEglJCnC6izilTn3YSHEnUons0 vbVRljytFNI7vg/H6PrlbJGEW+uEebia8xgKhV109cYPPPWu4rz3RP3XaPB1 jsAD/K9Vu9AMZcSUUc2Zua7sQqMvVLWHVHNZTxoZ2TvrrX/IWiOlYtIQatHd QXMvS8izwfjGzoYf+1HkielKtFY7lxt0+iVfahJikYKjTMYmBnDvCgJeboLW YEXgynSBZ+TfuqDUdloNcXbSCNJsituTZMZrkvsJK3DnhRB78QPB1DdwRQ/5 VoXUUtuFR8bVjlB/NqBy2SloXR56vaOLcf0XIpimsANjs52gsTN5kN/KIuKL Zk6J56MN8YEWBsUf/KNdbaVD/P251PCttE1TwaJedpFLHSN2sE0m7uNpPDZs HbmiA4POW4Lu4aY8nmVnNBFUgo4SoqFHa4A/rHwgKzkL8dC3xe7Y5cBxnXw5 ru5McltSh8e/MCDNaYx8V0+j9so0L0IYl2ZOmTgp+D+zVmgV7vIOnTe2gnEK QbyQRFgzUGHBHHxBgfxHk2jGdLfqkT+8iR1aPMqbwUNUWjAHZSUnrG71UYVh dR2fHRrShFBEODdUu0v0NaEMJRU8VMwhEqAPLX+5r4QXZin3eaCbN1CbRR2L uo7AOvmBniJRrD6yZtDIPXKDU90Tz59rdGgITqEPrygDg8SCgk/mJ073ELPc Bm4bAnbB0UtifCxx39qiuV35lIgSDutoLzt4KkbNHTlxKqk++Bzu1/bKJjjZ yWqoicZU/+VCbQyHZHc0W1FQ3RmKmIIYMTmfIlEeXqHBQsA1vtjBjdyDekhm Y0JfzAK85Ex3L6LXW1FfKHiKz7KAuq7t75qba2Jpneo9vWha0hKEp+hsMXnm xdS/4JL6raemReqDNjyDIPH0KJNdK/vE3t/tzAxuP4qv6q6nUc2Az8HrzcOD E4cCROlItH72VeDnNSHcKroRGhuVwAVJBxMdgQ7/7L2Zb/yxgvh/Wwv+/SJB CiPFMcQ6M2kjIgwYyn6ph1Ojqi0zH1bKc54itJC9nr5abb6iaMOWuGGynnl/ hjXi6TIVywjCNPWDpKFCQItQo0FD6FdB1EOs+HyEFnnOuOTiRpsgAPtsJGEi 9jtdEQtqHBdG5S0t8mJscPKU+u4GjiNtghxEZAWFuyvaxP3zHd0Xy0XEuMj6 1wvEAbeJahH6ZhxN6rbJoPGBqyYhPiSaQbJcmFXW8m5Cgz4RvH/x7mJxma/A dJhBcg5GCUAvtkiDIqSx+OTfGyHamjAZFAqQh78fn960hFATjZky1JSclUG9 kW+RUyo1fRs/XicZ2u2hHr4fc+g4MWuNLsIRUYPc6QpErpzKv7K5DvtoB+iC oG3YA0xdZV9En2id5nE8AWWQH+6TjUwRpuPVUVuZtGeZeXOdtN5aXUAw1hME OcvCAIX1i1HWNBdEHLcvCmzGQSyGPmdHLO7JREdxgFop+Dvhn2zvh7BHPB52 Q+RY8k89xRoqknG3BXGhKNlzTI7PX5+Lj3mNrlOoPxE1If3UpbJgOVQ89kYe YkeYRqvJB4Td/2EHbx9XWRf7hGMxhNFxOnhODQ0n/s+SOGLcEzS6+0TtASon mFHMBC0OTpWU2wSTAtMbnbatYmJ9dN0hqTw+JRMSEUn1LiJmSvkgSv52hyqF qu8bxXUt80GPJ6wgNWSl7Lqrrdafb3MhXN8IVJSekFnZfihDHW8xorlgTeox IFtfUOEUhcZXdlEBbtmV/zxEoY3BG1rRTwZem+KxEfKA+8SlsjOouRd9d9J6 HHCfRbihm8TnoABFFGxMwlBtVFlijMVjPVoc5d7C89hF/yRoOQmZK2H9YyNu OthT5bSgoKdpyjXZhWFdyrnJJmWMPKU6OwvZBBLCLMriRqvKdIIV/OYeVlBJ UxlqHuRe77vcrspdCkXssPLVRAl1VNYTWA+CPD1Ueb5VHhYVBdfVhkrQjPky 4RL2G18p6y15RweLgiOQ1prtTJ3X2HoYYk/pc1cfzQGtyVnEPYUiWbfxLL1D vD05W4NjdhdTNmNdPSupn22msuSDTjIon23RM1Vc1n0+BmjnSTbT6LcATWgx iR1CAnMKDThToI9PwCdWE2IfJlx6y0/v+Qc667m1Xg8dxY8niBPEzZpjfW4e nmlREUOCRAZ13YMu+VWoGx5cLjP2qk9yxuWZ0M3TKLsrggJdDo1viBzZ2rVG QoXpnSH87zPcn+0DxB7NIVE/sDuDnTTXVDi7QgIGun1sDOV48e8LbzPFSkDy mJI3Lo7xH/hE4uNGz2wM32E0qrikMjumY6C3l5x8oliJGKB0hianjCGZbp/d 68OzaQQxedJA3T7D05kgzZa/kQ0X3/fJFoIJHak4FFKIOpF5q1AAc8nPYk9L gh0v5ECBSWUbyse5X2eLRdA6d40B2josRoabaMV6M6tixlwP6XkiAbnZTsu1 +9szlLChMZiJNs1gCiJeXM8rxkHCvCgfGVdANtG2sMUZ3M/Hk8ux0eTTs+Gx 0UMeEoLWpEPN4z+NiINIhmkIdR7qBVQ+6cHd339cKHpwVd8cPGo3eNOiVQTi EafIn6GIaVslWYDieK0RDaFNcfBgjv33B5o4tx14p4x5yQZ+INt1lCgCH8Xm 9dTqHjortB4LXcORQzPy9QL3Yf6vUvEcuNF+QmcB1m2NZd96W8Q5xvgEVB3a WrSw8Ebcjz3d65AbDB5E9AnN1uq0QlaQrDqtt41s1U6F38zpl0qfrmn+vkIq j+Tx+QA/h0eFfKG9YwXiFujTiOcM6Zot+gRDndOVEDjaXlyZXCZh9ZBb4YHm 1FKw+6T89nvR3pp879j2OaZJobiiXAY9vPhcuK1VhDBphvWrzDSlgqEI3PU5 elFOyYAzoIYknVDMTvzcpzsXHL0MKeQwRc0CEUT8mvcd6MQArjWYKUZfSJ2C esu3RxMIcnURPQ7dfvKs/wlbFgetW8TaYMMUIRTopWET9Z9jMQ9bh5YJ0kuE 8seMyDIKDuSoW91s8MQkV9mG9pdhxyLiO9vQXOCAPpMoTSzgMYWgiyO80Re3 jWIahVEMnJvcNF2/m1DYUM3KJkDc9nDu4uCCVbBC69FGlnFodumymbL1BXTP zK/e71EqqtmHOVS/g/aSQMFIvcbmtljYbrWGxwACE/57+kAnEqZX1/CnbHFL /1smAA+vxqqO1zCCv42PRf53oOpkbeGKAV8OvvkBhjiW6EJmVPBBvuKfV7hg anKhgxZQ52xPwMGybCW46/QXSAM/AP73A/TOO+I6dwFBB3UstGh1pExSvNBr PVVu+6iYWx0VgT3eKY52aZe/Vy4pKpEANWCeINUUms3QabPyGV6XxcbIsn0F HaN9VvYu7Yhx/XvyoV21o5wYtDY5JyEUCjLcCYq1ZqxhB77YQfFjTdKS1tnt mcWjrY86m5CmANWh5/VfeOAQ8pY6sWS/EnGoW2yi6c1uP/6iBPp2OYKAFhtt 0Upd7zEJ2uzqVHu90RwckyCFRwdVZSwiLMI1RrKop+B5iPaQExcTzz4Ehxsy I9a0KTx4Nghp+RI0bVCzGznInT9G23GFR7eoeVcSGmALx8xuP1vrubhcR/k8 5bnO42ijxEoBvZ9D0tri5qEy8xDPoRHkZ57sqNYU+nDb8vXGnh1VNnjh0BUV rw/yyStoCMqErUK/hY4wockVj7JYJ3FdP4TFF50wxOSJ3NqrRIPmAgU5TZvV f08mFxVSOkX0TkEz7qJrbgPFFXItYIitHLTMs6ldEBz8pTteyR8Pejnjqq5L KO+ijJKMD3fdRqvGKrJnW89qnUVFuMW2iKcS35lF2HPNdFD2+glSrOGlMUbn 9jqfsG2A6AdVwUHnmwGlX10b3bFa1zmiE63TLM1NcBSwkB4bRwEzFNichpQM z3bHGurvq/aZMl5DgOgCEU21ZspEu5obFvpg4ino2LUFzGlnA3z+7K1phO8S bmKtjnRjxvD0W2gFPO/m/spTt+PZYneSEc8kfu/3OxQnTdMKiVGjdRgRQ2SA hUNaiANAvVn+t5jZCGX8DV5QArGZLTzh5ts01kYJHr/472iqNM2PkOtYgeQ0 XfAUbKQ4+6dt6TJpG+hxJKtDE9v6DP52HmfLq6gzh5Vxsk0lr5GFW5y9OROg D1QTSe1ne3RmQ9urINSYHKQBNXE6xhiDrAWDI2wcee1Rm7TKlNLirFWol1ma nT71XED4uo0w4phvitd2p196PsfihYy7UOkaWjxn1ci2T5htoLo0Kd8itwve 8los5AQDNeUOe+j5UueW2ws1zYQI2tbRQ1jtjELXeewvGZI712V7H52Arm3O gcxvLdIXLDIvzNhHMxyouVCCf02zIh4COmAdqnK2XR2b42j/Jy5r+qpMylph kjGtGMiIX1uvLtWLpO9Q5VTXekh06d33Y+3/45D5T74e+qo4xRj4tkoPQvoG p/wHLQCBRfSogwqq+UxUlYMuhfMMZxV3TvzOlSetou7xyo5Ivq8D96XxDbNu ggbZtYogu2rRc0EXyvSmuryi0G7FpkeWVbm8vGLfB05p6cFqBw8GYw2Z7g+p FmzFuOWuev3YxSGMFbt6i4gt+9PSh+D3mILzBVTNyk1y7XSw1tBnNSJijEwG EXtx/dcuyPUKI4m8RAjNhMH5n+0bK/k7ubpv+QtxghIjWwHV8H6fbTSbEXlG +LSJNluasE9c+pQbrU1b251Qc+jZJMr5ol7MXZjnRxvTFiWAq4xpToWsbDvL NgtKjfI7h8LbkRr35iA4tAuUlCbUVCa2xgLAiCs5MLwTNKWgekLYRcpP0HH7 HSeK6ysLDdyWSJsSAjkWBNkYX0duYwb4OlQBm6HqHA797MpFTWe1CSGvNnmn 2QU3q/MHTZPrtIb70rV28g56brl+vn2H/43fCnlh450XLMdpKPEUfcORk8B9 tIQ2tiM793SeU/lXruBUyD44Ui5gnRN5RBvhBZObNYMIvKZke74RvNCmTPzo BCYm9IENZSg9VjHzNyNkAn0w5pRgh0t6eEVq3nYQL7HDyf9e+hxow4IU+inE nBM7NWDxlCkpte1RBlK4CcWKQEyNd69Z2/l9UXtYVAQLvj1uWsz1rRM2KZGv 7TtbeWWwdfbloARm7XdG85f2sw36gEJ7FQJr0sTQtXrTmUH85B704fHZ6KJc XlkFRxsmbQ1dUZLVTo+eWsT+SjdcDzbkGLwsVE3QcLTI8PqzXUK9/kBuo7RD 56CeD9BzsesGpu3YFp3sTqQjlNXvTKuf/jKrrBsolM1mcpAutMAlE+pOCIm2 YWScgO1EGItLKkTTOdj7v1mlRPgNyCSbfAyZrEWEPnowEwuoKJIwcEGeYlAi L+PpKaHuY/3dQfkILZdpxxbcZGulnpZVTgmKzVx5oGVe5sq8Mt1FRlFociOM QQRHgMqabk85cmGreWJdm46zHA7olcgLF3xjsfMEQXVbzENKsoiUNKRyIFUw O0uBv9D9GeqdyaE6tJDIvudTUy1E/sYQLF3yzp486CfA61iwzDIdbaspJeJ6 K09XqH6jKiK/TKP0duXxD/qzhWoZNyWjBw0cTmD06iEFp7Q74jz71Uicro85 RVfswspAb9fKs+2NjI0NaKtYC+8lCUT1wzvf2abfv5jFwWidD2qPta+2rUTE oN4YpBlNabJxiCZpUeXXxR2M0+u5ddlsNntovoDWHoXwODYX5NpRKArdKcCb zd6Mz3gXGIoJyCni3lenZCINbyO0oh3XVyVOXBpWAyq3iwd/+eZ1ga9RmrKB AJmNLxUm58bNAthzbBC2i2/27uIPIsRkoDEy8i7t4czbsGWdpZwRUJwLX3Os ix6czArSkL1ltkegjXEVoasK2t9x2bKussJIV4UHKhCCa9+abtgjUCIW10B6 6dyfIVY3+wqR141kPrLVPNTGRMtgUBTAYtP7Z1vG76E9oSDLdmGxsO/w9cF6 S7UBTDQolxQcQXqSBSVr/BJCg2oPcsO/aB9j9rW2N584Cjb/WJXitolOPmTU gWvNHYSgweOJom82OEO50CZURU5lqc43pVfRFt3+VeU0oy5VCEoYLDN2xwXX bgIp8NOQxBP83JAOXeimw0N/d/sVVdlEVnoBSN6CH1jXvROnW7epPZOmc01e IbCztkbgtFV6R2bm990r3RieJ6XQ/DpZzjKBBRL1LJf4fRjVSS/F0YbQ/oHg a3IFIHbHKTqIzGNcvu7Lmy9DLkqWNVtrQMAHNYXlcPZ7l0IMRJ0XiX2TC4vv a38pxl1an1QjpybM5cmhhjD1MsPdb1beE6yQh9YJejpLHMSFVpQt7Y02HQuC /bm2mdE/XfWQaon+6mykkhwG8vPk0GZnUPKGfW6hnRTzLHaKd4rwAdaoHXmy p1v4yI6JH0T/SR2sdnbokU0nDcWfr4PZGB3ABbHh/71K0G8Qs0zkP0E/oG0r Qk6AZKycgQ4tKMTILg8tlN5MHtKV613lhyd4C1upU/gxo5qguSWUw3quZuSp ZR3BxhYGxZanh+M9v4aWQ5G63WSUVM+O3lpGh7U9zxxatJsILz0g+/Vkcyg4 eS6F/bvxOefN1ggLTCjFFvPA/tfyfMjcyt7Im9ED7QPl133uMnirwvEmhkCn an6WpLOqeBScqHaN8EPypGQbz+aiojaasypKVcLTfTJma2lmcWEO9UNOg0VZ feQ7c/ehIn0myOM0MHdKsmNFeZttCQJr/I0RJ/UxpYaz0pz4IOJDbvbXXdes c5Z0V4auaoGeoQTydEasAyZwizTvPwMIty4aHZJlKwLgThEBUPVU8HC4v5du UXmq+jWTcTxXFqLdh8doYHdk58aW4mhYsyH5H0vcW+jlMnUW/X/8vZ19R130 NirCqZ11FCF7NsAfmnZZ7zi47HSCzd9aIjYFBecET7zU5DxK5Qo+T5EEjEjO yafkVQOBPVE+ZqbLQg4wf9q93IgBW5igcSxLSDaBPCF5bEOo0C5bhN1nfofE fq9dLHcbj6gBKUI3RZQekM764sLEZrCdlIsTamAT5eM+ZL4lDeakWkEFsSRr UEBmcj741LM/fPpOrkxC6MGqhDukthkmAj1sXbZsIGrC3aDITbBTzl51BQkv ny0OGP60qw2NrKXsLXF3EBAHg8sueae4AMNcH+hzTGtXMbq48fowkOpm34xR MSFGbNUYk1rmNE8XpNEYhRGh41FyF3/+lSGYhfbMnUJpTfQnYHsLlj+KgtUk Mu/o81RrcAdRWZeNUns5vs+8daqp16B/Qnkbx2Ii2Fk7FB/N+GkHFHEkI1g/ RQtNm6D/eP6ZQnEOqEYjs48nzqsHxfS4nj6F1ECf+X3dFnOukU2n4WruqJDd W5M6uuMOjcxtLvLC7E502OhXrC/XbTMEjYSbP/kqX35q6Io6WukQPuAHi61/ +Ymuv4VjqhoieuZvTQ1aCsoiqsTviL/d/thUFlHrJbfov2Kcd2PCHGaYqHeS YA+aby87Ml6g7M46lzdIoFk5wkDnrllZJEbqaxuyZc2pShKpbzt2xMg/4XKG lnbwKBQyjYwXPU648VVMtvEnXWzT9++Gdt1Z2/sXWtJu+j1oqfUUM1qh/+lX zbUgdtfsE9JK01jzhRyV0y8+UuwN+HhH0tQGoms8/oMQTwjveFCkxWnjGoVW 3rm40iPoy+kdPczPsy2gp+ZLcWCRoCOR+Lurkn6jjW5DIF5SQoFMwQnBdxf8 R6z8e1pq2XUONOMZUVqWZT0q1o/He9u0IUOd/mF+zaS91ze4lolMq3yaPTND VEwdIahV+lTc5IeH7LVqiQtl+yoMgK69Lq4S60RCQ5+EpquGXxyygljwQ6jm nuosk0kbxM+coAix+HCyf698KKmNIvhRKtZA0ivADG4rKzv/Lqc8RsskO4K4 5+149oRWN1Te1iAM3RorGdQyOay3I2JreEI2V9DpmJRl4sznu1WFoL1eCFPq pTJ264oe8aa/ofGO0loUl6pdNaKxxbNys5n/iars7NdJD5rRQWPe4CAGRfKg F2vTVhTRtkdMEqJmjK30SI6X9Roatq0vUNAaeyKX21UAZya3QxoYS1moZTNB H2b25PHeIDslil5NCeUfchrcbGlWh2J+Zzk2O1lZF23pP2N/Y3g468s36ONb 1e7ooPPznqPD8LJzKaY4+ImdzgLfdcxuZ7D69QCh2RAIRITydgpQQAl4DdZj 0GTVNHIyXGOtESGZ+YPDKq9A8WzgMVKeM3KH0cElMQtZQaTGxaJnVkcFkbja zHmC7u66by6sKU4nFZnS4TTKLBrMbK/mmBpBW90Q6YTV8fY2xIg7gVSMOoWe 7SLlsqmhq01UvPYeyl+pFucVrFJu0V1GhC6uq7gAsVfF2Dvkr49gi8Zu5UAC CRh66WTY6SSrh2B10AR2K7tlrKQMC48l2WB2YHNfJma/WRojsX/SUFNrngnK yss7eLqDOv5rCIPWdULJrx0b89tr7SMV/LQJ55rGl/kUp8MmY86qYQN7vHW+ yDZC+e9SV9TxEHVf7pJzdtM8xIAvzsNtGNNpZ0c8WRfYT3V/eRYrGaHlpesh tKIK4PwFtW3jnWsMeikrYmM1QorqCg0uSIi6VzsBDMq17VWN9pIX0nUlCKQx 30F3yfsNatn+ecSnhMwAXT8MX/y6BU9btWkeIhlkmSGWsIQ/S8UJtOrZxIXX 0gVD9QMNeckBgsfZOWTuQAFo3lmo06FTzOyx7tRqQ0mus8w4JLk+SP/8VXvj qUy0hrbN6eCloMbSH3xoUrI8XqAfm9CRE/r+3vkeZw0XNmS6lktQVKBJvCah Ygz1aU2jozNoA41iZtDIdD+1UoO6huJdb2KbhtgGwS3GLA1G2I0R9AOhQdWm seGvRglSl5OTA8PNG9Q7YYNYNcGihHwqyzwGRslqCagcN9JxQ5Ae1DfPoSgD b/Zxl3C+itzfWUIQykrrmTKC0QGe44Izpm2K/xPtt5rivVpXxIVrEz4PPz/8 t3w9dawvbLcaK/TT0vLVcxwxdK2/PXYyDtK/NBv7+wBF7jxYJHonAYX4HWmC +pvYrjhLinF0c0xtUqBd8z52yQFH94Bzb1QTbFWeCXWZJZ2yettepY1jsgyT IkIy2kXTY3Ne/zWqOLJVkr5KQ36OKrRV+UhPvGPZOdALI/ZcW+V27My+3yMU Z6aNBCng6llnQ85YKHS4UGay0aOJmEgPITQ6ZLcTyH7OoJHeSncahKyg7bYd U49gFe8yHGPT5HOKVfW4R0ORZaJVRuQ3PD34bCIBIqEYIPqcJdLc77p3Fvin a3yAeAWGXjHp4LqUOSP7wX9/k06NnmBEewqVFrm8PVjSnjXUKYbxu6JJj1cJ QS3kfB00ScF457g6TSAK6BhNQ5kTQREr99PLi6DHG+3U1vTXeGRZ21hkP/+j T3yx7XOt0RnbinauhpZmat93UKuEzQtEyecp5cWOm90PcthbdDprRDHFAqhR 5cPBRNJByfvjv+feeirlifhnpIrrwN9mVqPDohDhn60rzWBxbK14Se7/+qTp zBWSp5qCz4pzzRCk+EIug7omaXMCxSt9wKIsTwryPOXqyuriTEzlquIs5mlU 0ajoCjEo1gY6Kd9yxHl4D0km8F+FhGZ8l/lymVOx1WrkwFFzV0FR5P4w45S6 /+wbCRTz6bbY3OeTGFm75/UMch6VHs2QayYVFr2ifQ/S7vfaDYFA7kSPpWdU EdmlpW0X2o6vefq3iXNBz1TmTKYq5E7IGJkRw+o6PR+c49m39v43OBXoogBF Rg1WRNxWPnEKLZ08Jw7dW7ULixRx09W9PFTJjz/QfqkNlMAhYRha/TK2Z1r9 UQDgaWJfksZBTJ709xbKhwlaZuVYE2XDcnNaFriAn6vvQFR6itANzGmX05t9 zTZb0nzGpFBIJjrPouhYZSFjo+pg0fj4tUyldgudrzMo4n2z0Ig6YqVTsKds ApZHfTVkdehlQbPTQdxf3+eUt+KFUOyiNvmiHsqryIx2RXwy2L6qhPMdqLlE punnGdQHhkrhQvyaMnTZut/ZMzPJYrzhGxwwPzqjuzfo5MyipcoAdP7+dboo elfoe6Wgv4aWdY5YYw0ouzdcYJTr+kVsQdemeU+v4O0VotMc99cPz8nGCTKc T8Mo/K5S8jxK82rjI2n4jp/ujoKacEZf3Ln7IeLiGT42NdMfAzECAzaPtGUv SdQhjJbqVNVCrNLP7h1cB1Lq2mAyLreKGfTA6+uPfpSjd9o4sSdqtuAWEUTo soD/b4xLwPmdzwW3RYGSeEugoNKRj8QcWAqCTm46uTHzQIUwjjJw4Nn0DykU o+bVdx0+0uNwLrE4HsHhNyul2zpSPORllagmp3zeocuePVlol7ZKLdogdtmm Nn0M9kJJm0Rg7YOylc5BWg7e7vQXZ+chFgmq9Yxx3QwXopwVs4Lheoscsm+X MOK7OyY8rM4s/Es3MeIQmr+fsnJb75OEdkMm5EiYs2TSwwZjeA1UgqrUMP2Z VH9pyN7e899orCGRIqGSMmSAYup7opq3XFTuQP6Opyx72l9d61Qan7Vcx/ur o03sWIpVXN0WP7z/3oqghVzhcxTnfTfnxltP7bGU85OG1qdRihlCIHlTgGNk 4zK03XKzGaNVVh6QvD/a7BOVi7E6xcl6XejLDEd9xdLunOxJNZvPaE6hypiT KYQ+PuCamq1SLBzMlIOhKCRhlMZtuaAYUE1+5mt4eoWhwwmlbRAq+efNSMri aHBSPmhmyLPLUB5TEqrL+IOSEGf8fRND6ysDKTXi6rDYip3oV7B3S8aihN2x hvh5iVmZrSeZgds8oesmv7vv6nCUhaJudl+SEssKNYhQSmzov1WoeI850bX9 /xU1yP1RyZ5Y2s+by17Tu4A6elDtOEMK4Cb4yiGinqEOymxCaIXAZLtIr2Md /GRwzvSnRdtCpTNZ/Ic9+8E7w521MxrCLXsl39V/7zm5GT5Hi15jM3aD2Y3F MZabFZNrXBV46BHBTMU06ZRLr8leiue/6NNHoT1oDg2PxXp2xjPMazrNIpn9 yrd3qBoS2b8ZjTILPgmMvcTb8vigWhXTNLQhyt5M8IOU1NLoin9Bqg0EUpvR mFC5nDhPLMYcdo5XMbeSoPqEYaT3oauzenaLRQydPzjIthOEAEUqXGGHzKoF x2ILXgHPxm6ADn4yNrquos3LlXHRN4IFSL2C3iNpaWuluK1VNKHhpfM/Pw2y e4qlTz9GFQpuQ0s3s0BHIRacqGaykWwrHmstJW//8kJICEZb1UPHXH7g6I8i I2KA1sc5Gwf53uMMWTH0riEshymnWJzXN1COBw/XwreB10LMw5J5oxvTDNO5 Owy1a2y8KuW6ce2IFVyOuLfL/LhCdXNSMED9oKaIsWwQw8GFNbjVjcXxjmjp 0hFZdI9KxYxrg8G/14spVaVwoyEKWhw1Dl0Ltj9G+aXGAnKsRt8zKrm/Sgsp uRa+9gmKR2iUBjuLQbFjfuxH2LDGTy5Zl+W24vuvg0J1a3mctJ/gmmRhSZ/7 4W5Od7lVcS/8JmaFvCLpoBKAH7+MTWm2uz2LC8OOvL6kFDSd0HLGkavMHnLH dKD4B+1hqWyUMLZvtzlquw0ZSqUJB0ttcOacTHfWG4PK3UpPCMi38o24+fUm bJUsjLcQM5Qvirt7dOl2wZELgnC9w2KLcbAVmyKcUZDL4b+PeMLUixcaLWg5 tS5DkLGOkxO4cK4QgqqbkcWBZTPHdhHt3MvIk/8rLu4ctG9bcRmdjYVIXXDR Q7ah3EjION+0eQU8O3BvdqWlnz4hkQdaMHkUMIfGK2r+vijZyuu/aSxAzJoy 0kp6KklVd3phIM409m5KY0p1qV0vNVU+X+VZ21T5hscQb4FrDtOcyaFrTn/x C5VG0/ij30XO3rrxdZi8tIEiZnQWQNLjruHw53Nyi+srWSZAxzIFuN6jZarA c3eLGktTSA1UfSgtnM0Ot+PqJcEPsy20rdF6Uuji+odvDFlQd3Ql1o7ZA3SY jGizE3x/W12jYSFB0tm9dkGjd/hGcZ9MmDn4K86rmwwvclzXw/ZqNm1e+9mq GPnCSLn1ro/WTBZt7Zpw3gy4WIagd+3F4IfLpH/BJbl1Mk768h/0hFuJn4R/ KDxQz1t/MwmzFFCqFeuQ9+oLIGR3q37+5aNtVpAqYNllXesnSyfJLLvDlHap pqSIPcAaNOC/ijWdtJ6+/IT/mdqKdaLomkM6Ck+jEfYj2ZpI+5YsQoPWxf+s mq7ijinWz6dTymzgbDkpZEVmn6Sv1v2ZfYcNZkXa6EpmxImyD8ELY+Xbb+dU 4yNicPZkUtFJYLNhF6k7h4hF+nzUhqNZR+6Nly9uvS48Q1qnRo3wYixI/gyR R2WNjHV4K65Hmm9n9MmPs+Z3uEB2E+egRLOTjyrmumFs1g1Zyt9mWRrT/e9+ +t7li/7c6WDzdkGi50leymGw+xqUSg28CiIdOUecC5R1iKBJceOh1ttqKqNi KlyVolVyii5FG01iYczVk1OR+nj8/hDUBK84dwUnv69yNpoOyLCKn5yLWbFy tHxOiaWXOpWMBcckv8TzB29s42AARQz8bSrGVi+1KaVZhThrmslSHpogQMKd 4NdOO3jjiwsD96ap/i2K1ETIR7SSY0YeXXESnVogurx2b6CHCiVrdLFfEnL4 S4o6b7JL0HCd4QNsayrKqLz2gd6pUTEaFdZ1Dj3eCnNYIN7cOBsbPKq2Kc2q vC7y587ra8TcFHeCByPZZMcwQayNToD53v+zSW912ByOF5DwJ6h6DgO+h9bu FgMF9Bh7PcoHOoVSdWio73Hluqg2jftezLPpZfhRDw3E+1zZxPXF+H6uswmd es4qpCcn02IExjRAoJ9oooW8Xmk0VibjoxjhHn/Dcm0bUeUA4cZ53UodNtgy 2Xmqbv3sCd5TIcQu7fjvLQbPzRF7DA8BScBNQzIirLFzifnepL7EkIQnY9Qe GOP3IupGHwaiHZRGCoIMRUkKUwLBl6q90mHILzkGjzqBOqy5+ogG/5dicBsc aggOQozLBZ/N961sl+Jb+yH+VndYkMzqcBUKD7ogIpu+1RmMbY7EthOphUW+ 2JhGqmBQdnCnen75NjFsgzL0KRGJwb7d0A6RWrYrQyOO/1s1YAXFTkLX8c6D vH1HbzWiOhnQv85bXaAWJ8tAZBd8E+/G9t7zhFF8fffnAeUQ/9AMrSxqztkh DZMNOa/4FlfL2KHVd3e1crgDX284OGjGGNBTTRHFssbimyAvBs/ctKaddmxT iBNkF9A5rHMT/v2YWJxlK3hcoYSHksH2xSc3qS+3NCcetkHiWZ6sU0WMTOid zp0pUJWVk4X4Lbi8yVD+o3DOrI8DFNuanrPxYzhVgwToZGa6KEMPeP8N6E/5 h64lZl9yF3V9leuZHD+qjYW1T7vUAaM9NWUdtUwNOLtJOSa69UbZDgTPDG29 a7lwCvDTIbdKBWPDrh2bqtdnOJC8AdRCflWT0Wg1wcdhgR/gjWstHIw451qF eRD/5gv9lRtzvcEhbw0ZsZ/CfzY5Ht2V9yTShoFT67rb9/3qD5Dl5w/UKyeJ I3kNNYVHhWQ2FPM09Ohjq1FrxKjWLBsOIbl5aM/POZhA9Gmx/Yc/zhUk2li1 yW2PnW85OVmUVm2WamFHY+H9JwW1Vfiz0erJo3fD8GrKyNyG6vuDeOqrT5wS 78fdbwyNUDQ0UlAoZ1V4IGxhwe3QTLYNOWcI6DVH4+0ZH+edfyEfmm3FBv83 pegLkZ5dPLDfqn3Bae0TiWpejtOQoJGsbaRL8fcm6AJ1IJ20hRthNTeeFUzY AvwgdDIk88oOsnO9Cv6oh/YFKUJTn0DEC2S4tZb/RssraarmnckwjXX4s0wI BVXKj+zLH1PNMmdxUgVhexAFyl4EZ30HLzAEDFc7Hw4Vm/F509rFhOau0RSk Uh9oy8IpTWrEYgSDQzKxKgaHTfD9fMOZ34ZCnSzuQVCG3/W/UKCjO1emgCPO MxRYnfXkoFkPPWDf9UXKYf4XVaYcyUElaQIh3xBdcHY0lW07zebZFfX7P5gv cO3l24WLkRrk2BnIGnwxsmPRcFyJDqfSMIPy2FBVQ0cLRWDh4QoYvhvo17cz NWhCZrJ0kTkca4hGATlZVK85Xlgrxth/X2HZyzSUi4CWeyq3UzWhdOCmw9BX KXpLMl/wkLfmdiw6Xl/Q+WhTSXoFgQHK4gJVHFgqsYLyUEA1wVicFFO3DjZl fEKfqTaAxORQ+zUpR1guRLuAm6f5nFp9a9mTvnXEydUQc5X2S7ZggCsBWDQf CCYR4TY6xmYjrjUNF33e/nO82IUkDaEpo6ap/PheL3Iq4k7NPdBz21cEkNk6 jOs1oeoMDRmDx9cQMqEqCBCm/zl7hMZh2/+gmcCEAiaJdwBjuaauMMEH2+I1 uM2SurEYKHP39fwupqJTQle3KMGkko9Ea4NjdI9sYPi80UxV+3Y4VZZ7CjqE ZsMFdZWbItQLwjJUMFlDxZYW+iHjCo/X4bAjYMiEPy53BLihQkGJSLPTwndp AXPU1bl5bzzyg24RQ5jy4vsoFJP3UEDZBsymIIJBmtVMPcac7mJv2ZACdrwE Krh6rV99nE2e6VAw/9XYCd+lRaNUttDhYTSmmfXKUlYtGjZNBrVG5b3s60XI yZOdC5QNZjLWF3NXHv4zOE/nG0lyX+0e3+n72sXCia+kMZHP57wlkB/iwMmb DQXVHC7PKK4/1KUINYorlTzT9n58YoDa6DtExGyG5CkvpIH5sHIUMbVerFwq qysxjW4F0Cw6qfK9+/AoqVwfrY1uHjcFw2MKhEDgUGOIfC1vhd27uxNus1Pn iA/54eUfFFyJeg1lD+WjhtjFMXaZzqdoH0bXCjWeUM0YlNqz0BXKr+3sL5Jd N/OQGA1aqfgoE7lZxnkO0TVMsrE55GHOxCa1l3ujoiXoQEgPDpoiWwBnHO5Z wA+r2CJlxIXbGnSXIST7sd+36NJMVhYGJc8iStRyqttsJYZL3KYOF1HlLWOM iQ33Z9A+zIOkBr2IarsuayIi919sDiCy0d2x4Pm4XR4b76E4C2mHW/h0Af8L twEyZnh9k02pIHMYUSOWcQNXKrfePmLt2+69EbUaVOr1QdUbvEft2w2IyqA/ 4BR1kRDifNVY+2mtNkr3O1jzli6kNiDdw5V5eMIynQwmHDQoUzAqsB6WDElv rnu0b0xYZZuqDX1e0G77TdADb0bqkF6wp4K2iKuC2E2hd2VGVAdmkSZRJ2r4 UXLXruEom/oBUSURbg1KnE8+mzS4fWNpKXCdU6+85DsOpr6s4EgXURXr71oo M024obSCYiIjfz8z9Fxu6GF87iCTf3gr8GR6gMXj4V5k3MrXX+sc7tugTI40 QJCrwHqvlpmvaq2p+CBRV0KHnRsTl7/uISpsb65DpDGSWt34TOp4IRq9FVUE kgi2YEhxBWnTPUzd253zBa9Q3d7ZqtFmInk25hfqUpHCIZSkIYAXpwFx84hr KbpMiQH1CTBFCI4iXJxFZchmhM6vBFclLu10OUHG1un1Jy5audWWIgSc/ZpA pNYZdZL26avY0s1P8O/ZdQn+eYAcH0jUgpJCTxnBaGPWWSxTHtqiOAoasNUB hwnaab8HKrl3qjz9xhXda1zNzR0Zs1+TB9TVwkI86CMG5qC11Dq33CKBlLbw JiC8OsANEaSLuHLX6qwpAXpMMxlN31Je7JCFOuzJuaBJyeuQWZkw0AojMnZb qYv9ZO0/JlbnR4inN5P2izkjD6c9Q/X/ze8Pccei42YRh+K0MNlyxlnbYpXn /8Rg6XWgOTOJ4eLFxwLqWrsKBac+wUuRNBJYvR1sxhuKHw/io1MyA18a0YBE OuSXb+cLRIt0GC6HGZfhHD9HHxzpjJlde7sHOXy+1rHQoahKgodKHDlkrdHt iRSdImGj5xdXs/iHUL99dmIly3cNVzk1S02Urg1YorH3gtFhKqab1pN5eoEh jGLZ0VMVmnVdLBv6qhSf2RcfsOb5zaJI0O5KK4t1+tCUNTnkJmTIBsiVsCuq s5ky0hZi3LW2jvLfY5p7PVdgC6cg5Dawl7KGWMPzCUduTZwwD+der3ycBb4m 1Buov955p6acycptZMW5RyLgNUkpmCBM2uhC7mSDyO81ZLx5JNgoLEOc9ybq kIc+nhWKwc0/bTvGMOJYyHmI+DuDtud/3lrbijxE1D+GHlSgtQqCwNYl27xP kbRRkf36fI2HX23KBrHW6M9+gp7OEGzMYC8Hf3Gj18VfCVptaCRZJLXDP/v4 iFH7DSZmFsC32Tph5SlZOrvUGvDxbRFFnVg0XjCSGPs5ckrmeLRm77mgg+Dd cEoGAV1uUaZZr0HmQUekREJdFKwihTXty1n2xSGyqj8tfq5XnudxrTeiL+7R KsDIkaKJckjecXbHde3q3qTi2rcGaSh0ID42qzmBUCJL1tLqY8DhZyk/ePbq ozMl5VV5JUEGt7GwbxmQLTsDtLrxQR1TkHcZ2j0IV7KQx/ktcnNM+/ZQvXbK TkUlBjVGqXTbPtkh2CeaUU9wq3xe49oh4V1dIvSM9tIhQ4WBLpNxnKLB0kq8 041UzdiyA05vSgp3LeJBv1xYk5otLgQ9uMvQGpHaWShHRbIw/Ov1STjAtl/p oQGvP6H6pDMBY9A1KqowSOji5kIh22bkxvqCNQceJlSRUGK78vcaEwBdMamI tNcYWt2X/yB/BXG+7Q6tHK9XoIqC+s75olW5mb3dJFsm02v9n1DdzRqfuWUT C6ZyiA39c4LF6zJ2gZYO0kXBfAvWVcnYxl5JeYw6yJrgw0bdc681f6G7m0hv RJY77rWr2tsg/PtyWVNsszEzvz06w8w0d8l9zdJ8RCgYKQC7u6S3OwhpiizO 4esd1FLQzNWvjlvkdtO1UrTO5PcdnUU0NEY6LfRCYRD37JSjG3+Izn4iJQYR LIqdrLdAflKzOB8FjyPkYxbgFy/vd/JFL7QC1XiDXYgz7QCGfDG78fAlItUR YWjKHbzpTrlfbrJWlozh9RwLoo/t+9oviWduX7ANjkrbAdaAzxDuoYGQ9H4e zkN2hgInoEOd0PJF8XYCrAOjKr4s62U1bCCgu8TFAZXrmx9/k09pu0l0Bvcb zpGpPFkfseA0X/rw+qby1M5t3sUg5LRJnWx2dDV7wEhLRc49xAMItoOKu6yX OrS8YasGu49n1h7bfYxKYkA4e8zwt5Fr4bXH/GdKZhrHhs6IFNz7DH5to1WK r6ZIKgtJ4llnN3/WGnchPyBUv8SEgYNmFyDRNQhc2eulwjB6nM5mK8azr7OQ kqeTCZzVT4j2G5sIsUMVzOotJHuIEuxV6ka2y7ccTSMr4pHXmiDoW3bDyErG ed8SduS92B51o2qP7pMvxs6NSKNDZCnORYeOdoUhtGoz2rWC15rH1ZDdaNTV 9OcQ3q5v4IEYMj6GfAY9hllYH/2FIzvHjBsGlwiSWGv0vDekf7iGAnju5yrM AfQVCS6C5oZUrDdGZ2E31HHG2Geg3n9ZbaloOMoKWchn1Dt2ZF8vC8GVTfNA xO0um4/eX7/OF32M6oe3ONS0ids0C2wou2Ct2oXdwDgq78Dpbi5wtt0aD2WF 1W2LDyeFF/v6dXINm4gf5RBIHZQ1KH0mQG4vH212cyVeEUcgmVgIq/FEPOi8 pFsMCIcbsqrrhfcel2ZFUpVFCVxagWMGRuaxtAcPYuvgVGv/NQe+XqtOVnV6 Twfw/BIZpxu2S/QZygs0pJfq3K4cZ3FHMcbT7+XhHJQgLVePN1eQxudvItMy JA4H+HXUUJFQn3aLQ3G57SF4ah8dKhj0QIgxzEMsBo9yfRdzyTercMz/BuvW 30vcrlAKpUNVH6uCuFvkGJQhFVuhelc+hMLFYR9OCndE5N/vgy/DvtXON5qE dj/KMtGYIVJflZhqG0IyGzSoemGws+SwPJp8+2dskZuqinT8J00qQvH/P3Xf lWQ3j6y5Fy2AAW8ey3uVt5uY/b9NJsE6RCaRII66J6LnPnTEVfySIBSY9jP/ viufc4n38aiuc8UrQu2NSLSWe8rTN8RSvRXhDMrgdqDso5vIbOlROF0Yogy/ OsrkQivepJNtBuhDPnmCDzSTfgh+g0OYSjFyFYwZRXMtuAQ2htRdXBU3WWqF 54NFxj0a1jHnlJQxaYrCTXuCkNoXlDpb0MqXvPBQBQ2vat576fknp9FAF41h vCgE2TM4yF7Rqy2WjsNkk5gn55yxlaIQvd+rJ/yPNrAlHdBOJ4do5AZZrNt0 mcj+l9kFNzcQ8dTmY4tBxQk9tLV8UpElp50nyWI00+GsN2RfdEUkpaZXk9Rc 7hDKHNR7Ntv6rHI4E4Nx9uUdjPjZCeAO+H5M/zV/vOWoAhlXByg94EElNRyR R/1e+rYG9PzZajS0KNZusk3udY5lgE2xYsiFcFAtGfpBshZPRBGaxFbkMjO8 HkNobJU1QgTlF/73NIcyYqnJEAnxYkaJEwndx5SbxKTUZMwrrUJ3HHW+rUl6 C3dNEO20QeMoMTg3FU/nu0WNzPpuZe4GlZRAVruF390DKz2cBlQYJJ9jgG4f 6iGo44YLz7Vs3nNx7aKtSkZxOu7Mfu4vtFFUQs1HGyeXsycwGjrSFm84Zbbu PGYBg3q2qG6xYxRw85gWNswKPggJp4C4xhWeRYfT40NIbK4yVrq1t8nnp1Cf RQrcdynaCYL6EVvZtRxi+8OUmENAR+VgWw0dtA7YqSE2oIcf/94MavaEpA1x JPoHaY5kUqSVRt/Zle3toTSykIJjC+54qDvvk4nMUQkFVdGvRUmcDhE707CO kG36yEDY2CZk7eTOuxA3BFac60IhZANnybDXK02GUC7uCNnNbU0fcJudY/HS ppIiF58Buu3N5MJFSPAQ1cagunu3aoamFsh82coG3L5CWN76yEA9ivyTWNyL 9xyT+WDFReqP2gcCrjPBvWnw24dReSs5lOFhTwkqLiMi+Du4xRgstyjTRQF2 zzawz+m6f4bDhs0OMWjojXJ2luOdJYGDjUePZzpecYzUYR3q1ELF1YoAv+/1 9MfaMgioS2KbJhMWL1lhlCnqtASlmQhOH6yxXq9Gk7EylpYC1uOJ98VltTou dMoQsHRRTm8uafsICGdVi4w/MCmGGKsCLmu6r/j71hlvqXcgtE0eskTxsxCK MqlHMujlweLsmCZh6qr2fJ0GZxRLwxoKIkdZaVJjz8Ns4HpkWnXxMIdrdahi E4r8xmYF84P6URu+ScK60cVkc2eaLY3fjc9sk3mM9gn06lOKeKruKzg9gw9N bcIDqgpOOGhNbVURgXy/yBo7yvYaCrsRwpFdRveiRgcctvQbNJbBRU0q6cxE pP+hX7ZBcTebuRWQcH7sznEE6FOhZwrP+fGvdUV+s+bMWMTMaTJD+QfdAwzq DVnAgQ0oLohzSE2AxKExeoZGWpFxIC4YZhASWS+NbO05bjhEroXd12k+fJW6 /75fvxHISrYIEXXgIViVpb5cqIm5BNImHUl0G/tfbTpUpoUfT38W/3JiciGQ UnaB12gCiKbK9Mgkn4izYl/4pvVMOwmPmqmUZVSTsLmlaPn3/1iIwHQIAX89 6qqrzkpcinYJfhdnMMpqRGydBDna+YJv2CiE3qGkBp2uRSS0u2g35m60VBNr n1Rchka8NlntA58Zskd6xcT9LQRkhuvB0gf+hWXB0WY/DDOk+soRXJHDojq/ S41x62+tdnmTVaBbAq3gh4Hqtn2Wkaj6FYN3HJ3YXTwfmgs09XTZtT1kX7It Dj4VqD1i+ZyzNjU2ZghKZ0NhSIwY9RLegM7oJlGEf2Udnxe70IyYuAzOhZVS XNb0KNOdiurQrShW9pZJvRLt5wfKhe16Cz3F1ORdsf84hjHA3wNaKdP30PeY W0tLqGKSDc2a7fkTSgZt+KkhEIXJaAjyg2oXSRYsC2g8SyNFd/xewe7TpMOC MO8gFn+8ajhnB/RSM/B+Ul/CUGJno4gXkzAc1PQPuDZ2qYGp+Q0X188J3u/W /jHgrgFK8Q7uQyw5s8tczKc7VOWQOimyPUDWprqAWWU/Ref8uCd5PzAfPsVS jeyvBzL2z9GUnCxAJ57OrTLbcY/H9IyuvJyBRNcEUm0cbeJ4DyPVxhvRMguP MbZW41cnXjnK2XHRhCmhE093NrEetLm7XURX6tN2N6K/NwzNGuSQxfiV0bq+ 0/LSqGKo8hnCjNHc7biDt8vNV3GEcCS5YSgsJ6NUEfqVw8XVm14cHda71kgj CLlnkCe10tFzI+GOQd52XhlxORdzM1ffnKRoGEJ4pqxm+KmaOp0M6TRDAbiB vY/Jfc2+Z8o0K7ZK0+MhLHjtaiEHNVuCN0zocoPFsA2ZseNkzg4JwFnhDzPk ftp4+ETvo60QMk6QlVuSrXDkvg3MoGPwIT9jnsKmtX+9r9fZlqaCpjmEgyWo 47vxzEjOQBDaCWuj7yK2ku93TcTO4XNym9INylI9U4E9c3lkFzzoEtwRxiCt fU6hqfJz+2FTQQdTcQPjZ5KnMpI+a52H+ymtv0BefYyhaIgZav4d7dsbVGNg skTeI9HMKD82ORHC7tbveo7xOzAfh69POb3j6Hh+FVJg26ykZ6cS6D3q8doK IK41cJvDYRM0k8/ZwZCvAc1BKwn3Nn/jm9XWi1tiXeU+qSI0LMtU4pgr5uQd Ez0TMeyraq3OmahJ6Qt6UmyYbh6gPglkHKGxsIB6tKjYS5JKg7gT7QfZO/p3 b9NslU5fnNNxu4kLATI41Gzuz0hZ2eFIxaA975W6xTsH2XW3SQ/fCGAnRGUH KXlKWoXOyt6MeqnKWZku7OG2QmF7SCuky2don6iqZbLWoLCI5j67nUGx6Cee OP7SyL10Q+pUL2yjJtbu7y0U+JRSC10pfIUmdfXh2rm5tQAfwJxEFOjB2d86 /Ps93/dj0gVjUDFn4UKmUNZ6A26v/fjbn6dx0ac+DP7zATHQhGUUozXwDrwm ZM9ODyfL4TjLBYiGUFMzEgneUOiyT67eHRyRgHqgiJgFBfjOvkPnEvH7lotI 7Kzw1xxCdvi1El8IfuvN7tGXC+JGErf4HfsSrO7YFqw7bq98uWbLlLADXnx7 NDnrzTzCQrCYFOTtMJL20l5lMSYnSuVFcoQnAr1wZ5n0dOltMRSviMwOHrfq D1JEaY75XUTNH3XRUdxj0OTFUEzAub5dBu3m18F2G95O0Qff8Zeqj7wTObq7 3EqOas+07ekculvH6gn4GCe4ccvG2v9sIl5V8105QZY8cF9oUlatbxBuOWVD 1/rBR9TWT7ozT6mhKTxQqLKxGLzk2kXKO1VUgzvo4Z+YbQObZOFHlC1Shf4c L6PuE0ezln53YIRp+sd9ffZWb+NFRGBgVMnIHiwiA8wYy1Zf/UV/tU9qW2RW M+4fCIF+ywGzUOajhxDTjhghzOyMMU13CcIeclhytzDH/LmxrgxuKugHhJDJ WOukXFLLljWVhxZrywF8wloM7YPCfk5Ri5HkajTNmxz0ePya/21ZM7g6iMKA 4gBWekJhgs0wRaNPE/ZZo4Z5PeJoMvODXo8uFkVk2OaaI4Dfg5/dIQ2DDgA8 6hPpYNUQXXTD9SrOLgzyLmE9Vg27NPloSsPdIbd+Jd2AiUZ4uig0ogjGakzl F3VvWdvfp7gfFh3QbVijbZNb93u/p3fJe8OEfDIkvADtlmsfVlBSL1IjmcmK yvA1grPSUPegoFNXQuLuVCe7Jfmk4KGvQiilcLsdB5lgHDPVLEDhAb9EhdpM WOD+EUu1qy+3SCjThS7kZnhN2XE2+UhPuufEbccEqQ7bXS7v9WV12q47go4B d9B2nIUrQ1Oy53qBYutXL3YNWsoZuyPg+v2MLdbmEzQp4ELKaK6tzKrkxuB4 fti2iC3UmIojSEkWmVHdyHF9FVRJJRzCr5FTVTBYYqHcrji3m6UjYCA+2T1C 4xn6LdAhJ3YiE9JpSWzeJxEXAZo87PtGUgi6xjoFgb37ME5eQi41LcuBMUPG zoGQJISKkylAe+M5gE0m5K6Fxb6dzO2tsUW/uwYwJSicsLAYmXt3dMCMcgxZ Ic8vaKrGSRqKX/Yy9t9TiBHbWhlqeu0nld0sIzWyRBcrjQBlPp9tdTdP6z9g 8V7tqVNkX4aaNf8H2a5w+yxaj+Vv4+Jm4iK2UmQE7hGsn4ridNMf6fvJRJ22 tJ+I03Nrg5N1c6WlaYTntZlddJkz3EaruHk1Nw23d9E1VpA2J/gAf5W5x8A3 0uQoJ8t8UkZJu3DbCuJsbFVL1Rb1LKErwuZ1u2A9lP2av5Gjqn7CAuoem5GA BJ3tswvoUKkEO2QxPcW8nEJinI8OMGSRrVWbD1cjaCQUfA9nfP8GxfW8Y1j1 KILOU0hZpbH9yBH0S+27So3LwZWJk4L/My0Iy89Zgm/TkEABn46bUHuDVM5D 8/rfMw7bMFZAm70u9eoypGKPUEk6KORSpGi7XaoWzQyhO6BdVOrGtCXv5bbX 6QEmdoobkE25nMLs1RwTw1+xyk0qN00wiS/HxkYtcxiNKbWQsNWu9zrnhoFW QgdGyLRUD5WCbKQjJ5s4E3cIWiGJUPxe8MsJmjZsJkNofzVvW0nCOLKyL9lD JUoD6dbI60wruQl7a9M3N7h7CF5bstVxMaDkWdRETYViQZI04nSZ+o50ijcm ktuu336D2csLWqRsht7wuD0qzRozXAKJLr66eIQPOTjXbV9CdaCwZ/HyYLDj IMHYQjuAVlDyqFN0MoQQzo1SBs2gkM5U1hDi13dxhoOnLQnL4boKskeUpREk zKO3hQE1ZJHMSAnokRx80xilysvPOhd0yPqOjYeADMmaGYiyGCfaDudEaa8d ujPdiUCI89aZHTzLybdboJWVATk67+TsCT9hRG1wg3sLkZYVSZ7A0OexWNNL YmJ/kYpJLTBQKRhdcY2EdhPA//NHZ4Phis/iR7eFPgrA49+g8XGPf3zeBA3U 8fQJwt6IqOMuHmBFO83/3y6KV/WKtvcTlAvbaI/GbOGSjSrgrnE9z6X/YJpG g4Ay7dyEKyvdB5RdvWjTMGKzIQU1RROSLEEqtdMhGE11gmRA7Fpd5oCzrFJB CtPDmw8biwHBCmJAJCJk6+jEc4q8BG9K288Fywems8r0tJc+3mey9B8i3eCC 1lg8Dck/JxnaZFQRixxScqhroYOSQ/tyPz6CZpJyOiEGHXoDM4bzP4Jyk8YA It7NnFBnW+DNn294ntunGw2axsFnkzulfEfI3KItd33YQVcf9GHOpuhfduRe npLzVO4FObuTQsNvoZQQFAiKKXKiNMwOaJOBxxJ8b8k3w8PvQ/66tNZROTno PaBi+rWRkOCEstjZxiOg03sMtXW/Z336CMYn4oiMC5RJx8UNRZwVH+62rQil xwVq1iZfEqZ5vjPwRrYCcogQmNzCjJXHJYNjbaP6cvaHiZqJavIqFeaitH++ 9Klg6TmvTZXR1vCqdFTdbEdscpVXtjOxrsgTSeAgZL7SfR72vxOiQQgSi4g3 SmUlikIwwckuepfNApPGsXyeY5ZcwD9Z+E/IiT2awEKsi6SAICcWAcehvP7R E1dOcOgKE3yj2fjtnt9erbOZoksVYgRiyGKX0dR+mdEq0O5y7vMQxMYiDhaq 7+ZY6vUNqi4mogIfYEZTlyydsu7omV6VUy1dV/lT29hcCHd58oxw9I3+nnfw 2/AFp0G0bs8CrpQPW3+hbme0OgNE+Njg7XYZu8/wucUtsdGh94VxKEP6p91m dNajSKFmIbgP5l5RID5PJuuCAtxYGnwn61rcDxz+aD8u2rgTlevMMTZm80lV yeP3hZw/e1/SNfNBQRB1hoTcJUOLiltGufkJMzPLgYW5MGS/e4W6Yr7xesie 4BXD9ywqN3TUiJMvBVm1wpArMjL9y6giuTjidUCOF9CJNhbk0La5KRgbR/DR WT4/REPGkS/vV6bWHDJc4UOUOCUpAz3GVKYVVbOREvr4uFIHCPfdlD2cV0ah QGTWAngMEK0DNDgpFQ8lUY/9Ff1BLf/qIDL4KSaXiT2HBGHizlN4YnrBuT+5 XK0h0ZjSFqK3WP/EGLZtBtROPk1Q/RBVI5KTJdpEUp7ZH8hGWfVzQFsZiKQ7 Yi8/F0GpOdKsw0ro8aeYwzheXgZHlyxYtEFrlE2fGLT0+M5h3i1g7eYG9+Yd +fqePw+XFdpxhtiTPev3niP0GhI8dmba1zfw3mlv5A0K9TnyhOsH0eTRlAdc 1CGOPaODOsbi9KOHaPu8dlClh82VIpAGujHnet71ahxm1T3x0hUR37TfxHbz DJUBHUsm5dDgfiH4C2QJUShDl6L0WCEEiKK43tRN9a1qWH3ifRF6rhRUDFpk WZMLKPyoSQmvdqKb174j0zMCNM97iKr7qxTLRos2cgkdIKG0C4OiqC0DwLI+ MkwaQeZrrzvQX/eZDjnlzqZoSUExK9BaqNH0IGCwM253kD8Z4tGIFXEdjr0L k3JhWTTwKugagp3l63C09/ldN7UIryJK1y0t+JDTAbFJT1MMRjdZgtVU6hwr oO2CLkX87SH2lEfF3Wcue4ujAf0erjWbIuMgNhovH5AS7AY6g0T4CbEng4Sl vq7r+g2KKqRU1Ahu20HX7Dr12tmdDcrQ8GEdGhShx1KXOLjT2dmyomRWrDsh 2UNiRTvE2G3r3l8gtbktyidCwQYv2qg65QnL5l14x1CYswu9SsZEP4VU1ti0 XINOGkWXvUiZ6PRITium6tmBcZO3rL3GLXGBzHRC81lCqfA6xFn0tJ8VmMxY iKvHVjwyQyxiUkZ9TDeDU+0ybN4/kUu/wVF4dFiZYQxevPQmrXRuQ1zBVo9u vhirBt0uk7KtxfMBlnDhgqLmShCyZ/Cr71RFNbaxOTK2hlpednTbaPjwqAFh dUvB7+wqZGU3moguIVEgm+BEboK4vkXXPgZ77cKhD486Qblgi76nrETwEq13 BJqiLSptx5yj6dytIGC+HRL3x/Cr0nZ7EH/2knzhhDGeh0P7oj8jDb84yYR/ YaCon/68osJcmgn3231A/+1XSkqTegh6OwW1K0Q3IRAL6OFZNyxxK86iDTxg HJhQ8QkdcRoXfHEOMSeQBxChgZvb7TC2uhelzoy3mo3huxtmbszQpr3+hoU3 lMRLNENjzTYFbVXs4Fk7VhJeF2nXumEa2toG43Hd5nPrjq9PfCjWyJUjJwpJ eyIF82/CNR11QQKgggwHYdbnjTTiwcngNJqwFV+HDw1dLlyxBZIJKG3puK3W Upcys+Atd1knZ9dQO0TDzwo1u0fzZNOhgMnofGtoNBgT3UIrYBOs2lEEevyB yoEtODRUOXFyi5D0QD3Jj5w1Wxp1WiLOdtYW9z/8MVS1wl/o26hvT0DHeQvv gZN6BqUP8X2x+mZog4gYPrTMa+ra/44nbl8jwoXr8yY48KRSiqMW01KNE0wR uR1aJxGVAfzoQmnZO2XZlUPgInkbOc3KnltD+k4cHlRvlE18KNEu7HyEb6cQ brcBA76/aCa9uI41EYFdpVpPYR0d/RcGPJgSVi59COPPX6jfPcGUI6FxgsAR e0py0hA+Ks+mEnJ/tHZzv91Rh89zDZ212wY45BYoE6lz1j/Ak6DeYtaRo/b0 KLPttGvaUlWd0kfSxZmB1ME2Wo2GuUXYcYy43X/VVRs9JokX2k3SAct/Y6HA pA/Eof6ATrR97hScIoFUFTLmqMHd4cwIz42uaI5LB7/79JAOqOK9h4PbkArB eF+tZBuuFS3fZLIE3ee16RIVA/Meik5DOzodIRdC7zR3dEO+CNKY3gWfuOCc zAXb9qS/BvAdpYoPDV0gnRpmKDux9KRN9JG2DnO/Bw01q5qHePO/sg8C2vH1 yttCSWK2SiFMwfnihyKsbERRVVVmpyNHXcs7yCsG0nmfsHbxAyUVRW4buBfc 9Bal9vWJ1F7mIooUWi+mW2LkgEG7PSjwsG6OlVzQFmeOU24qARvxB5JxySHD 2mr2wV54G6MeuLgzeHt/9jlsda+MNt4jnVh1jSZEcm60jkv52e62lBTQ+DXl tf8/eKhcaq22O114rHGKPnHkqOCIsMMt78a0PgGsIlNdeFuGO/SkGt6AhTZP xO0LSvJlUrwZZw4s7yzaRViV+3P5uxdvC3yA7veR9OhdVqEzfh3UxRv0udxb 4J7cpqy3UCV4GCpDE6OcXGZ2th5eB0eGfyZ167a1/PFp6gSChx841xza6lkl omqsjiM1W4ddF3GeQj+xPqScpbU+sPziIywSf1TzA5fXKdkg23mIvmspJgag KGJUw4pLGvWsfW6hyp/QiDjRFGw8RlyTTBrp91I7r5Xlruf2hoNin/sSCQ9f ELesZQdH+jmiw2QCriBqtV3xyw729KR9oOPjhXYFz7WuOjw8ZAVdCTeWbWsB 87JGF3WsKqONHRSHFV3lye+baMtgoaL94S4EcocSsfo7ImEj91kFXdfW9awq hK+oYt4kCGjy8gShIf6nrUUs6gxr9O2eeoUPL2t98XJPL8MiObn2QwFKRiyy 1XATtwMpry672+wvu1DrcBykmgC2KsVdQDXuyWQbPQCmqJA3OBaKpSkFroYb aKVdARXMBCEk058HXV8FKBwo+STAyZN2psORqKmhOzNjM0ZOC6rlNXyFmYJF sIiEzIBeVWMPec0ZfAdqAhtMdJwZG72bUlNAwb1Wzrh/iMFS73eTM0qOpI0W 8MiYjRP2k2eaXLH/KNZYHFyvdXt6hZbUtGRf0eXRFxSlOI6V+2TNzA9lyRHS Z0JoNQtophPvrj162pJHglJ+UIOExPETQmDmMc4ZDjCXFWmqcJF8w8T3/iJr Q53AvI64xMkkCRMobn/nOeo/vpp0tkdRB5DlpU5+W/lGlK71UeU8Dn0XuzYV 9KBuI1E0Q7ntGG1qvYHfCuL7Alpmx4YkGa06gy/+I0eq0m70rBMvh2XTHDoq zr4JiX8+T5DUNjp9SG6fYl70o2TREdGnU9lI40JfHZOvQd3k0UdmR+r10ni1 hf78zxF9Lq9tdobOV/3sYpSNq8v2IURuUlxPoq/cQa82pynqQp3qTLI/nQ1b BFtGdlqEMqAffEWKGgT0QJv7/i5szRXw9SN0yvehSl+PUFTmrTkn1B4TfDh5 UP1A1AF2PjL71kEXHah3w2KQIwa+v9oXtiAdVaJTHHpdhbH2TkzUeRnm1X3p MUArC+cI8IxVx2bw74UObqtcazyaLCsEtfxpd3pdu4zIIl4YunP40ybnffvS q33ee0LPhs21I+dDo13vUTzMooev5oslk/ixzSn6sK1Z+2CU8WKCpex3Y9FQ 2eGMrXm8eoO0wdtpxvjpd00LEhoV11QITf/hqs9/Q+YJcR/BcQhmv8jRKbT+ EQl2uHf7U8+stKzvQoZWxcOQSN0ftDCuoinj4OpGI/T5WYUorQTG4V9xLKhF qGQhlPe11h6esi9azUyGD+kViH5mY4lOZJA1MQLb0Mmkqrom9h5vDIqbVmN3 ANg8wFcUqd4EhGNkZ0M5JyosiykkZKX1+GWzGLbTPZ+/QC+3LT6zt5D2IgSw /ppgVNFOFpjYCtEg7BLKij4E+unFQvKggnzW6ikZWySPhRXXKIGmX9ofoXb/ emFt0ViuFDu9RRyyNzsA80GgR8FeyvxFVg2pNlH0FAqg8tC23SfSNvXgsHVQ FKGE5H08m2pbxX0/ZUhVNJ6hPErM0Qq0/M4E2+oCe6sHwUNNckiTznaPz/F5 g/UYHfTAO4VknWQdYlFkJCTD4WBywV7nByRU5UXyRihnvi9RY4DuNZBY6aAE tmN7DZnIaixn9nTKMYoathN6AYQNUfG3YHi/jqEI8dC2KCGo0euNkjn70IYd UbrbAbbWgPw6GSifdUtr9uMS6ZNUCAN9JSatCrqjSROuIy4TAFel1z6WJew8 9Lxe+ybmpAJivqJpKKVXYnsdgy4VvLDMEJF2SSlS4wwC7dxspu7KRkiW0n7T aILIX4OBLwd6OVdUrQZesoSHgNo0/gul0aYIqa3MICURj1PvAgXqW2Ut9BKx HFtuQVtWOfPTiJa1oP3pOy8gNMrjqn4Zcf+ltY7UpyGhWY5KmZSXRwJlClQw WbYf7zKpVrkqg0CHMj+Tj/7yCI2/3gpPaJSlMdoauToWXA+ONB1dKc79Uevz qw020Hk8SsL4ySMz8M8Y01VEzphQBI5rGeKufOBiyedt03ft8isaTRkdCY0c IeXpMHhWGb9vHNXZGnXFsIj5UsHstMhfZ+g4TNXXTEpqii4XnGpLaavjXm+g 9B/e6ZP+2OzZHDzdRq2oQBGiJRAl67l+1dFeSpuyLUu6jGTRsbc1uL3WLsxb ZwobxZSZcyjEZUmYRJpCBGUcrS9krAcxojHoXqhT04imKo2unDHMTgLeYULp fSXpHea9Dnpk/7x+bEbPLidlr9eZ8Hyjk8jWYet/E0tz945CfVQyBTegEa3W eP85MsJk+U/Hjfts3xDs9+DQ/8IHH0LYrpUe3lGVlqqCoZFrhA+dkL46wW24 FT2CTAX5bkJdp74v8csFFJ+OICmgyHDQ8Oui/DC2bTpE57Zjoz0KVbzSGSN6 UTlruzuzvzGVIF7NWCBVT8rmUlnu9FR7ZKsufmltqNqeoyfXNpu8WTBBhg0I Hc7SEEjAXRZQmJ2bvGGoEhdOkamhlxYNwzeH9fBzUGaBsrfGweL8GpH1g/XP Om51BtcdeicIP19DM+fpz90pXJ15TQHl9OfeBkw0dFP6LsSHrKz3gKLvPwEa I1d/YkFhrwVXY7urJOGsR9B7yOe0z+85OQ/wQya9HZKwJgW1b08AM42HsL6x U6Wzn1pv9bc3evirc4muVaLIGeOWy1bYfIof/aa0GfFcRISwQT/C/lbu9dKm bMh0SiPrH9o4m2WomihBDj8f/k6707NK8R1ax6yLNcVWjDFDZtx8+QElvSEm GN+rwtretw0hiSxOq7eSnKiSHWPIO1Hg5AllW2gUgIQGDx29OQfXAx1yWlTW sNwlC0wQkLvB92Gi2jFsPX3D1S4ZCFofkETo4w4wf3AhUwjKOwopki1ntd58 hw/LUaMvg4ENqcJkPytxWXciw47EN1NsdXC7KoU+5v3xPSjtqJ9MtvMyz3YJ rfK8Z1FwY8iO/XYzJURlwJffW4NfnHndEIKCZOgnHU3qzS47Y2ILoZGsjeQg TFKbm205U+rJBl58OPghbEDkCWWToQxWRO+Hbb0lVRT4VTam2lkR/KJEYwP2 dX3qc9BblTWvzJSTKiOIdr82aOotr+RJ9bUsW4SM9nJioZrZ3CP6fKHPuh/U ABNRlvCrc3zne40RExm7x477ewqluqHpOBlIxxlxo/OPbsRDRtrJxMQFq4r0 2r7IFsqMO5xXd49//RIWRQzmzJL8ZBHiOa7OOKiJUKqpgaQdfanZScP8+7Qv HyLU6wRwAB2fgsAIH179Xmht0d/U0jn8jkYcKkX0S8qrL0Srblb4eKtTDMmY QYqMBBHNPjCLyMHCXSPkQYVC5hZ2YI+v0VtKiUDlwwnicRmkt21D+7XwsUgJ 9LI0IdgdQ+e3dyiEKITcOFygu2D0yBwiSTyvIw/O4dn993H7ipgGsmaE0j7H SS31z8CxJTpdcAUzV8e87qNe4TNx8hZiWr+2v/uE4GY2wzWDvJ4pQ+QQHajE bZhPfPS+bDp37G8kB/gDF/jd6Wgb1m8Gd8/B2C4+e3RwOQrHLVqAuaQGmq7f PiLcAW1BbQoQ07TJI7iDnv6oyhQ+syP/tOMqU03RXr1TobE4SjMZ1I6svbqG 9dZyP5z+krTiGUwmea+7S9LH02CtpenbJG1REph4Dde8a1G2yivLInLHlKzq pxHl6lUzyh0ex41PBb5eHRTFwVJCZ8PqpPWiXPRD8otkCbeyHLlXwb/wcNLb ZIqsyYqeUGgAiGbJdEEnuW5uNA4y60Q7nX9FvbdobQGN2o5KyqOzkVKnkg0J WhZPJTvJxepGsfmreMkLtjh2sehOG1zZJ2yQEld6YVLRGhkHW0lplSU0ucjq itlthSO6CNuVUuAElf1blxylmUSPy5oUVByEYP93XG1XITA1oXGJbcnt/T0x ULpTpbKAGs8Wnvj4zlB6tclw1Rl5CFSH3LI2lCw5fiAjuA3SHb7mhMrZLkk6 3+tAlUFmtNd0XyjXCURnz8MbgBeUGjCOarj24q1i7n5BoWGkynksNYgudD4a DhDvTtjXAKb8pHU0O0am748aSnQyQXHBO2xJdRppScU5VUP+fQwCtt+Onp4l RBXxOGF9zFOMqJTwpzdGkZYZyXkm05K63Cmm1WozlPHoWr59K79Z4+fZpOIp UduZohifpUilfR+9mbEBaZHyeYJsP7XOUXB7qaBUcq25z0F87caZaGkqthEe lcEZ8/DgVYlKAs5lZo/ezXa10F1vXvVxaRZ4EnNu1liSOkUUnwZlO1CEjPeg Y6p8OuKeuBmYH56ML+vBCtaqkEy5FALHNEb/DHEmMRm6MtxmmgYc+/d6v6/h n2O2+04otaaAtm/ivlN2eyvGFlkNy6xTAAr6ZVm4tV5h+XUKb5abUUGEg+oZ Fwl/WiVwDejYCO5HzbbIQ33nYYLZHkd8QiLReQNmhORl1IQoNTanksatHO61 +J8ym7e9MBFRQlo7Y1ug1veHZBN1ctfQxGRIelp1lgWDSjOFK78znNI2k+EZ Uxr6RA7GVp7BqoR2kUFJYL8jtA3kyTBxAoCEhkqWfgfd9WGCs5vqN1r0TIvI F5cjl8So9TFyUcBBhWHo4KHGzzu6BidfCMIgWhImaAi1ZEc7ICZa3HmcarVr oyZ/CEKF4tB21S/Ob71p5AeP6RuVcWKNKOkUxKJ8JDaANPj2cHSrIKCfcFmx Awx9ebDwRGjbGbWfZwA9ube+FfPogyZKMxY3LN2rfvuBuBO22GzoR5C8kVzd LY05HCNaiL1nuagk69rfqlLKa+e44NhEC5sgWkCFrB1bJ1LYgbRNzK5k+KrI GaPU+u5hT15Q6JyUkTg9mBQ8fidD9EWMbTLeEoj+ICjKTZAcfKtJ/jmxShkO 3vHwanIuHCZ57T24Yul4+rUYGvCR5AjfV2vucHORfAoU7/n/lXrl1503Zqst i+tPNO/qo5Ca556xKPBn0vaiM/+tny+2zRAcCnOCX/bLk0biHrlsJNBAkgtJ LB2EmDAfM5cN9mgU+3U/gqvx2aguwODtySq7tX7M2AhBIZGFCFaXjjw/5Kb3 wwDlF3uJpEuZLASGl1dERtOFoUGBlmS17lxtHzM3oEDF5L1Cf5x+co8esBS2 4QO+mWVGKRQOo2VZGZzuX2kICoUVnW8hO1+vkY1C36nXHpeDOY1MdcbhaHKV w/Sw9zA8Zx8OVQHImeFGMxIhcqZj6WM2QFVi6M9wGP80uMkvBgVSZ/b9aGwB 61D4hkZ0gQr0PVAA7WCiCGUBvLNgmx1r08JGl1/urTVl3VMBKA3qvRmrO/WX tPkxkHf+X2jTfTy7VII3Y11AsxxTMnxCRniHojZwTFwzv8uc/VUvzd1Nys25 9koTfL1WOUI1EzaqCvV+SoRQInsR/3l1urVDkIHgu+35y7XBlugPHSJYNWXU tJTf6WgU6A7OGVXPaTQ9TK7fnn2eRVNsrCpHYEh8kEWKMdbYDE+6aSjuGY5L FmBeN1ZoEOVMLqQrIZFdv2X4LzYFTYKAPKFSge1UuaL5qwlMzK2sgkYU8i2c 2JeRwUaC7iUZPb/fdfoP71lPwWvCD2kvV9uGcsEOrwLXL82lNkfh9gLa2kTZ hAHHznDuXi3ekYHBSUWg31ifIbT2YTm1ioMD2+YLais6ITcBuYTGBC5OSREX /S3EgFsN3f/uGta8nXvN7QRj1G4KSnXMU41oJTgPFq327I0Owr+lH/7refR2 O1M0cREh0+Iu7ZBe2S4NgSbkiHLgqmZ1SU8uQOLpNzJnfyGobaW5oKb1OL0v Ph8DhZeYb0NgSMOOnyCZ4aGPM5TgO9JiLx/YiFGCm0G5eQsVb+dRiIRobXm3 MPaZQfrUC+qnkx5OIHExxcQALxja1WLD1W5tRLNG5TQDhgzZHGhIoUhKa572 wJb/gH+N38B8DTRh6C6piRLMiErpTtE4Zv3r2+Sgw9rhOekiqlb3EDaiNp41 gycWze5sirQck/veileKKivZFxnHzor11Cwnr1iPWJLDD0tLyVfw4lqMtj1h lMqiK4S2gCzyoHT/q7s+Q9ciJl+LJVJEW5te1hBBTikpagad5ZaSNmnQx6qw qL3IYv230KaZDSvaRbSXStpLyMK6vOGYnKw1Qwp033CFFGi78lX3+4VibLTr 8VD6TTol3VEwEeX6IO8MdxI0rBkzeYVIm95X9x1TMVevgrB26IAYMsl3tIIY ROXIU5B6T70rw333bJG3/4ePljL8OGw2geupStKkOxP9jmdHo2F3qAuYS5u3 8Tw8C4uaAu0p0YA9OrNh3BwpXlvQscYxBIa8qSQbCW3dBFmgrKZFQ6XLYEyi BngGnzGOSP3w6QffSerxsvi9m8nEGFpBYxXfdaHADqq5qUL2plcFyLxvB9Vs NuDfzm1eurF5vXPlp5yXYMVQvm8oZUOHZzFEjxQp6+sVG8EbiguK7PmIt+tE M2Y7WmExzswimUi9U5TFrYGzflDbuIMhSdB80pDXN+1bQx4KKXoUK96+jQNR 5FMv/Bz6afqIIhK+bGL+s/NjCc7Ubf8bTtaHT/MCyn4qIgyPG8JRdC72I6Eo xBINB6nKYyA6C4wKqZ2hbf36ljGP1CedO9QMwVPmwoncJ49dBX3aXSmeNW2b PhDq6tHERBG/ISWoV4MvYGFxmymq0bniHlA9gQH3Ih3SZFLsajy8f8Vl807b PmWhG3FOSXuWjiKwM0YzPpzu6zEzNIE2qJ9i3UbO5PfQz29wZEUHAMhiUJMP ikeMQbE0axLXkPbiV7ZCdXA35EIsGH8hfzw/I7V8k74N4pwR2Ofbg4CujJRi 5vZ98eI1cZTNqjH9qHx6D1GPpmsLOVDDcRNRP/8Ht0yjiobgsPMSV2mSIFyX aEJAvjoHVzxB5RTCyNaoBspxdRudqZKeLGOwPo0dD8G/zxn+si3uIXis7q0e QcPUMfifAe1rwIjBNoH3L09QUcx3yB5wjJOH8p4MW1mOkLKayy5w5o2Ir94G CYfiIChh3Lnht1erC+q0yhdIb08+afnIIkrK+6g8C2x6bCikXYbvrsgBbXgC F1B8azILMlEFCL/B2p7vr1zxWM+lLHRfAmAFnwXEsrimdNtvPDv98NEGOlv5 3/NGeE0uKkYNgB4fIWgEaUYcL6UEDD8gxTneA7p9Hu4EoXW9auHkb1pkRStr JZ0m66yRML0dRnfykckodMyI15Pu6SK+v8OjsFsxAlQQSy5RRFkHNy2yM5GZ So89Iq6BU4mYdXFQEhv+r2dkSm80WLyHAinjaHuYjaNGCchjhAunZst6Y7vi UWffHusdfnzjs5vwuyMo6k5GHhbJ63M3iXtGq444TIPefOK6JvALAU2rtRpJ yQJktZTEehM1unYlFXETsdIpqpUb8BvZPn+CzdvJENywnaL33o4l5bU0brb9 C2BhdFy4w5U9IJCeoym6PIRq6lDMRRROFMthVKNlq/w+lYGh/lCTRfuUuxiv yxfrSqaqppsqTCaglsyfdlFs+myGWHTCuYTbLjNn12vy4hKhn5sggkZak4+5 UJ/+Ubm7UF0KsWrQ36PR6AeIhdqX5ou+6/tPhH0R8HKG54wTR+1piUF7POnr y6HI6pPDdj+/X/8wlJ7yO4ILF0/WMTCdxgJ0yqZUYDvzeT6OSNxZu5x1IMQF 6EXRYCeteMrf7+382TvNFo6QBzU6OtgxFtHO3HvY6vXQIYVax/8gUHARoBVp yLZbqPWs6rEbRF91+EDVsI4Q3SPA951Rp63VaDzd43qMUd8sahpY7BfEczbD 2PxRQajlH1Wf2ru8U1VE8jauZlfGBCaK5hX6JGpRHK/jQuxsNHSj33el5nqT Uua9v/U5O4KM0ZB402SMGlQKN31L1zq+jkk9hATxxhQdlQ6t5UNHP5Pw1khl rEXcVBjTsxFreGf4EK2oowzIOwaFm4o8z42F8cPPe0oxs5mUcwlpWUbLT7cZ teaWI5ZN5igAYVXfgQY3Z9Md+72e51As+CjPO8H3BwHP8DHlP9j/WKfKfR2U mWy3v1+1aVOePJxkbmMIwayCfr1lNMT+Q5omAwkihVJzNJccYlk2A4CSNmTv PLYnR7vRkL3acSd5fIZKx9MdktPRIR84OKrVvk9Bnp+zd9yyUXeDx7oo93u1 zs9rCI0NaURLHWVtMDKiXQ2q/47ZeiK5td+YXtwG6I0ogwQ+HIfLale0wEYE +2URrEILJQlkjDaAQVojJ7M1S6kwgud6UauttotQXmmozkq9Kez4mzDc4kUb IhHj2bFUOVx2VBMaO5lW5vt+RHI3GabBNaOecNCDpa94yd5yqYWOT/F2y+iS q5L1b4i7e4xQOtDmAndh8GNRQWiIOhTJGE1mXdvY16a9nlI0esfc4/TD28jM XwzWc0Z5N4K967i7ZjRxpmfvJj7Wy0Et5EMsUnM9BkT2Lm50sDBaTAFejqFs LjbK7EuZVmPs7h6xFpXvTSYef3Is/W2VrINVKM5gOK7maEhbG/kqQynYznwX //pyAUelNVJwaQ42IQ6OsjraTfNjrY/fF5Zmp/d2Qm6X6qfD+7/Q7nr6A9AJ 3SeTKXm9DegfBIAco+bvTZvSsboQxFACH93ww0OZlE5FpVrc6ErdfoDakI6v 8hFmuyHN2cE0FZAPehw30KnojWBEDilNEBA8p3h0ajxp2Aw/Z0VqpiRrUZGg CNUbkntj6v0DLk6tSlvFC50DymeF6OWx1qDcojzDb2yc0h6W5fwZmkC3Oa/3 yU6QciwRDu1EFVlSoAiEHOvnZdS8BY2+r6V0GnTRpGMKyRZqVOvIPpL4SUsz AiQcH+NGyD5LKIBczj62ljvn39lEuuu1BqXKvCqjEplXIbZb1niGEjqGFZT6 T+PzJ5uyVDuE7OiymRApHoW5QUd+0+rN3GBw+oIOECYVb1jxKXzeG13K/wpD ljJqncUygBthZQs5vTXdOuJdxBlNipvG7oXf3afFo3TNkSg0Yc0imyyjmqS8 GE1glpAy8YbCfHNbyvcQ595SzJagLRycc0IN9iiAZmszqZUlUkh4UbOOpc8e Zi951vLIvrVROxz4GUWpN+1hQPNgBeV1GlsGClF6C/sdVNOG4t4plKbpvoz3 B/Qq2kr9pIyqxQiV/NPubXedeAfTyipRZSdoRWJ/d/nwCi0ktXjL8PwRnO+T XFJ3xAWS85bPbo/QRAgeepJFCbC3L87wihgxIKQ8O2spBorcRa4v47vIACMy 55GhZRPK6oWm/eYByHmRbZnsVhbjKJasF9DeMeaKO9XpELrhVwBcZkT/hb7Z bGFlDgpDCJHeDs/wRruvOGaGFFzfDOnl/pezvV419vA2WTXk69WRqUFyBNv1 pEIs7gMJ0gLWEuzTTl6gOtDsORuoCDOWoWOIOPGDdBAwGek0DclbIajU/GFD 0oOM4D2qlxEATE4a+ZzJdgyRRXucaDwDgnefceWOk+CWckHpdNx8zt2iJEde szcZ2jOzSNELI8dRcfWhS93Xevi5SkZvxXLhl5yekosEZS8JafDiwqoN/bS/ t17THmRdRA361tju/NNGt9Vig+Ybsp2LZUIqQPek3tUoP5dQQ2AoiqhPGJmg 8u3xDb8eEtwGtwZA2XiIz9KuUhS42ybnASCkR4e/7Nq8yIqIfOuCow6mPicF byCUCkOkTItkPVPWnBUYZ2whGCMSXZ3tknBOIADozSTDoNEaCtYq+XLFDaaB cpPOMfpIZO7ZIp315kFzsfrslIVIAl/Z4LhZLORzMbYl4IURNB/ueW3SuvWh /bwFawMzcQqQwxNUb7IV4aD+T1+n5lBRRlTECGHHGOvjPcI10lG+RhG+HJJu L892kW9kPzKGw/otcJpe89dP6CC8naUYA4EgqgJgH6gTpGVwVDmNjsQrRZU9 kcBv54rKcLVzgE/TGOuC+c9ODPUrF34IZR+9rWwqXCeqYWddXH46vruvURfR sPr1Jj9FC8F4zCBJnBI6X1IiN0ja09rBtT+U4LFbBX98RlcazioGQwr3YVGX +kfNgrnlwGE0jcbd77CcG/pInVNRPBGP/X0e4TOl2ylrkaWXzCB6qDkdKjG5 bN5HvNzrymeHsPB2H6B523T90Alq+Dk5l9hYpXPyYWxJ2Vzujzg9gsNUsm29 50fohjIZviGfAQoKozNrRf+R6ysraFOKetToF1AIu3J/9JVDUa6medriMlxD PT34PUpezejrvuVV7ytx7BKrP06C15TJENF1whkIgCPhTxSTacihjVk8aW3T hArATduLuysceW+lLZyFFtZletN0+tZ3sBvZEtfvV6N2QbR7TlR/32LOieA4 bVAzU9aHcRC7aOJtN64teQhz5HE3EkzbYqbCarxCx7q1SoJAH9EwMMloh44I ZVBFk4CNZXdNcVD2EsUZ+4nx5BwOHLfTQoMua6iTVk8LiUhaXyOPGQfspcJd f+HblwQfdeMlezeh3YgdS4Uy/AF+vLQ/Hd04LEFDPvrl37BoWtErVtGgFJ1j EVqQtufVkrNMk2PMHcVCzeOhFdINPmeVvb8SpDsysfcKJditcsRaTfK/2Asa 3TdxOKtpqn0eZNivs0tuc68WVRMNeuawgMEmFVkKErjJojfb1SJkW9S44+70 BVEwE2yDDTiGdQVgLwJIBhupDmGPjAMX7/FOjnY+qU0o0y7BBwdVBRlU0Ccr Kbsht5bN5WWhAkJINw5J8FbPn4qAmHx/taGMbSoAYrYoRef8WEMt1slYyrJ1 5BhETvLWq+75bwrZb/rA6BG8HqHwH5wXi8z6XCAzI3GNyJ7sFkMvP17Z7cln AqpGjWsW1/4hKPsYLSfpiJGj6gl3EUbPT3aB8KyPBQoPOLiBQr8nYTBqMyHX FduYEULeSSGff7POW+SFNhmNlnNBGgkAW5E2YlUMRDirzM72azlIXNhbFCGk DuLvBbJzZpZ7Xs+OYoG86yGE7ZFeoiurHko3XejmokjEDc5sN0WQ1wGTJUK1 hcPmPQv7EfXdgaXY4aC3UUU6f4m4ZoUGxBP7oTETAVz5sMQ8VvRoM7O3i3pG p5z/sovTE83QSChxkA4GdeqaKrFFNrjs00bmF0RyEZK00s40bvp3Pvd4DX1I NJuj65Qm9GQblu2RKddaJXb4IZkIA3efUlKqvzx9RtGb7ZNG3f4YTRGgkVVE RucCcjim0/t2QF4hiDkWo9H1WSOoJMH/drQXxLwBj47la51kiCopNfJCQhX2 pGePEUXi/tA9aUChyFTW91LiEGFkRjnW32WZ0N7Cs0w4QtyR4/z0i+wbfQ3Q 4E0B2icjYUJShQnhlYVWTN1rbDOSwgSBoyw5Or4TjzYlpjcfcDgOqaMA2cSW aVC8ve8DdWB1xT4T7fwUAm9qsGYhMQcIy1GYsAhE2flBWMUMy3aK+lVdChF3 yvmmO8b5lYGiZ6uE5DMkOZ8iIVEP2fWapTz7R9h9Rk/bogbbM/lGXh+1gcIT J7+Yjxzjicrn9tAjDote0Ma0LZBVET3f0aKTxglcPqEpROywi5pfW2FSZq6I NDjz1sh5SU1a4mEZ+elDpFQS7b2GqjTqMIyyWR90i35mrFNsqZ66ncjhsvNO q3py51zRsGNzAA+FEbxQJ8KoR/kNO8PYAytjnpJTlMrll/fFe2zdRSKRz8Av ZkkgW5itNZClsrJU7UcDoQib45U6XRXpdzEU0sn6o3dIL7M+MXGeI23TS43D hYR3KKnLiVHH36YdjsXJtwnKs1yMDRGSebSwku44OgebGLRqbLadoaLSUID3 DROeXyBgma3GFPTLEzwFWWNqT9Jf61JH075oADWfIIpCeTX/wUIVfHWJIwgq MpQtohSU4/r+Qsux0xb1tf15xsgQ97VRfWjm84ULxZ5xPXSKetLOUxvtMWBY xlkGOfOIkQqi9TVSSbtHfTrHxm3TZbgI/9JgtBNVvI6ZtXZZySuZ02yfwUHo 5jIvOiZsYYemvTaZoSHVrgwy60JHC+D9Afz1T3C6oWyinINPN7gd89NR6p45 AmSsNeZl1HVqBeXLN0gl21iRMvbNRtmOH6PIkUw2Bk70HZv3/AIG+SkvbnQs tgkrrN+ZNCmryzZyAJkgJQ4PUYdJB4/lYKvQXdS0vQMvPrQPjY1BTGgxvCjI iJg2Ed4aPLOt6LcWlRjsNBsf7ayPLqF+y9tJhElBT5ApNSXXj0gpbqQKU+KA +e6YdSVe6ck7n3QXDv30ZBdhQeapnpCKka0ZpnSu1XGzwgyFalS/8L6T47re VQ2C9eWzcTFRnKaPkK3hCyScpnbptpGLyJmCEgYKIWQzJahldpjJL0YVwUe2 YERdj5QDL+ElV0xeDymuK72j+L46mqQJvkDd6kK/3vzyCVZrGvwNAe6242Oy NnFtbQsT2MBHBjzSltkjWdSWXm1jb3Rt4WI3SzCD3RKUE9SkcZBlFUKx0auL eJlUSmfDtunD8/2RUKngD8sW6EcDb9VEM8iDze0t0ryICTmxum1o1uOhjlFK pdSlAH1ceugzNwFCIyx+SmrzfjtrMHFUAVUjm6l0kFckSiNtCjUg5oTS1sY5 +bGhPN6K7a2TdRO0n6Ezaa2R0juS/91ocZhW7eA3L++94kvSZGyEPKIdoe/u 2vaVAUoK7FZVd++1RLXstsDY6qt7gnRE5cVTimEK8NUNQcN6O2jlKcV4px/l s9aEX1TevoWDcvclFBHzS6DuKxYlvnxJ9ZIQjghng3AzPA9cb9m7ppxiJdlz AkFTM0UntHG0wVF5ZloHDQ5N+qsktgGFOOGh39np7OD5QhAknZ1WTiH/JoUR TmaNv2OsUlXEBjY6OAOgR2NnLUjbYnI/3iNGJddHhl7ETDrmMIqD/a+wMnfV /et6AgnUBKOiDdQvU1QU5jhU+IRYnFfIzXYnf1yXoG0/9/UI3+5W2d+iyIY2 vrTVY2lPFlbMhpnGiHdMbMcy1G3O2R0PzfMH1EDe1G0WWjwIdrq0ZxKNtPGO yzQocJq/2JZulYY8Iq5i8C387m+I+7z2oWjIsOYUmQvBU4aFIBPYLN+z5vj/ noylrAtZyXj7Qj6uokXy0HP4ogkpDq+k7BEW/e+q05NLN7JWxMl/hL+3MWur GqU7G3XDugsFfT385qF4keUBZ9aRcZlGqSxzIZZtdGFzyxePCX6ZKNWhETni XTe3fCSXaU7Ymq9yc98cpt7x94uh90uX1XYsBHfk4PMLVlYVFmR6GmA8+XnU 8SLrhIRm5Vsd09m1Ucpt93bGoe+l1eSY/6ZV11FQ384IO3CPdx/NNiJni5BB kxRHukrKJTuXOiizmON2G3P2ERCMXT9W7MsnjXvIPlxUwqBY+CczQeY0ZgTr TLNAO8zev9Mi1rBicDXqu2VUcuyEr/X7ZyVOKL7HNZpukIL7S3nv6D9eZ7hJ WkzaqOzklAsdyPAwrlXedJEVXFMq7+T7d8y0GhahPLQNSnEVAcG8vqrJ57vU xXRyxLCIII/0HiD04cXE4Dbp1Vp0DYIHwYfVI8NV3lBErqwpd5fk8GjHl2zM /Sr94zmZuA0D0BYpjXoCbG9EJB8bmi8Fkx20GzwxmT/M4zqn+gPKzzeboiKo Ou1mXo/XvqO2lI8QEd5xvuOA0Nj0qXm/gSqrIcAVoQPxv0NWYX4mTdpjDJyR 3ZWmXGPCju/a11OAyL+pbhE2OmXjo4RXFPdEDWrJmLUnohV1UkUJvrOM+w7O bKd92uI6HM1pWdAlImGjycsMbeNy4a+RIPZ8C2HBblQZAoJUUUlpdEomOMaV iW9K9DOLXTzMmsoyCkMkl3tQqZt3+Ko0JZUkm1DMWY807x3TeMRS0q6nr5C4 7sD1ZLLPTaTBgap9HfDgf2qhkRxRHDFqbn8oDfc2SneOVbUyFobOGuCjU9GE JqvrQIz50qq02FUuNugupqFYYeF3RKdvB+o+BESChNslxrxeJeh5Sbmjnfdp csYNkuHlOaUyzC9Kfh4rjcDgUEr50rR10t0FfHvU5APeE1y2C2ZwKCVrjKsC 8x3SkltHf0nV/XAF9vmBisdSnJeB1z9hoO7YZIgDElza8I6yq+fBxg2LC0HP zNp45peQdNBQhkBBOEaNEeUmnTdxkFCwnZS4MClvXcuebT3+zV2Al0fhM9Eq LIKI045UEvMlBhTYDQ+p/UUzFI9TA95RA/W1LxXWuupUJjtoNtzoNfeJEAPS teTIv6q14pFvH8PinlvZyKMYBHSbg1IUolYm/NuZV+YYEux35iBMzk7vU85b FHZGL+AQdZlsjyhPip4K1pXulq8KWhoa65b5d1MgJcDXC+SvbvZzDregUHOa MukfUaGXFB0QbNhyhBkY/WVcXuXcNPw8JMRPHYp1Jl+QxzD5BV0x1lOJfFzv NSv55cHrqqXhTOx/mTdnAVI5CdnQvc22lJlIhv1DuYcOObxNkfuqbZuS0ZAC r6+iZdKX83karXY0fnvnItq6qUFbt50h1khOJ3BiwdSt3j9C8PHb/hV+xAp9 Wgikn4HyDom87d3lHJMfiDKPlKC4Q5pw+LwzgHv+MZjU+Mn/pxyGPk4hTOet W5Oa1UITnRURgSZRfgdOyJT7xPPV6CU9uZR3VjT3Lw5eOPn8vELriqSKA/YR cmJzmMjFK+doY2OD0L9sTZPHeLBBu8YdOVU5ispCGkcyt1RxZHnhYaxmyo19 j5614lD9lHLzGnPpWNdBbNJI69Blff7v3jxzPkmFYLr2KOJIllQdbvFVkFc0 D7h0JAPkBOX/BB1AkVKS1GpFDmZ0xcKXL2X2DP3Q+tlqOE33vD+naVkxUh+k HKDqd04Ts6x9vtocEKCF4GNksXCupMWaUOjDcOMRQpwjIzhrfYbmHMr8jkeM 6kPjETxXPwN5Mr+t8IO1O3vy73fvLZ3QO48PX6WOrrWgonvEOp+NXnA5qGzq Vsvf78kWidFVdgIx8SrapKR8tjvfZASZgWrNbIfz9zPMkhTyYUZI5BQYoZLo z0jvMynP/Nc7Ww6SDxQq3qQdVvvdvYnGbDDEaNc62ZAKnkheI4lSB/Bk2PZb pkawmJWmCEkp9DPZwwt8X556TkJhmdBzko8O98395kDgHRu67UDgK9fJ3Jxv X71DSWmp8Ut2doLKK6cO5l1cdPgCiBshzW0DwI5c3OMFivaSC83QBBTfkjE1 ItHhCqfjHPI1RA63qNAb0Gimcb3PbxpeaMNn2Xs0pBtl44toGW8THQbtOHOv T9in2Ud8R9fz8sr6ghNlGlAJchlEMynmdpRdcOf+b6rPMU+QIQr0vfPVvToI K0xX24WMZKRA4MN04DZMAJS1ibbjNp19WGOUoKNzegrFQUP4x0c8tYp8frx/ zwXckzmfYwxLDo9zgrAVKzD5oWb4RGtxUosZk6A31jbTiQSNZ1LRmLJl2w+T 5Ae8jk+MmtfqzQb45DWoQh+rJoA5TCkuE/ojfGmL7FdR+a+S21jm1Slge6Wb /c5hT/6E5iGWnhaNOpzJxEWXAldFn77l4xquFA9RrFsrvn1bFWjBYD0qA+RU 7KBEZQARYRv0zCNd2wW5YiAYo9BegVbf/xPUoGyAbZKBLKGUt8L333mjUSlG A++7lpcXCp/tFCH2664s589b2KyNdIzYKKg+cvnQmXPAieKO30Vjf2d0oI1J tVkB++y/zNK3rC05FhQBOnWyR2QLcJG+pRPnd47JIAUkjXm/I7D4cg89e6a3 6nJyU4BPUhwhdHYuKVjF0qzpvlaaBCBXRqub49JqBAahNTNCQ5nb4ZcmRAJB aaFMR8u+c3DVssRV3JRASdkU068mpG82ZgruydEb+NmkwhQWwT1SUWCjZd51 8na2biAsPAi/GFB3lE3OXC6arExZKCOMPFo+/hg0LcjWsWcRx4CSBjpWBJbp /prz9s7Cf0KibppxtwaeRP0iCChcGj3nzGHKO0PFygQJEpl1ZVVM0X0P116V oTitbyEKoSSd4vRONqERzchsZhOavnvJWiM6P+Ws1J42+a23Je6u+Sygf2BA xO0fYfZxhEhTBzFL4J3QSEImLF9qR+T2KymjN8sUyGoGI0vBUojN5KissAw8 qfKEhe7Vxdz0pvt9FH9vXDCZTHBR9wUii7JGrGmaXjbzY8jOsBn+UWx1jfOh ENyO/NHZbUyJggosJLhJZ6cHaSMCs6yBrBRfM0FWuvY8//MlpaLCRn1toOuB nk6bONYKi+kZV4Ns3DimaKDRl0Cj03T/67uJyofNUtbE2efE+yCXFEbsJFJk sI0+Uo3NHXyGas2l1CFhfJ1m7f1GIQCSs4OInE0SW2F5jeIK/rw69H8khnRY SrxBvFDMpzrP1nCZHHOE971jPNZ9yetyYgeKdH6LNIwNBNcgRgKlXiRNr13Z kxFBIaoQUCkKVUuIm5ijIXNnNJCCise4joyM7M2UTW4ouY1WlDq42XbSt/LG 751+fxhbbJerPTZkDCiCjfsPpmVlS1U6m1rurwuMWWGWsfYXY2iNJyjT7Saw wceFHmOmU6V1NIbgqLTTTHL7ThdqOwasj5dGFQfz1YDVoOcc1kr9kbSohxRj Yu2bbAPRULVVeoL4qbq9/MuXWeZgNQc1QkgxTnEDZ1YJi88hFPgsY2kNA7va dtlVw/GoXaA74YQ4VgX1sO1gA8SGzhQvlXrY2//+DinOovSrL+O6TWK+8SZs FUy19TFANTwi0NLBjkAdwggQha64t7ZE3wlvXauS+D5zPs91UQVbTQlh+KEw g4WJ3rDYVDHmHEDZql5FeflhjKeOPCFjRYm6IL1NStP6s5gPFGL7MIeIB+AJ 0WM7BoTXTyZmNt6B3s3Cb3YxdNwH5b4oslmU7nQaJK9BSTdFBc93gxyqzOee vLGNQbTF5h4VvlhUG/E/2nsfdgzKvIynBP2Cu3fvih5HZceDHHHcRo0f2gvD Siypaeucxvabv9wjcQB4+YQqFmRJ7C2UwVYbo2WWoVgG52U9ciyM0kCrAcVo aKa8A1780dncYGs4HB4aJFb/OTZBF75p4PIsfQ2hNWgQEaEKQnSNWqUUWwu5 EYuI4ccgjqrgDqj436BlNwqfwSPNrW3AYXfxlH3JwZVjMLLmENkuS5g2J1SL w6phqNox+4d9xYLbMx2KnGa9ZsNvLi/+By1dE1ErzaKV+p9tkz8YjyVFut+n e3WFHsZbRq9DE1AHFdtgV3QoKBhZzhfI/MhnV1v/hX50uDmBroW6uCfI5ZB6 VJY4/7Uo7Fa7fe6jqp5IvOJtz+HNbO/qVUsZ4vUEqgZKNIoRRW6CL/o0O45X mx2x4fjCI0CyDiWMuhitq0dskJkOi0MGiXbOyeAcce9mbGQo8L4WyyFBoE2V daY5wD483lOoNfxmfJ017pahMArUs50+BhH9kov70saxdKCWQG+uCIkmd/uM d5vTFvoAf4mDb9XbeGQ8KxqFgYEj5fnDts/4HULInIzzGH2myryz03uA/+mw R8QVvPdMzk1ewpDWE6XModQry/DOous0KhU2VxzRaw5NdMna6MiOY34j2ilW TXRjMnf1k9Lc6XVIMZB9IvTMcXLoSdDV7hLpiGjHQTNd6m5peWxD3hnEnEbU OHApH4Mru9S1qIhoBQARI4yNU0ReVExcDjIMmid4PSW0gu3mka/3nJSnLX/2 GCZ12Yfut09NCUDvuMKb6a5p2Fo0t0VOr58CZDlqe5yRchuNLi6kQ4QdkTZi I9OcLuCc0XVC8eES8RyfaQH912KLaAwIwVBCn3T6VBwmcaHQ7p6mdnKLCRq3 Vrq+vjDZqq1LTPJYXahAkH8CTGqz09ecN6nk1rQxBEKarYU4G//wJePXXc4l ELH8FyF5+sUS55jijSfvrHL6s30RO+VbSAiTdMVXnt/wywl2YmyyApFi0pDL AwN0sbcwyr7JsiklWSNNyPaOfQWJt78xF+WmNfWhDcRklu36MZ7He8oMfUbD oedPftImNG0Uqot+96msBxh4zqHYurKx7qLrXa4cjJGLSJ9DludsK3gC3sKU cf6Hv9TE0dzfaOixWX0R0QK+LBGGCH2DXita3n9RmSxUOYE/0c6YdEkf8tRk 4+kqwSPByULrPtxSixteKAY0BVIMyjk7r3cUpz7+wjkbilPQQGE77vVYiSTY S28ZBGMUyl+Bvc6536CdimSEoR2qN8eguEhdZ4jRZwgPGYMQuE3eI2icnrmk tvbHMUKwjMkZ0X9DVMpOgStly+oHDcIkBpFs41wcCmPP868M/8mWsaMMsnSL TrGEbB2VJfOD3tIqbWVITp+wFSDlcpxlNFxMThwD7NheE3LhEY4QByVZviF9 jdDY0aotpGCxnCgxvI1kHXQe/M/Wt+cnWDlyayv4CGPOBSt0nApZUbgITIhB 7jgaVSTejInK9+Rb3i6Cso7K/UcdJgOdCLnSTtEjTYpRV52NWOQkR8Bruwar X7duAfpQzSRUN0C0+Fg5IS9JdUhkjNWfaf4CXBUK4sWWzGZVF9/6GLjbPK7D UJlBVkpv6rkvo+3E1ZpHVnZRz3KktfhjBVQ6h6LXbiWpAmKzoIK28t5AHBQb lc0groMMKrTDqF4IXOKtnn1mSGVbvA8WTMraIvjaRs5IKi0GmS/09XYHQatO PqahGHZc5Z9O0mIBvw5eIQ/gWsbFESxYD6nkuRDRIOhHowC+LSQOmXV4lmIR 5l+nFHOJh44btMYkeuNiMay44ZyO/W650gCDyhaBUWZt6SpM46k3OpOVbsyQ 1HD+Kk+MxR4OorH9t02H0lNQptnU13r51hYezrpgxN5kQnGZYbF/MaRlZViR syO5ugS1ALk4B73T250+GVs0cWgNjLNjaKAD93YclLGz2bNltJFFpqlO6OK+ LPChHq/hY2vEi4AoPeU5tuYYtGtd8ZZ+p63SssYLNSmnC2quAwU6caFwvomb HzRWTDJkHw0/z10hQjCkR5YbCyKDbSFKoWZ42Kz5D4KsJ8YUefAKyqY8uhyR FEfWdrJhiXcEXDUoVuCgiImpUMk6UhB3yDaj9U9Ca73oXEfLUMS12sJ0XQ87 Bl6ci9hc5O47h73RNloS0KzW2COnzDHl0sCH98Xes/JBxmhvJ2poUu2ctt2V x/2d9XmLxdVRafQRCRK2UWD3zKfOgYH3B7ceWscJ/kQX+hnuziJK/w/H4caM +oAmOeFhdEp5iO2Zht8xU2sJ1VptcL8zupL8IWNAHBzGvBApm81wH3xbV5PH 6KdVrWU9qMwoFE1P6GyYtHWGK9+uagAdMCAa+AxDq8gDQElL60LoF2f3J7gu 2bQXAbdOChJp6kjujHabfSGpleGJ5ST8e01FndsMKB9NMNty3biAUl5QPQuz dqGEnDOvLiacQyNV8mAFjZiKkXgRc1kVMf/46CefXWHfy4Qeqb8IXjG8cH89 twAkUFzO6WL9LjXJjzfZGIYNRXcr7JRH6J4brJdObPIwNmYPeEMhL+pvXEb4 Dp4ntfs1qNHu0KDAtA+5OxwZaX4oCt9a+MBU2Qv3nJSh4tF002m0spNXEhFx V2OljlljRaJkQvL8Hn0ho9JqViOswOi0A72W8BDQoXra6PRjAEdeTygz1Zzm VBd7qkOmK2SciUJvFn3ucbhEKSOvuZSRrE5AN/TwZWVVXCQ6IK+vANUvXRxb bNuT84ar97eJchsEh/csEIxJ98+CGco3qUWH0vYKehJFe0rj9YSCal7OCuvt Msl5eEzBszg7osMG+R2q27JRkS/36tznRJcqHiFhQUGsEDrgev/DGfXI26VR YRAa/KtV2uHUX1j4PJioIISEyUKnQmIC+9qkwRiUxInIRM332urGKF0SbZCL VU6HLXkBXZeiyESTIZpAoeNypxLftUYY9VBeshd0Kg08ye9j/fh2Kmba3JiI S3A0nheDwe5Sp0ZjDGHQ4BNBcYyQW4nr5xTr8S311Bs3BRdyB8Wl2guIhvdw NwIcfvgpTDlGMw87JIzOJTRMW8H2WW4neR2IXM0/LCqh0GDPVsQJbDcne14u LxcQpMzW+tIaBaEvJAKqFYqZvZseWrw7b/tCwF+PUOzYDSARkYgoX6y8fFIr lV0qMb1wOdK2rjbs7CSev30o9M5KacOhGBckjDw+weu/6coxZ0xlFKW2Wgur t1MoCQyFjyQ1owKhqhW3aabPT69q2u7lVuAAmycLESm1KrHPh9nf/U9NgINP DIqDZRP47z5U82zJeCZ2lrtfW4UK6OFSv+6hwckbKHj0M3VPK24eKjhGbiAM jnsS9U+7cLPgR6qCjrGf0s6eY4qssEGpA8j4Xj5uZ3abTZgDWX3cLhFnOa7d +87+fnuvqFIQgkgthG46TBL8kzZSnaURGbC4ZLsHC72Vsv11399bsxDp18NC ewSVZjwCaChBUiEVMXEr3T/9MtTXoW0lcHYZjJs1u1dTDKj5Zu91khskQcnN aifzJ1tYkLup2LvaLOdAD3rwLpvNYC5EiCEhuMwlv1kRPjrzyl26zWYEquCv 31nuvHwgrnzD7HdIlk7YL4toSJFqYXSBwnIXiT0MWYQOHZqVst3fDBF+HLxX Uz9XbMOwYSgskQHY9H9k9HaYe0E5Mlmo/H1Ruq8wY7/V7d15sHk79YpzDktO ERkmYYPTtKx0xU1jPbIMFSP2PlBZQwGQ7QacVzUOV34xTmO4BZ0wfHXgu7II ny781NGyZm13s0K3Gxt6qezxCd6LoZgbj2asiGIYXFOLi1+t2e6hv6bmfKwp J5fmP1gMv89XQedtGenwdSWtN10QkSYfNawq3+GosILPvm0D9m5MoEgcdLJD 7o4dUh6tp7mUO4Y+4JSV1TdBPswbs0NQuUktDP3DZfBOE8iYzYhCRwE0+R3v 3OpI/UjScLLLdbZhpX/fsCrYBF7jIQqiSLfvyCRLSz6PrCP6boeQIUbBozPW dRufxzOvCj9stZbOAbXIIwVkDdDGimi6YtqS/cOyridD7ZhzS7SmYhifYP4j pSNOR6YEJSCRwxzhRXMSvUmekzaH6NwOwgOU2rFL0vv6hAiUN7BMaIx0UVCe r+pQoRGlaunCUWCDE+i7N77UvYj08DHN6XETG/5mKBIIVBcyjZq1asegbqNr qSCzziu5B8GF9zdp/HzCudJ2zOBinDDJKWmi04EBOFc2MEMCia1NNQKFUkrd xe/DM3wtlA1roPSdovWWO4/Tpm0QMh+PEICw0e1s0q5/TCpa2HRPHVDMJhpH JHjoeaWO2OfIPffGULF9ddefZ7us55jZkIcaJNgYZAKv2ua04uJe5OoG5mQE Fh+6NLaTC6jFt/WZQcyLwaJZHkQPC/cdM3VCwrCGINoVw7s/QTlaOnjyUDRM KSwVhWTMKlIdcxFhqEU0xugSQZw2uWCYZHaaBcNQN/M/sEAvymwlNQ5ZoDc+ tBAn7ZWya0d04EXf6KXEpLh9Hz10nMZKqHNBNXWuHnxSow+C4EqRDIMSA43h dIVceDYpUlgplJU+Td4GsSpLzcpxEeEKrHroUgMrKQqHuqfG9eVr7s8MelXU x4XApaB0iHlIub4zL7MIQqOhbHCyA5k46YL/6NDZbqEs3yrZQNHjIS8jp23o UYv7K2P5uLozOmm0Gc0Bysl71D5sMobJKBhkoKMbuXMB/1ZMqMvefATmRJrR fZzT7XMIJf5WoEIkCuCOuS6CCOhYVPxcfJUH1ywrQtpsv74DieY8BLcFtrgM DzpGrcbGffVIdadFckNi+1qZNszh+jVHlzZjaggyNk6LkLk49u0zSOuh7xEY B6mwrBL0qfPWULgAlM0RR1ph6JPrjFOjM/qYXqlyzfZoHlY6LeF1PNyjH+vm ttH9GRFIBZ0tGU2JnOhgNxYMemzXaabfuWNnz/3oQ1EeWL85+P/RmCMZcbxm upR+jIxMFbj07zuLeben4Pdz503Dwwfx0ZODWzHHkoJ2ZEnl9oNGNtf0PP0t 3i7uUnSBFm/oRQTlporkQQvlRduT0EeG6j1CqgJRBShV4Xb2nW8G9eQ3DxpX MT6oEEWAyZo++IrWcuLKEjUHsDto3euiahWffx+gFdriuTIyRpGjxzGoAkRy V2euO7FipNHYNkt6vXPIZvyzIYpCFplQH1Y2ahFE/coUhWvBpiGFB60yalfl HRD996ldtoTrKNAgkiYHo9jysA1C5lFNGceQcmPgU2h8sXSzfRz942mOLetb BZ+qdbq4cx/HlN/oYBnLJq5i7dkYViDM2KkiEdFp/7+8dXEjseGixgW5L7qN YgLvAzrWg5u+znwNrU9Thi6/uci/PdGxsKxrOSwdJhezD/Jccw0Ve/jUMYwf rpchGYTUHQOc3QYbqIqChfwODZiKsV1r1vuCrWFZ4Kqq/Y3B2k4H6P+tLgRi YcR9dQN5wm+iG/StCRoRr8Sp8Tg1esw7xes9kN89poytkgY0Oh5xykqN7TlE VhPUj5zJr8Zg9lpN3uQCgNpoPT5DzemJ3ZNDd++INnbmz0jVtpc6ZJW8raiR t23pqwo18+2T2Rb2KeC22S7ulsL3Jo21MWISXJpszEzKtl1j5u9zuNywOaz3 frYaoKhauhrv+jKbRfFk1AFoDWQei6+Q+oOWvzchlDVQVRonVLNZ5ByGkEnD Q0Nthqp66O4hBmvrW7XF/afxZbVdzQkVanShxHxnstm1Y0WAENMl7LN3aS8t TYzvvuBjdmSpBAFYF62HEZnrjjChU2XTXi+VulI2q4VZO8KtBg4GggJV0/yf /OhOv5wP2714nu2vvC++lANbJWmNgF5IPOUVIEe7y+NCXRpqx4UsSgdYN68J ERSbaIEmiPBcijLSwMElVI1LOdOD9wdYTG8O0ogLuvRtYui4uILi01IBtwSd FG5CAjHPGNXGh3TEoHY7eW9hERi73Z3/3vT7D5T02fCbdjai3aT1Wc58HTZJ sAVIRhBh3d70AEZA3HoIOz5Gz/fw9zLqsbHWTIh47/VOIqXX5SKXvNoIdkEq FbnITQoaWt3ndb9+eNQrJQeGd6An7fVcKUnoFElRE/pZS4dYcq9X369Gtz2o b+cCSny7n08acjKBJyAIa0ra5tGwLJ7cl0azapoGOBAhummOk63S7eMDu0FS yEMjDXUxpOowjB8WjRu9KeDkOk8PRWjEXrXOe/XmdNSbj847jW4sKvuO8Mqw CdcQmg2aOZ+03zHv/biHGDGXDhXmXfmoJ0h4MrRG1OhGI6xGMbEHcbaTj9nu Uf2vvVWOCGzgbAOCGSH6jyDzeVDLS9N7WCYM2TrrbCaftWpyJQ8AvCskc9P5 YITnO8HX4lh8qPEpIuoO/0LG5zsiwzllpgh9+86zeERbQU+v2syPIpMt5Ahg ZStuQ8Fssa+cWPl/ZKgq4h5H5vNTZ8U4c1Gj2nGwnJp8tLnVtvWLQ4UnFnQu FuqOMEh+/06+yPIc7hzaSg+NdbAcBDAqDpES08KWkdF0S6bgqyqJXnrXZ69W FV7fes0ohWIhT1tpYtERkja68KaGuYm13Y5CQ8cd9dLn5P1WE8JktCkPUE3L WBupbIsmhNFlKe1CUKMx7aiWPl3An78dz+MsyUxZJe5TQc8sTVhCUobxVfta iWTy1o8a7x8pF/uASrsUJcegJpdFCNcvrdmdws/sPySHt7DnFzfQ9jICaDQZ JW5iD90mdaQmJKbBLPM4yFNIk1XZ6n5RfHkOAdsz418bUR7QKWKF+M9ufaMg C5ZNTPFv2FELuLxOaPTKn3KaJzXOOTusVmr64+Q1pwxNDX1IzSd9QL1dBmfS VjgY5UvmUfLQzcuwp1xWdKSXmv8ZO5JTkBYQ+e+LrLQEnE6GQSFx24f82CDO inbFsY4WccKmBK1IujDe6xMIv1v1biglEbsJOd/0Qt2ou6MZ4Y8HxD39aew/ fsJS2Ff2UT5PCCHruQ4K3tBlOMSXvPKSbLtjgioKXS+DbwBif6Pc67X3hbla aTNAfJtwCMA3kSN4Fo4WglpslHlFsN0u7My33h4gKNBUgoo20+86ZEzaWJxu RVOwgvuwXgoF0HHK8FmFVqPye+mfL1m5TDh4kIqQ3ZgL3Gygw27t1xe3kPlb GGmvyF51r2b+8AuXeM3cCpnPM4he/Pg6cG/rHcMhl0XkgJSabm/W7++iLUUe w+uhRg5ufal0JT2myK5wZe4wBNKjBjcLPk/KHbfPUGFQAxMIFPDuQypVo7R0 sqIuSlZM0HTHOfGQ5hJaiHvlupOhq1fIJ458ch4+kykm5cNYg70jO3HkFDxm CMXRlTG3AMr6ewp30HCpyHaWprOswZZEXTaShcqMSubUeTklAyfW2bX2/ocj P8TIRAATwtNRtUQcD3WgCm4RBqLAplHoNNpN2NiWz6r26Vc2mAasXuOgP0L9 Kq+od/RSjlJo3rece/9JStHxcdDJT/Al9sAULdO2Movl2kljOBYHdX2Mybe4 5Yd+/wHK37wpLnNwavLW7MmoSZRtq0o5zTVe5EaaE23stPjg0c3N+afW0W6K NGfgDQRciLRdNGpBj6ZDUE6WLRT6UmUrE0R1i/fvu2zU1lxsFi50Dn6wPTUt UbkS6SW5freD2lTOQdMenI/9Fvrt0eaia0t55ilH/NC8Hykgeh6KcHymLN2X rmOcXQ/HMNb35TdvP0x2mlYT8DWkSfmNPyyRi5RWONFa7vwoK6+RRilO3qdo +qMhSNXwb2LwN2gNLfxq6k1ZBHzIplmSq2I64HR5gjKmiH6Kt/vxmZyeZyJ0 kJWgboLiJYaxJyL6zqekAh3hD2qz9hlk5ycJJ6D1Jc8CsvAydJIhIlYIzCEx X7Gddzwub/n2YZ2itTAUlzivj4bI0I8Yw+5xpLuRriS9ZGoH20P2eLTGm001 jHrpU9Zap5Gp0K6MLG33R/Bu8MXBH5hTo98/cLKgQdKOTI5tggtGP2O+EaGP QarXMuq4kNfQX4msKla65fZ4GP+8Rlt2sfRLgxSCTnNBHXvHvHIziXlGj3Vz BjoeNPRremtW5Ohr+LIstVBEoRWrFx7OWBM9OF7JXfD0CkjWBj3cdOjptZ49 uORaMmeoK2kJh/PIAFccNzQDPHU0kuk0C6pl3EGaFsf78tWHuB1yGmhhJoXS T3WQI2lP9MtziqkDyaU9eR+4T80QIFu1xm8Aubn1ppiHVn43Gh42uoNwqRgC XJCmQfBVRFIayUrkpI7z8CKyL75Pwpf4fmmDpsumkFFbw2sTWYYeETLZ0w8S r5k+B7Q7Ds6FBmuoRp9GtAQhF+2KNiKcfSyhCPT0bZge41BnBZWCjV0n97tT 41tlhkccT0JSTvM5C8CWpbBg/qvyELmBqcdvz+uSmaVDX3xD/jOb8tmgqnFQ 2XYWk0309+KCNL+84QaFddiqPSc6CNJ+Q0CZKV9Mqz5ZqI0gpMh7SbFcRt1o euKxiYu2E6TSAhrr5JUnaKyYk4XF3dkvz31gGSUVn1DWKVbpd2y9Gp5Zpil1 8xyW+Evu2KKvooN/Cze4ZStrJfWvRQzcUKup/qiIHhciQ7eHfXjDjI1/4GGW HFzCharnon5s6SBdcPab/e8xLsgmamhjF4Z6h9lylXSJ1zXoJcOL1jly3Nag sIXjTHYZx0fkM/OUtCrmDfKBz08tmmGTA5uAmiPaUvWmMavbpMq4e1QkYAWv Bz+hhN/OBZ88oAY/kwlI0JzDrdeBeQCAWgBQilHtZZGeFbZlLMoSQG2zQ3O6 NZqrGCMAyttcfBplJfb2treFru9qCrFMopKCVAL1Q2vN8HyNAp8UZA/xbqag hrGFrzyb05a94UIRG0NVp2Zse39BjWgyTs7oOoUyRm6sQVEiD2POf5FDGwq6 fA+bHLWMTb57SdCZbC1lPPxMII0M+2XVqElORc1m/uevg7qhlvB3/ytPFYMv QOTaSiJOKJWRup7NMmQ9lJlcFZILjX2gm5rpS4JW4eX5L6Zq7bOV1lNEHQa2 RN1f6s2FRcyalUJxTPsEijdlommJ/R2avqugCk+OMmeR34swy3liIOHVZXP0 6Davtxsr1kgc5yhhdny9Tl5d0nSupZF9NOFfLOMslCDYol1DcbX7GFYlvXbt 8w1V83x3tL6EX518ys4Kya1jT+hCYXaMTAjJ7K05IKyg9H+zc0yHzjsII8ES xMpIJNv1F+/F3dG1+fl3yAXTWX1hOUxewxOQJ1md+Ty8HMVL90H+rl0Y6Z3l 2E203hOEKc69oQSG/5WqhtRh++cU+Oqm22csWzxo+G12focdffYZrG+aIqUJ IWME9D1oyBt8io2x8f6g0E1wRTY1hoUVLeg76tLJVQI3uM0zjjPSBy8Y/q2Z 1QuD7uFJtQWiUZ6gSEyvLxZ6zAkyUCR6u+xC+wPtIXAmybIoQQJ9r29RzT/u nLWK1IsBNwXZeD4eHkBOFNBrsd0ZmEyRAY9B1bigneoOeF5Pg+Icimg8kreh Z6kDl2C+vVFDUww6IxfjpHdAEWJI0aEPtnv9QqeTzR4XlwZT9D1soDj5g5+L ZzvnPopm9RVBi3Kdm6KZFy8mayqFFiyqbAYcBP8ZLBBFvzEL+Zk8ir5hyxpn 254tv2XM8weqElPGEiQ1KAcyvduxXItEPa4PNKbIpWdF/VRW9puu4dFDAN6s j5DDPxmPEPM/I/lWFjdHbd7BQHuc+9zJuU6Fb8fUElCvxEC4HZxA9WfBgxPV X+nX/lL/+tQlr4n+gE25UKzInm7M+tUuWGq+v5ApNCtFMExl87IB151pk+1W iiRFM+Gypo3tSEfIewxhOqRhaSUS9WxMkZauofBaTVlB7BrTD5OtJGzJX2xq M7D3RF9SaBVKgpLZ5RYn2PySU4SeE7psHeUarDkWW+ShGSK0ELVHZBL0pNA9 tvUezj5iKjZ59TwMIp9CSeYxNKBI38/echsyEURDElyEv1/ZYgsmM1wvo3dU ZzBZqDe0o/ZIIzBG3vgkz3CBHQQmrSSCnRA43JGB+byG4tER3EHxeoPmuVOd i8Mm59PGAbS7kGMCV3pWTfadVPf27mLZ9NfwcqRjQeFj2IZ5v/Yp/Y+fk+Qg WXvFgu2Jy908opf5tg12EHEi9iKySZkWdYHQNIw8h2P64J7ljC76txUQN8cp oOZVp0YXodg2WRbVohjVqCa0gLc8cFuvM2ICeUCzUHTAs41K1q82oip0mVUM f2GHSlLpWZrcdr6wyzfjyvaBugJDvQOVby42QsexLIvYmWZ2AvKokT4Di613 2qE9Pz5kU7D01f44WQRCRCe+h7pa55aVukicjHK0K0f2LqDgx6FdEDmnyUgQ g4YzSuBQcVsMPyh/DDFtXGfy7hkK/0wJwhn38SHmQbsDsXeLyTLzgFKqihXE 6i3hJpURTdA9+9ep9oWgyAbn0BRN2SfuqTbqtakih8TIekX1sdH8Ldo4D7s2 WggvUKlmMh0zOM4Lv8YMzYJS5hqFzKLYEdQXOdj+H5+9bzRCuAeAPo5TE4VB OfVrgVpasTm5tkOMRHiDPTeUuw8di1F4rcIHsUApl7WsPCMWCcYqy/DA4le2 erx5hN6opExDhO+QG87hSVEGFxabUw7eOrHpaQatZZ2TjgkHG/nWjq7EeUh6 U+uihqPTZURwjJASP3dyfIS3YxZewYFNNcP7DbPfj9pp9lUFhRZv6BM9cNhO fWsXVvna/YpBYH0MqNnZw+S8vMANWFLXwm/xk/bBum64auo8F1J4Mmyen8aS Q7Z70nv3EGboEFdHxHviG5EEUVIlmbwZjZUCpnq3I77AiwCYDLG/xMZvq4iL q+2A/kODUxAJQgQVgm9JXg42D8bNHW2Zfm7ywjeqrG9yGMpzzJ1DoDrr7KLF pjIWfxK+W99NEB7DJ2R+280TZ29alzUf3UYE7SernBPfhqA+VMb7mZEP+9Yi i/kjcougH1D9QcnnO3x1djMn++9j7geGOnszvdM7B2UwdQQ1yhs0iFOUK9nZ /UmVpFlszuqe4gjIE5q+IgxvB+Vyfwc5X5PlpYEeaPKQSMjAhM59xel0LJuq IyWJLGRmBYF1R2Xt6zqalCgxXM8afCgbPj5bl8IH6svRl23m5zqg5uJ8cU0i oIYDHu475WJMteoSKYS0p2yN1ArVxIEdSfju0oLhOgXDiwrXaa3a0PugBrIo 3E9lO+hwRHrIFnUCya12pJOosyWUMlCt9SPG6RkCfjftsVfRocGBHqwuRKNL rwPH/w5BcvaHwrdfMTWCM8QQLP7gqXcbe1FpC51+GORwjMKO+x5vovZ96MjV E3wVlmjxzW5lCK8mOpijxXw23I/zCCwqioP0kE+P3yFZCjTz8I+Ep+X8oImd SG138MaYZWuXVlkyYV6qJBIqfr+/q7+Q4mZuAHvNUCEZm6M07xO4n3NzryLj Y8wPWFJrWSftal4OpJ3ncPGMGgxUYh2iRZq0RfZDO1x0Jih+k/f6LdNSXkQ9 aajBbD+D3H44lbZFHLT2IUBBpDwb//6DukjQKbEBdl8Js1KdiS3LjsNLnidV TMseMvyUHTyZ+qLryYQZFQMf1bOzrk1gXi/55VQHG+ikCpLK5LPVyf5HFzxP fSDKsDZK2277v/L8rK0siX6/uds7A0X85lEEqzyiN/SQTuMRkgHDu1mJifiQ UuHZr7v66AIOgwt1vyknktrecKXbU2xo2cHKNpThY5OP+Hu9Xw8+er+h5Fhn cNNvdezOqpQwoUD9byYSKG4xyPst2vkdON95doVKTF9D0FCjumQiw6CSj00E FkAobIgmtWLwOqIwaKBloFDsmkY8fudQVmaVYrlDDRJjs5wuxGlK1DYzRcOh ZZZB4WGldkXV7n81BKlUgNX/l7r3Sq6jR9ZF56IBVMCbR1KkSIrem0nc+b/d zEKtVUigMgtL3X3inJeO2DukX2ARSPsZN+HIYpQmyUrjWNesNQQmDkXIoDk3 JIL5PrbdP7YeZR1Q8Q5R9h4aj0IfGpP0laVmRrl8S5BweitfVB4HHy6bTOeu UHBiqDCFHbadmrnUZpG9SEKZXMhXpUSGDwWFpeBI9fyRbLk8qwCVTtCuaIgR g72doJls4L/eLMF5b1ESMDhv0bt3zPQU6AXPFQpLKKSHFVt5bUboYCgTYAyz znCzqpnQD+S05lZAJZvgN6Rs5BGfkjV5VK16ixpaJmqU8FZmp8T8uEzwD5Aa HgpMM7mYrGCNy7Z08OtpVomn+JTFrCFOQIyVA93Ht8GpVX1ol6CkVsoYoodC p1ijQoZDexmuOSLNnCkA4eqUHop3RHRLWAi2/UQWAbm32vB7+zWY4TKA1T39 cwWxw/dTQSgEJ3hzRWaFH8hzK3CLpl007IpT7tYuYk8O8OHWQiFHPq6JNqBO UuAzMz9cy67dJY7BqrldR5UpnnNyvTXZ/3yftD+U2F4nvX0nKM83DLMtOrGF YHkTwMAVlLrYATX4Zf7etnOICR0gjFAI/37QWVtaQxhUxYC+qEywtuOYlfmE tLHYn1Vu00OOrt6P2hXUZ9MMRWwwXG5T8cDSYKHj2fLRBwi89AJAFey8l9UK Hv6/aI2nM6kM5VEyKRG9k4G1zNzEL+q+NaFlDL/sIHYmHXaIuy+XSLWlGDR4 a3nKwTgRgzZqoDcG5jnwBplO8/PdqzwnZ1KsB4gVaF1uJQnZOv/umvWKLXHz 0Lxka/oRQjnwqkbv4Jw4eyCSBETpTdaKqWJWliPCMt/TJeku870NrbTomq1R 9CHDB82RqQsEKVAIzo3lUZSme4dF7Z7h8dcf6BxoV2kc3O3ksxo0XNGyg+ng tr4TRhdA1k/BhcazwiYfpxgXtvcANWDUBFvz2PV1jBOzgIr5ewXtbkPZhkCX 0G81E8kPxoK3273FFmCvZRx4M8bxYVND+uEnad/LUGhof9WEBXhTfNUiQaxc W7RF13X9oDLSaIUkJ9TNLQ4D7Ulv3wwKT9Svf9ZeSs6bIIxtWI6zh/6TbucH dRPhfXmtvNm6sEdIzDuG0EZhBz4q1FuL39Qpkss7pYG4oT/VDf37K+uy06sx k7Npb4x65OSikF+e0YQDwrB0XYG9pPIpygvv21cXnOmmkbNj1mS1JlBKAvlk YT1ItWvenXjk48QMKhv0UN0aLryhbOn8n6mDA3pOGTi/3jwjIx1eOp2syF5+ lJ3tN0/39W0RWvCrW6PA7VXOl2HA9paYUyj1qvgDDZi/1t9QQ7jUi/WYoGWl Q9kx1qaOCVWDwvzzMfrbLGon6jy3dY1l2KhYrctOxJ59XabgG01r7WZwOkvG Y6LYPJ1JriG+/yfy60fG4CtO1EgdgxXhZKEzizzJmT2lVbExkBvF6eDqWZWj MHXs03WOtuG6/l/b2348u1ioca2YLrz+FMYCrCQTHot6womqOXlvrnh+qSGr 4z+4Zl+dLTRvObUtDQmsHLzbLzYRa08jnnMtEazCXW6RY2GDwu2Pht9cj3RB JYSArJv6M5MlT+ImCKbb/I4p28kP7fILTtMs2KHUCxPU52Uqut0xDFJFZY21 dTuya+769xUdzChiFoH2JmfXWhM3AH924ZCSIUmB36STsSdqjUGPtTGLOQri XGdXaB/kkWUf0a0j6hYIMGJiv9Ew8iuGOtByG4b3Z529InNvqGfjpHPQrdYl HRKwpKpclgpVQSuW3a2YIcQr+DROBPl+32Q4ZMOvg7oMtShKFTK2GNl6ZjMR KKhGG+e/MbU9ggGe04J9Xhtf5GEGpaMbyxTDRTk/r9tjaR9dGd7DYpZJd+vK QDGcYlmFMlaNK1O7lY5MBYg5EHdpa4Z7A5WdlSvwP89GlQqxcm3JBqIuxAkK XxBgs9z6Gsd+dKZvxuztoBow9dymq3m/7CK3TvOFRZUEg4o/A5cj71mBjQLu exCci1AdihLs508he0MTSc5o3a5M28SPblBUJ/yjrTwkO6I7Ey78lZknpd1u 9Sao3CgxeoX4KK0Sx8NhbBqL+2hSzXC/TGZkxzKLiUSV1oELGNfPkIVTa77u p2RDHtWj4Jsi52ipJt/l0ene7WUIdsPZzuGkFGq2kNgvzLVEKUbTuMLJAvxL WalmPa+9rv37zQfnTHtgE9CfwholLFT5rii2WpfyNm2Z7s7jJBXlUeTHtdfG UnIWfHBUuvSpRao3K5RB0WQ+ca8IotnoUDzo6x8oghMp2tDaBJI1lHIc+5XB FPYClzJzf5ewXWmRfOYOyQLPMk/Qy6TE7VIFqL/RxUttNN4eI0JME1S1ZV0n +MG/QCGZqY0hkopVSGXywoCyBh0YBp2ovEYntAJC4CqIP9+QH0MvoWKSnzwK OTOhQJArc7GwYmo0yBAt1+uiUcQMzL+fo0+N+ykWOSiwbUkjJIRaboqXFtLs EG6s/soGKpdooU/ZzGNPLoWezmQ8XKOEs+nBooE7NVTUsdWy46vK5Rx1RY8B wtoyfBcw3jfwRDNdVYRs1JTzIg/F1JibQ9OZqRd98/7GWjut3KyZE7YQQ8e1 5WtITlHchXUZGmYI+TzdeEcVaH19nNlp/30jKqFEs5ktDgXEw4WD3wCZTsLh 44SQJzU2TGeHaibG1s9QDcU5D7WWViqllSJ/+LoQi53XRI8RUggOz1XMI/eZ QSKXa6HnFmBo706bj4hK7tveZdWK8DWaos5YTVaznqDMUkMuORIuPThPhhXy 8GeVB5pitiqKw6qXnxwLAKruqaFhcblQsk5jI8/1TyiiIvUanl1bkOnKNuz0 cD3Q8LLwYJrxJWrgOVWsXU5ZxHb8kGIcODq+bPSBJuWVUfIk6+XVZK/oZg7e TYZGT2UJa5Y5EsCGWQd7OUi5YfF2FHMsYVn/1+bQEC7MXGymLDCyeAoLos7p Jz5hf6itglY+mh15uadbB/e+WytDJ6CmCGG+LKhGRgEsUdm3zF8hpfexu8xV hKT4nn3uaSPaIfAIobS8or3idgnQh8cGvc7TGkgUKRLXDObk8d0pTRMiqnej Fk+ZpZ0IXu9OrRKtnRKHQaEWOhBIIMupDYPXowzDb0gJhjZSWmlUzgta8Phl ytN5FgA/enMtDK92Qzj3UHxA5stpq9R7uPU2N9/Y+TwFtEMaZD1JmGVrmvUY rx2xMSBKdnLJlLEbV4i8XEflW4JZxLDtjSYEs+Y2s42Aar+0PBJo4oi2OFjb M+14ecHJQDfLQCMB6NSdj2OfvhYz/VfLsDpy7/l83mBHaxvB1Yzjl+QCH7OZ rc6JJLOK87KxI6li9M+8Im+/rUe1PAMPIY7kcsEEOObcStGJo+aVbj+PfYrc Mnednz7iYn1Y1Uy4G/TI9myKpn03l7k8NamVuU+ngIQNyvZ5vTlPrBLLV7Ab NhMBKVJwRYrVELNM5S2KQpH3rT61iLtbBx4yVuH5w4Sy7aEQUYWvF9pi3r+4 xgJsOnj40Aw/eanjPnvbONvK2CyXej93UOq1gyWd0CzMqcCaDKhRmsaQVAAX Kyo40HuILnZAXLwLYUrZ2jEJ2U2O+JwTkQE9+BDpOCyj9kapLRhM7p8L50uO rxj4AdE3ywxgKDEypjp9cz5GjFEoAKCMFbuus2ufUtMHoCtFgEYmkTEeowbW zZhCy7NNQwCBWXg+urLJYmq8318oL4V/YG3LoSGfkrVqUANj00xuhrjYjiDM K+aTEaR1m4L+b5fW56afNXDFIWSoqNlnx+Lb/OK1Mag704QKqzen5Ec41mOE 6rnxSnFGTykYzc+eWT8a1DtsyAXlP7/7OT1qEoWiLk+HMo+fRpV1U0OI0XpC nMvQIGncNpXHbK+rnX3A9t8P52LDgkA2oMelWxRoG3bslKde0u2x89NNhtvV O6QaDR2UVxyPttYN+Xf7CSrQsnzRrvU4O5T2NDtkVNdMxvMPiu2dI+TAxtFQ kAQl5ggJo6PzckL7vk6hXPoqtMbg8E1ZaUPCLXQOwXxkoXMisOniJiH3ob0A rvgwaqcCc1zWAXV7pDyIwvE706vru7y0zCuROmAXZ0Kg7F6h1Wcr9tC5EOsT ZkMHjgHT7T+c61T2cqtQlkVdAY3+xdwlZjHFkLX0IJS8UpLx8O9B16PltvP2 2kNs7S5F9MpPMSTt+OkPu81xcMsaCCyHUiDxK2MJWGRtBBulL6SPNuJpCv20 tCPUqBNvxZzRVHZ09M2m3xpys5d4rx+zsw1gxaAD4qQzWyVIide2qpYSjYd0 QcFPNkDpt6UYfPcJjUrsFci00mFSITYuSoR6xuoG+6LbWR3VibOTY2VrcCng ilU6rRF+X2pdQLEULIaYR+XKEOwkundBABU44Ih0xUaXhnbBkAd2ZJsufkME S90cQqPFB9z9TBw06LkD12KWr2zjVioekLQ45uItvvrdfcjK0ooRh2GoZeG3 URW7+kFNYhvRwWcy21GW8B57g4aPjB0dlAwpjmzyRCnWop1ItUIGQeac8NGd hUKMgFU89s72AJDeZHdyJY7FpEKj7RgF7RC2eKAdmrH2cgUBDU49fJfWBmqf xlGExVTDM+InOOsntVlDp22CbN7w+DfGUuJU0IqI+syuUT0fFIlF56Am1Cpe BoLM9kKAqtoUvB4NYDcP8AlaHU0DTWOMnpXq521zUmw8aHgRcVP//hP0/9H5 TWXVFVZjTejZBVCXaT9BbR14hlQYbME4ASkiXuNjRBiP21ixVMX4k46aopWM QVwrql1ts6aFISm0obQYiHyOJd/VJdQkLqUru6M4j6iWQC4qlHl5lo+V6ehM O9avZvkxI5F8RfZQTkl2V7y5RE1+ApYIaEiUD9OcHSpXJ1KhaUWr0wmdQ/G9 ZOZHP3fQREbSNngHycB7X7Z7mzmLAwb7oJpSawddWYEBZWH2iw/jPDVKMg6R EJhxToOBzlHVptBkATEKrM4XaO8LjaE84vj6kxbSQ62OiXsAbVKLnBLmMnbj QhS4u2nIZ0a2uV6VlwxC0HIxfN/UIj27iNAaNAsUh+QqHcrmfmxtzCJwXRHu qV7ekMSVVrPyk5LixOsl9KmpM8gwFr0xdTaCbNQwhGPHZa3ZwFqodBFkJJFP vq+its0bzMFN1nnNaUMITL+cVDxlJrJqiKUJRfo2tdoPZ729zj7Nf6Ie4UL3 63P2htV9ZZszBHGTgpHfQJAMpzOaMthyldg4/OdTh2RI6egi8lWysSOVrtAB RdPqLQe+hyAJD7tKbGw2b3J19ltoG+Z0T03A5kmF10UUakxTldeMLkLx9Uja nMAMCzpvMtgubkMwsSuD8ItNqEQ4qMDMXhrIv74dU4oQn4MTjJRh/nyFGKhX iTPoMJpMIHCqk+fo/X5wTAmdI98eMXe/IfclAgBD5MQE14YKS9E9FQuOtwWY fGpOxLrG2NI68pYUzz4a02MKFNqZQbKUuOODpbHQIPdXd9e05OzeWxfpihhS uJ5ml1pBYZUjI0FpVGC1RMB/19WdYfUcbQ0voRcyDWgxJfid2IVHzXacg0Nq QWWZgjMUyqKaskBoI8LNq0NaATkmROIwZVwy8u7ziVcMcTj9bIOXiCNprTJU JXxz1CM9i7qA7yhHSqFBMWTjsrFjlDJZp0irO/CZvPw5qCPqCTWMktRz3l34 LdxIRF1xp4KRjIB4QLZrLDGElXUdC7SdbwtpNo4c20d4dIE4CxtvoeYwwXJ1 WU2OoQYvGgr4lnk2MGva1zG//B3hh+044gZZclj7EB0swnpgfUKTb7Tt5anY 6oCMy2aUjRQPfHeO3D31i0joRgW1XLQMmYsxbC4K2y6QgqxMcPbnI15vqay/ 3EdlHclRZh6iBqPCSFatNYN24j+/qaQHtXJa/b6DA9Pm3WLRiODwFrnS7P24 j+rRRIXcgDzIb8CtVLI7EhzPKSlKb0CrzjyphZrByqxzsNNkfPv+5SxQGTU7 dI93kgTa65ULPvaohZywy4RCYqzaUrLUBcFZDBUym8P96p29ZWd7iXgTtEV2 UrRsq7ZTwdQn1WOk+xDtBGVpzB2C4VjOfqQFsly7L3o7+ajKX9ujB2yi83KR 6zlRkZhb+VUOYI/QtSqK+DaoA56Nj45LYcLKGh/rcH4gSz/nJhdVEEHTv9+8 NopyL1AGK2hlCTREGJCwmE0fOxCGvJ5aVtiQn5zXOw69N1/B69CVC5DX0uR1 uX/sOnAQjaeNOHBoxpPJb8Jbzp6sSZnyPu2chBEKNYwgNPLbG6Hm1FOookPK f96zb6yB6amzgyYHjl6qADZ77EygVgo4T/WkYEc5a7zf6lTIr43nV4ZHF7Ul nl+cxGtjJZuDpx2krOJ3KMm8xCz7+2bNhpFINAifRbvwMYzbDixrACyyDhIi hAhlwjYd/Lhnfcu6MKKrzgxuQcKte+LHehysJeTQMOCK4CDXQVb1TuzT2jFN 3GitMm3McK86QfB1Q9zIuvCVL25xB9h3oNIa7aVN8a+iu8DnP9oWFf9mwOvj lOAM3CqApfluzHfFRuewsXa4rbS7JnWIsmhg5qj1abL3ji8XuEbCeW+amePQ 6NxqEX919xVd2aSvNXpGiAWq5PHEaX4AHWJo+B3so+plEg3CZ+BOiuOkjy9n IxUqRk9ptFko3fL22+LqXRTKbKiPbH2+6mzgkMUWIJyAdv0JugCwaJh1ODZD yyH2xq6r1s1KzHgzDBA5Ffr4hvaavTpEhFdmUCOCDkFGyFW9GmHj/ldQdfuC 0LMwPMp6bwz+j9XZTc7OEUChQamplIIh7fu+yE2hSdi0kda4QNZcZ4tIBVdq WOGa/DFe93y25BGN4RdG/lYjv9oEtDvCUAZrw6T6lgeLWmIpiXiH73MPUZpA CDJcdhSsLBbFnEAE96nhhmmiWGvcmJiMD2aCr+Tn78Tsui/+mrhhcoCCB3mK WeUGoPMPjJoAZRMZ8mrDL8DrEB20iEa/eIQHGakUB3Y4uJ3QJvBfetPFspj3 dLrhRsx8a+9Z3KCacv3zw0MtRjoiaDOUnjAb0PMRnA5fSjZ202MDSBRLVsYp LVJ87r7hZKF7bRYl/wwUWq7pgoT2goNCRG9a7zd+PkVuAvIgrN2hoZ9dO+0c AUXBDY5ov2kSq+PFr2FdCO2AWuyWq4GPnjVtonB7rz6MLoiZNR4nRCK44AfV FTU7lpiHlipmqivPz1E23JETRKwMAc/yP8KfayiGfLe/Qi/1KSqvBSmywaY5 yESL5sj7NsNnAbpkUtRBjYMOw3rRJx0QWWCbEehjbEsIEBVmlg2s23ZXP5J3 z5NWVIbT2+AQ5WNbbVZOgaNDf/t5nl2PMkX23ZpScByII4gte4THb7jQigzd DarzBhW04XevbElXBBUKVaPO2CL3dV0Sbi4zD1n65y0aH+hMImi4uNDi6bLj HbgL7LDYRJOaTOKHhL9wqC5EjZ8/8OASbU2hHIDuALXwOZ3mTWe9YneaGqkv fgtDEH9oLlXsSoUdzIdzSXUVs1W44oS43PpQCKUF650Bx28Kfrb5o4Dw4HZW Xn9+u2D6eh/1H1D5wiRh/sod1+bkm8u8g5xaWusAJQPKEPr+Qldsp++QHNVR CDiV0XlxVhgDxsiMwhGT2UbZHdnnxu/IRH7dQUGfm529jzYjjiI0y3BC8+fu Nty93KRve4I8koP4obIqq2LmNZ69QJbXlLUZtbeYUKIdlNuQVmSQgGmcnoPK 3nXhtC6P3LIzZ73rpofJhFkaxejBh7mrE1c9S/7cZD4bIK3Bu9u458eN+ZMx LvdlKgphwHUJ7bB+0HPBwYsmS5zETw7qh+mn6EwZWPD6+p8oqdhb9IWsJ59D sQ06TVjSWt2o+Mp6MuvSSZgqX74bbdt9k1c4Uo42saRD3rUgFBfbOtyJI6Ta yEK6wN9vORgq1WojgnhxuS81Vqxkry1wi5FddH1QnMslu4j6C8I81zkk3WTt bKEzCZDNBah+PmGhK0uT99W92Az+PYd/dUPRSyGJJkJBKkq/sTciaWdJT8In kT4ia4VmrCl5MQu+vKD1Rs9Rz9lNEKxDZu6xqLOXG8NkeWi0rB4TJD7sCeQq 6fe1TcGT8h5CmYIcYgzPpt6k8swwUFW2cSPyJQRJDpFMIU5cvsk3VxrDFrnJ 0HKrybvGDa8573+sEkNAoB7aH6h4tyxGa7c26PZ69xhc7dhZAHXuIwYmtmwU RvGWZpxo+AK04Rw4SWL/751ZFjc0y3nkWoRchDv3RZs2h+SqFdbLYmdS7aAi 0r2StOC7eoGy3lPYTYbMDJG5qJcNoMu56RH0lrmRnBqkqUEPiSJZfsen+v01 2OLqWvWEBhkAUJHk4dvCpkOdG36w9nz1T2jtroRrpgz9+LbKWsqsgv/0BEmt 6JKdJAw4D+pSYQjUXfeQKDGUQlOAULspR1YVzr+dyT3gAipPA4HPRsNHkuH+ ZF637doayKpvZ28J+u3unB4XJ2hNKX7dddFDUZrGlkVe9QCHYsa+NtbFQ4Q6 xtSvTyuTkVrhzcmgt3n84mIrYG7kUn4diR+IENuX9vLHLbjRWmIRfTS1duzv XxAdtrq1sg/8SekwYEd84eLMOt/POaGWtpNSTrealnSDxtHtktKNTIss6rZG M5UnaPGskxeWL7dobNGfWhuUwnEyqoklRKBsOFlG8azLCs2SRFrB4xVqBHRq DJDe1RQD2iH+2k8crBfVqWZD63PbemxHVt1jTiF1xHa8KJOOui3qT3bB6U6d TyjvodmY4INmL9kdnP8kv2EcDxU2/gi2DJtYVL9saL3uHATG8woagCuJDGK9 SKc0tdDlh3YudrVQ1PD8Yg6hVeto4gVXTjhXuHmj+ONmhZ2gpAhKbdbLRxLj RURfnzoeW+0jujT4drHKtX3tqUNpFtb3x5ZAFGyK4ogLaUuogH4H+EM9EBL/ ukoF2sPMPEe5+mwZUffV8LuZTPBa9i28uDZeO1qvIRkB/qr2fozLuLkLLl62 ufGHk/cOh2XObIoStuynDg/v9h0q4tRkaRTIMSkRVC8Z4XPaDcHkBkY/xlBL Fi5EtLJd7PsbRIMeWgZPFfUJ4dQ8Znp1xmkVFBc7whFcEVno7AyFLs6cKoKw lKOCKureqSIKdYJsc1nplX1WS6rcl0nCVdKsp7rj5vOeotI94DRE9B2C6l3U cdjRXq2urvjqliQd9kQKL28Rm2XawxqbUboo8NveHdBWAdT9k2Alzt/UNtzs EIR/rrMpEJjVlUxj/R6wPdo+c71W6K5v0C0qYKg1olyg6qv+zV73azITUQN0 XsEzIcHI2OghjBNpk/fd0j5fPYQ2MqxyVqkpK128DodcCljjIYg1rQaVeHFX vRQN7Zj2sobt+x+IurYnjxuDwm+O3N+R/VjHZXWuAaKOYYdMhHreK+vlQeH1 c4R6g3T52qBq2FLFDWCSOV4IPGuqUFXE4faPjqr+UGamKFCEXl+zSjTdxZCg skfhYH7zwea7EBuZjxFYqkGIuTVqhwjy8xB1waFXBkSIQvOLwTeH3WMTyLI4 qYpMMbodC6C49xQ/vhJkCdo//0+5+fuznx1q/sOTzrrlO8NRoRyOnvgsEnEl Dm6DP2e7TB/TEJhhHinnnWL458NZ18hEoosUpMlcHCh4qyGuqrS2GLHUe5t5 IcLMqQ7KZWisugg98geefTf6YiIimQRqPd1iDk+0HJrb/5xTAwMYIBhDjTqh 0o8IXz+/wu0dpY9ZBNyGoPX4Lp1FVyN/jcQ4OzYHiChQlMvSo83dH98+NaBq h6LoCnkpvKYVK3W5eBe1dJaB9s4hyjG7VWfg8Ope/2rE1defNSRvJhucJBLG 6BmWzshqaoo8JmeH5HtReu/nPKJpcn1U6+EnszYmaeG4V2HqnEIzcJWX+2sb ui3AVdUUN/AgNHW3RH89qxJR7abTVi46QBh0jeeRbBdZ7WbMBHdnmc0Rtvnn q3HNgtEg/nhK2iZKWhg7JdwzKk+kTxmc5GXY2knH/uRU1EtX8CAytvHHEoRQ 7OD4rGysByzokpu2sI03v7Mrpfj/Gd3VEyTQt2RX326h9bSNxDHU93Azs80s GYgdlkHUty03Zcg9MQQzoZjzpifo+YcN5Q62jqtI241UAIe2Z6xwtCrSfvX3 HFOBm3eEsXBS2oM+vwVbCOLkoBnahgnKMEPoVdzmuw2jWrdOErx+OFkAJGsn CKa60gWt3tEfu6BtG+kTCKTmQOHexvFwnY3LihI4wgmG7JD6g4ZKX9yz/YXK pciaU5lYjXKW8FnSMFSU5b7nGHyjACdu3RrAzC5e9Pod/oFe3ws9meHNJcWO n2oK3q47wtBVhoNARx5M3CpZ/l4l3ZRZGv4s2m0FLwBOOJil8aGxr+VHvK77 rviAokluR8j/92/oIG33cb2ZyXfakfcnlLUCUm0G5g6OqQ9brYA6hiEKMPPH jwDFF0WIuoQWsRni94jiRIfvSbmZnooF+FohKKj5kCApQhU/riDLNUMGi/qu 2SSOJche4L6PZIsZUswysqfHrcoz1AUUY+LnAjhZqmC4dujCQgX6qnDCIdfv 6XDy4tOOENHZE84L+xSXUfAwa6sHRzfb65XuC/M7ip4vA69H0hh4v4HkHEk1 7qGHmlRQvrWbHMS/e1e8ZGtINk8FrMuICLc3Z1UIlG1I+3mJEMCorIuN6LoG r2WGQ7Brbi5bpEXwrNHy38MDWx8miIdlQswxTy6CL0ISaz2ekDuf8DZtPzFB Qs8sVlcjeyo6u8MNJnQpfovMWgHzb5IrBOE1X2Sn4K9qY8aU8UfFqnjifn95 DwMyBiV+/5ajcxuQawcJQzmjtvds0ncOrlWCHANvGa2mAOVaFHvfq3tE3tOg 5sLMFI0C1YQdkzrTGqzxaxUCvfZwgX3Y0WHFEFy4qHTXFuDEkKiHdq+ZR/qZ rHNZvayjvSH2FDQakAa0zdL7u4UX2opAWUhx0OGoPMa8XOdjlKFrjEktRJGD oVGWTDSTiqb4QPHf/f5W5yLuUpUTHseZ0TnCGqWV/fEBNnx4XJlsOIjzhFzR nKIytXvUxvaa/x6nOT7kKPgobBpCz2cNhX47tNfaCBio+ALFk5IwMbeX0B9R +3BUDMBfzTyI4VOe6y9E4QGG1g96qG2GjkGWYn19cTlreovh9qCpVNIytoQ1 Ro3GN7YaSXx1DejI6gm6TCWrT/++sUn39p0a2uuEWubCqIfVVnEmJjrsOYUL kUKSkNgft87o3ioIjStQfD2zOmyCnqSPZSFWUbPlWfQCLvFb1c/DeQphrk7W wVnIeLaoeW8NVm0iKNW6AIj93FL4GEhyJheYlpA3HqCj7+UCo1MZ8UU5iB65 rMGO1rSEz3JmrhbeDrenZuvKrmgdvwwgK0Q7EregBeEgDwLqM1vXwAdkuE4z THFouJqVFzcpdw/we9BUGMPh/EcZ6P3np7E18mXGf3M5DJ1jO6ticZ/EJ35H suH3N4KAG/YLwt3REXwYQ8neDAS70q+dx2T/dwf/r2fJpd5lFFq6MJswtXDr f2B/ojsKbfWLlvN+t5QiM2P/ztYqcpc1XCePxEk28O5Sgkck3Alpbq96+HMF LRRdBWiTYpxi0dDaBqWmPdv6+vKK8r3HywvVrFyPfXzhkHru/whyOUYU6XS6 JS7XE4nNEFFqBtsIzcpmIBUKZufDvl97lA5tjxs99nMaHx5/XFYmBUmezRsT bTCPm4GU0TO2uN6yR76/hHfWGOP6jNpEcGetEMs25+7zeUOiHMQy+ttvmJGM Pr8qRprhBf7DYWNHEFGCTeX2Luwv2+bTKmdphc5j+SiYaxfO9/mM8Nkezqch aEOVHuX18Iodaev0BYdVXV9+dLKh4pLtzrkfPxMulH6Rgidi35ozcVsREgZH nwwxNRouMhrxmDDsXHC5Hbjnn3e4tqHjZOQ5r0PHFOr5z6Cor1umYkOycWsx GTXEU6RabS2R7l9cKAtsEihcgprXJ6WIvuiQC5bTRZJrDK3TXwud4fFB9bKz KHh6c0FvmB25iBi/BS2+s6Ztr4QvwJmTzfFMjjs3+e7NaU9HrNAwQiz2Lnq+ EeItFeDHpLd33i1z04eldN+5s59fOtieRwRNl5qUdTY3SYOJwnsp2Ygf9TgH Riu+qIrqa3trry+SKXVMNQfWM3XBqLZ/F1aIgzyiNDRQC7vmCj+/IYPGblYJ NYSfkKxbXMw2THPZo/bi03y1TsdQO+X64wscNPRxAeLuFFX0kZvr1COzPa3Z MXFDbRFYYIs+Or/Peoy++BasAx0cUkbnSiwY8C34P6KRffcTU+Gz0w04Snti aZaHsXvs6hC/VmMyxxln9p3nYSAlhN5bA5UaaeWsgWRunC/IO7b2GXxv+RQx uBngtHHew4Lg+irbpGismG3EIjzYcSV1dq2YoIpvIxwPk6OLGWcmjzOnFYly 1IL7a0MRsKMQdp8RpHjCJWFngBYpB/Tcdgw5FULcbDpv/trFNIqmZAWRZIIe V9dj6ybRbTee/9HWc9fk6vc1al2a+h57pKVDIom+Lh9qADg7m0y+yG427p+j RE6D2jtFKY3VB3yJLlGnE++9nWwwIQ3KtMjZg0909czkkOh4eOcrChJ0DZKH AA0fN9OikiNo7RGd/sXvTCDUP3mV+6gMpSxKiCywqFOYyR34QLeCszLzojbt Y9UgjC3j5SqyIS9RWZ0ks0+udA8x5sY15L/lcPJ+HVCmvo1nDo16sls8PwbW cfL1IF4yY+iOgF5RPhQWaQdbvILygb44A306OoRr/vsaWclp1LKpwXAwvk3V Ku5GZ0tB1QZi7uRjYB0XMo+USio2GsSn2Flwe7ez56zLTr5p2xK0UC6X9DHQ 1rNz4FQYuVUUHgNJYAGDHjw7blPPdy5kyjFE6MnsxZHpkKqpMvlWztnu7o5V xgbvBNTiWY5t568oTkXznPezZpXWY2twljydrG97ZrFZOnSiegvTUZcSqAZL Vl1eo8BzsEoJL48DSaAM7imUveMEO+H7WdaCAnQGEl7xvWmqNQguRnfCb2Ni ZMnHIr678ljG6jMc8mocmgqKzq8vuILtjRnQ/8aiffcIzpLJd/OG2TmKs5Tt CZt0vdtJX1959MWp74eGshhStSoQbVakhUvQ0Cs6whriZ9s9uBXZeCHHJE+4 nz8g0TgSoIPWyHvKeRT3fEItN4huVHZmHwctA4F+PmPweQOYG/VkI/wuuOJ+ GzIxE6yt0fRRChmRMiLgNx2jyZskzyMf6j4pQzeOJrowZRRcq2PIP7DjoJih PFpZlLNJ5bIT86VZdBNWplnE2UBURjVXe0SveqeO1kauQhZen4UX6YtOHRNR zr/RG5ggalKKs7WE0oPVM7eV9qbE0GrMxQ00CBHfpAnngStV6vCRf784FRoB OKtVQFVcL6jM1HOA1nEE+1zyANkMs45knTEofFSczoXJ7B3EttxU+jii1yE6 oZniqqTcKeLwjTUl9qFqr1NyrX//k3RBS1cucP/Xq+9fPuYcPdG0R+F4LJ9N o3hAVKm5DGhyYYLULsKi5PpyI6C9yN7NC89Nz7LrP8kU2GMFpHCoiYuKPkNh bVTTaRAgf4DxM7iai+uQrKYGWxAqJq+0I1yZfV2yIoPTuknLPWon/sYAiS+v tCmVPd1+JOhooObMTkhw/7m7GnUVgXCPgsF+46sexU7eoT0LVEbdo3Agum0T 3t+oLrZ3W0LTuwjREGZNDSdOhM4uUCGn1+oNXuvpoKfBa3mz5gspRpIXCjlg B8KmVS77fcYp6e08LgiJ1QJZQ+hDuSd5B8Z6YDvVeGBHsUtaC504GVM4zUJ2 eIihgDEra3G8tShaWzf+nLLwzpiihCI51Q6U7Dc6uEhzGFrnoK245lzr6p1B +01tb9ojspOPSWz57Xf4zytnHS3PbbIoV2ecFzHBbJ61YfEoPjYVY7Q+vT3r Obz95xutfSApwCDgGnkzkXv6tWVho3RkFk/cZjU3sMGACl50L73PqaAg1jY+ Ik8YWmpXbxDJhJ0dTwbdKl7/BxOpag/wdKBe0Nkvanph+pdVB4dl23kWaj1x 2Oef3t2jnzoFSmlowMyEyheD/EiWJwBJuZmfiaBgIhCEK+PNDUZFSr1H4jVF rEJ5hSoVnBfkrqZ46zowggdG3Uxs4nYQETculkq2ggRjIQv1FhkAj2nsZt9a g8p6OxV8Gf39stWyqNHVpc0xNXxJKGG1jZE7rkCNC4ubzOjGfu0S3AS91B5E 6u9DDjoSRQ0bIY1AGWIJvEBoGIdBJ3xqqB8fTQ2HcHt77XTqJdoN6jLYFD2h mI3N9qDXbDjqg8/MzpLALsp6mbdfUDP4Tmku6gQNMep+DgKu659gU2/FFqX1 UWXVpcXxsgrz1ZeFz0pLW+sVtMpQo0YxE7MeQQYa3gbNMQT3i9tI28NRb55x ltQoR82wE5ND4vfdO1ZoTjcPT7YQXm8Hk+uOCjGXGjJFb5RgjFJTTN6yKom8 SpsyLXZ9Hg8MiHMZhVQQU+ESD+d8/EKscW90DfVNmEKkMjFCeGAdo5SZP3C9 czmxeGRWsp82q3mOvLYOKdo5M7uw/XFrEbGGU5a0a7/t0NoiKriBKhW6C3fU Sw9tSU+cRQClN8nZkW+ctuvzecaE9L9fXbLb5zSgATpiara8oaoQ92yV7rWi TUDDm6ACS6UVWuCUY2yYvyIEu3WtgbRnrN6xiLr2Cy2OnttjUDQLv2sTcMsr tRUI6cjKs1rBZTNB4RWyEN1+n/lkXVP+uAzXAyLFyAQ9D+/CdxT8m/3QLtzg 532eqrZfOaCWQ8rJ6AYu8w+bTxTybIL0ENcE9bl1KoWPgJd4CNk2rM+E3aiF X4itK+VtP+FuX2EiEfYpI9PRD24czvFz3KQl3l/h7oysl7PXSKUtsDueWDAK FE1jUuJ6G4V9uM33Hzlm3+Rq3FCE5c0yO2VWLEn5Zqc8qMcAQQK3IsVuRBAU ufLJZzo3TcpPKicfRl6fUH+aoIZd5eq1vVzRv19BmZa7sjMoLEuM163d4L47 87wHhzRGaDyD70xPIaQc5LXmzVdCOY5f9YRi5mggPYSfovKSiQvvvBGP2K8r oE2LCglhfTiuWCVPARV12w/sYjQThAvfeqELN0OJdT3qcZKfogiN7UMDD0bu rT/6N4Rc3XGrbQpxgl9Rbr386M6ee4ERzQHrm8H7W9FZRdyDAz7dZ6OoPLBF BWYHvyc3LlE6iGrN8rStQYruCQacffusMyFVZm+wujBJgGcLolmQO0IDXjTc ULiGwmOg095VUpWHWPxxo53TvXYd3h+ogWKzcOMkszbvbij+Y6S2N8xpK2cS 3P5mbe2mbEQF4rgJytKAAblUoaRByenbE6zRMkgUxln7PL2Nea8xX2lRLGic jBCpAh2JFVVWWaZydrYBjcsqF8vqNZkpIIZWjsUXnwl9PdszQ0lvcQjvJddB Fp3vUisifspj25lvn7/HZZiyYjXMTCa2xRhos5BnGaBIWPlFirShdYFnSOAf tyg9R+mTKkEDrVUewjPXxc8OIXxgEH+g2vMUnsvoC61t/ZqzZoeKvgVlCB0H q2aL5kIbUWxnWuWTqnRij+bEVzqUf4Ui/hRaDHiV2oUmLXW4sizosoGujyg2 /CtlGUItNMQFSNJehN8XAREZv+psFuDSJBTSkzICu9B0UCONqoPTNWGEQFlw ROw9+LwPLlMkEXack0so8/aL1TFeIbabecGkxtt1mZAOhoI462J0CPG/UJ5q isYwCnq8YBRL7BRY4M45WtKUudQo0YHbbX6dBzhWI5yHFqPZ+Na+nHFnGChh 9stDhlt2RIe/meAS3bzDJZ1cSGVgx0kAcJRe44s+Rz1Bk6hwC9oN0quC/kyE F958Gu0shdsj3tdZa4krQ/ObZ2eSLrt/ca8zyc3Zcc99+Cm62IiDJ4jIaGEn GPpwp7VQYjYT1CizvMkyK0KltYNav/nQNvWS0Yj6nGyOYy3wCSuiQbCT036C dsVtYXMqePUnRMhelRC3PpCro5gcWPo/dNBNU2ZlEtTx2c04yOg1Cyp7edTB RkJrMJgvJ21HhRa48aTHcRs9Ni/NQ2FQdhE+ZwS7fl86aMZ8+5EhM3mU+AvC wJ3NFEXbz0fqUyWbCCzDESXjC68vD40DbYGzzRBsQhuFBxXRglLN1838JLUe jyQkrUSd3VZNfrwWN1i2d1844ajbWUNUpP9hCoWT8NEF8/qhEYrlrck7erwf FzmoxsEKvc8hJegyQeLEhbjcDG1MHubwUUbGjpjFx433mjJRtVNwWLsg2Ld3 clzTg8tOTy7woF4Tbl6gj9U7p/3RKSsaLDQqpaGK+0AL3M73VGq1gnn1czpI tQb5pMXgltbn52cuF0TJWvBEn1Vp8QXFDS76emNdy40cQ3PuOE/f3dpcQhWJ C0khdU/Z5Plago0KPiVHcJGBF1/emPYrqGKg0t7SNj5834+bEFIgaGkLTdoE jY9pAVO7zW85svf0FiT+zPRx+cnDQ9wMB4fjvjxp56m2MdQf8BdTUk6ASMob ihEXtXXClK2djDZxw7rnz5OFD95SNz08KBcTr+zImbqn4JtAJbClqwy2y5L+ c6V9qXlrxjH+2k0o5pabAw/2mprceKbJUO4l/qPzfEDIq/Ss3p6QD0YaM0wa E7SB9P3X+7MTwHziwGNtd2U8xu1Ftob2EN5DHRFNSGqMCctMaDYI8zwqww0c +QjOuTSqSERWJn8Klxcpy9AcDsjrYowUCyXLyjVb92gnyCA7cqQvZzkVZNz/ 3uFt95mNebxdfEIizqQm8BnJdtqeIv/BQZO9KXIV9Z0eM22IbidKfF4k6JJ6 HRDjoJOHs7PyD4LctisypyMlOUVOujglZMDL9+PnPvpiA79O9VWEp5BjIX5w 8xHLQr9zsZ2rvu/YiMzZ7dn+4QE+/UDvS2VqozF2wl1nu5pimp6dSCHPcpZh bthDVd9fQgizHdAlW5xXRPiVDK7Ranj9jvaVFUlsjTuZj5smvd9nECcy+byo TjGhocq8RhrTqZXn5lVUZt8chTYgLDbbuANXfo/BBkq8c7n4f2dJiZ1tJFLs tPzEjud44CBd4evzGc5Zf2N4LEHj7KyJxcR7dfSjFom5XXZo8r2tWrVGvYfU 0sDso4Gi3MLlbVGohBHIAkYQjF1f2HwCadgFMym0YN4BjVx4KIwaWpgOCtpe ndpTj8AD2tIyqtbLTKZcrciA7cn0zd/oylS/9iGC2tepAmtjt8DstloVFkS9 AObVB/rIYGycDA74tlYpF9dQselevwTKC4dac62N+9DF8MiDIxeDxaJu2B34 TVrj4a19XuMGlM59Ff6I2isGRyaIhvkORs1jDWkeXqZjbL3+ArErNM/NzLs3 iGCZla/hNfBCVs1Jxapyqc12F+sPl5AHejIAFHUQv+DKEmWBfSH+ovzrm6Pu aK6vWz/cN0A5wLOF/zwFuFsd4jvphN61PutBvhC7CFyQ+qfDv5ElEiHspy0T zrdPKDASQVm4iH0fxDBff2FuTCpXCkIvtIE23SWQPV26xVuMjkkdxIQAFajh C95NpEUZNrrU1udjhiJMF3+4EXePJqWeiounxOqc9p2cY0vHdS8z/SGsN7nB nJV4Bbj5djrNAaz2P3FQRcLlbcsFGhtYCrkugj5t5zbAD5og3OodGtb7mbeW ssbQ83KK6CHHNxP1PK/pfhYB9DU/sEXYynLe1iE9TB7eb30uAkFUzkVBnIZC s8zwtncng9W4DCgdUUSpKY82pn4PEYOKk4I+NvIMLDkiDJOHV704C02sdjmv MMejj95HyipQHnaC7xmMLlpWzJCRe1WoEt4YmYoiSmQu7nXMSa4VH26dKrp3 jUeL95NFru24kDLHDoquoChHCGJUSzkhYsxsihIdt1MvEGBNjxfTqDearPJU TnnELXSnMzZ8xd7XkdpDJPY5JFWZDnVTnveQSpe8dvNYhAR4iZ5dy7PEJggz bSBmB5WNDFSCd++0OFO9u4kLRG09LEoxJWtaAO9glku5yHUNGbZv6G6hNaeL dmtTUe2J77Mr4Jc1HiMOLhpo6seZkFz1nk1LmeYB6gS4ESGSpB3ZrfMHm4pm TuM7YqAY0rG0g6fjOG12TWhJIkG2wplNh9Urtxl6hkpCdbEamg54lVBfxBE8 gUB3gpjQkeI4SA9FfecFm75VJ3/fQg/mez08SITI9laK7UDWVnloZ7BrEAgl 8ZSgQtuhpn+94xel/VLycFrURSsDdK5xPl7kVsHKFmWdhiS0Hzzghu75H1wl bx0VB8MnqKCYyjWKgDtqm1dUB+ZTQzZVCB4I3uXFrHFz8vP3Jzg3d/9UqzYq XBhm2/b4nFHnjqwKv96s5yYekrHDaamELfn97bBfqD+vMxFiY9oxUuJ1PY1p 1F+LY+V+TwrF6qSdLSNqYVD1DlXKRgGaIRFFPyRLmnlR1aidoveDb57qr20S MuyWtCBg064tNN3kOjuNmlYZfTJ+jVUdm6uDuaeG1rdlMMhI8Kaajnv0yL9P OMih9mAqWLgwani3JGz0kipk5xqpJu5Lm6we0GIwLnqcpMR+e4NXaBsxf4d1 VoQPzyt0sRoXcXGIHcUBHkSvDPYdRnIY/fsA+WRDgwGF8OBfLUhtZtK9Cbuc ub6xbCtHuJEkb1uNYoHKBhmLcg0lYKQLhGSUnSAaGAKnE0hP3FzWJt96/fK2 rh3mEvfiO9Scn3MId5oSPBNcoynD8XkYFdPQnq4pvrrJhU0S3PuzUzYSPoZF MGyGaJkbPg6ZxrJzY2/9oM9HIyJiIcrpbQ7yIad8/YUyjyJ8vNK4TdXUgJgA KFjH2ZyafMI3JvSsGn71tuhhCCaNV9jvml90v++RfpZ1FjZfbFzwpplrCmp4 ZETkM5rjRiu2JBdn0ZZRcSUsrzP8VmJZ8p0wgJvjQgrtNn+MdwqpbkKT2tks lLcT/JN07mt6h/RNGzFCVEcmKzu3UWvOIy2Ink2jKk43m5Esg7WtRrJ3zpWk UxEeFAqzZCjgpI3+Jlpp7lVTiZ60ghtd38E79zmX8MR/51eTlSZ1hUUlP/hR NOmbhjTINsyheLvc/sgJEtXWxu7iM5oi2FjZ/8CtT5DtZH4pCxGHVpi2dLJ2 7jHQQjGv4Ne5qZ57pP2/e2tcNyVCkczJ2QWczqOWRkdD2o6gJuAWGBRH8Bvf 9fLSR9ds7//XdvUD0OUxv/rnjxSC7Se00Iag0GvcmQ9xb86k0taMGD5T4cxl 9jb/lPzS8c0jHLg9tfFQLUGJZnQdikmBJjtZVVGNZ2/R4QRuZJMrIHBW9/ET 2tLULfNMmB3vFxOggdEKiwmDUzSqZCcg8bjd6ZEwdRuC7lfn0HBA3oMOd+yG ryOBLZKf0akRtp5hRhzdq9OxFNxVLiDZOTpvsQ5+IEyAeaw0ZsHlOF9q1xFD CylvrCRH9fYF9eUMhqF6XzoguBz6RNqr0hkzV8pBYeTbsfigk58zvib0dEkb S87eN8qhZCjUccaN3e9NrbL5fscOk7ejSbUe3c/GAcbJq7/v+4ROMN1PgDIz zplsOKy50E1DF5maoDIEJNxfrX4/BF2UANYxBoTDyaYw16YMz5b31FWFjlVf 47H21O9OEP88OV+4aOQqZ0zjyuVEwgct6FiIZsydkPwJ8c77MG1hF25+IBI7 8lW9N26CFtxGbrkueNdEzP/09z9Gj2EEz48j72+0e6VDIA01LlQopR3laNaD mgDCzKrfACe/B7y5+kJqdL/t8ylNKimjBZAF61W8UNGH26bjt80WmQR6x0X1 7kO7ItS8egroGDCYUXZ43e7zwLZF+LCeSPDyG6S8SLEQr0ngPbIQnqFwVy04 PmU1qWLuNAZ5FcaZrgGRFj2nvU2IhYYYvpPfk3D6TLEQ/WqgZoIwBu0Iu3cX mmlrgiFiabLsbRMV3BRMik6efj9/w1cJjQyynlV+oWvlz2y2lwu9Hgdb3JNZ BdoFoPePOKt4uojZRzrsttZN0BNEwfJsd7DWtKW7p9VIiAwaeiQJ3nRzH5Ol anQJ3WtCRnGNX0LfP0qkEQysaed0wBc3+eHhDVU+KDXRIWQhO+XYBJGrwcQm aTnrZmAVxOFqO1CJmyuDQ4h4/cyIw2yDr1bQQU9Qwbdgfka+u5uolA3QgGfV BkvRW3Q4iDtD4c875M13dYONDhpr7KsZel2t0bFH/jspPGSUDyiJo70Zdy/J ZKq3CS1TRI5rCSh7nNWdhMzDxijvvhiBMKz72zcoGnMnbWCTQUEZuNlGugps kZN1CxSahwn7lblHsztUGetj2JGzduGDCSSCGQgKUDemuJ2Fhcmwg993Mxke KseTmRwccya5srH2+wLrBZoXELyCInmJeBI3sYEn1ylHW3phidEDbLhVxtcD 4pO6eJBmjK4JvnF5IqMTrhx3vki/VHmBb87IGHDXGvX5EZ7RhlIEbkoD5BXN Caqyzh4xF++i6rBDKdc4xFdmVZGAq0z7g/KOdMYABaR2qEajeQw8u4dNsTkk 70BFriqKbrURYB3jRCgZOinHuQ531iuiIT7CMNmBkQ7JcievJ6SlJjkZ/LlD 9iHRawuIIYO/Z0TuHAtgi7YoaIwwuuY5zCKkqiYIlN6K29jLG3jzc1yjXzpC XexVyGTqxCg5No6LTjVe9TKPuROWZzBfn58o0EQDLJ4Sgm7WXOLKfChIOubR rXz9ug5OZFxx+AWlV0y0lE0KvSQbFwehzTlmsHajZYMd3XDS7TbatSYoT4UM 9noJzW8wbQAz2DZnnC7J6jHbfm+nsBFPYwBfPaaQ6Xf2OsCtxSTGFzJszvXw aptvy1cHfRZzUJp41DcSpiE/5yFbypNyaOwM+dMnQc6LHUeXO2Ear7rTisVl Kkamu4c393avjUvUBCp7qC4hM7cuZcKsVPeR4mA9QO1kxdrxoJu21UMcvvDD OeSVxvpHBwe5Bq0zB/3fZefCeo4zRJYJ0KPpZeYsoAtetbH969MGMuGE1cOw mjwDDtw27+W2FsfD272h6cfnQbOoObiGr45sxZHpCL0Y2uXYbBKF0ofCRDeb nrcrGxUdQkNOhoY94NyfD2u70hfrxxzbTqDVi1OluxeUJB6ND9Rsz0Nsxq9p CCxmrXkFHCtWTaMKKCQh43DfRCiYdzyWbm1rOW3RaSJm46Mg07PukVt/MB0U mY0JC1kiKwKhzPrF/lUQvbiFvEEhUsZpm6DTz0SOnbgecONdb0NuBqanjPJ0 RP0Hv7P5fnx3VtOmHbtR3Eo4UlMMm5CUAVetlydi86v5WJxM1kZ1tXvVvT8c ODPVcgJHDDnr0cqdWwwG+CXRbDfWGWuc1TpVqFMCvO8rqdBodFjnUB84C3sV XmrVLpKuaws3FihmgeeNSPZ4AwfU3YYCXQiwOSmGRifKR7Q3eimrRnkbxxY5 o8igSknk9/w9cy5QlSzkyEwJBY2Z/dop+Em+iG8EQhXKVYZNGbojsfkGGnff 7C61nhzUmQSORmd6o3rWouNIU12mPTDaz5+EYlT1zYXLFyboGHymi9ZBgTcs Zt2vJguL5MBj0aBmbcwdauDXBQQEKkwFXxsV8iFZ/2cA8XlRrIPv65093UeN 2tGLV7AA1DiDbk6TtWYKEBkVDl1YViurI2DR446GYx6aQa6xN3GKkLaK+QCZ oTy9ZlMub0N+gEwHSTKRuowUEuxU0ukGQRJ55BFFNqAhgN+x7XyDxjnMUuRr 7EWELPxCIsvfSfxkClWdGy1bWR1pXbyic6deBL8YHMnlBzRBlsSx/76/lmwn MWSv9WrV1lQSPgV2FWFEAC4NqyPx66CVM+4t2jHbwvHkTn3jITY0zlQaUqKO in9erN9hkWY3rZWzHmMGRGsmVM8oNWmTj69v4c72SysTUTsAKsPEFZTsBj7o 1HqL8DT3uvxFwVyjstnUfDty8h8hADS+lxqSNirfFzPJseKBwYBCXDENRlym M9f+Eg6euZI2hI/vGY2824+tMyS5CUKFE+AZHJ4IWfbNcPUExSQ/W8luAraO a82HYFWLz/AOmdCWXOZBSzCTTGOrVWwXBgBQdnb4dXPhwXHFb6FrayRy0jyC QJHmplUeUUTv4J9F7asC9mnZlq9KIosKETn6IWTMiHFLBYOj1ZOFpqPuOYhY EgsnsTbRU8plZQtS9dCH2rJNYQvhq0tUD6ajKmib4EvHhU6yT/DLp2hPsLmP VhRu1qt0O2SYt1ubnKI6FGhpgHtbvjRmizWkc5tf/8AtOQCC2c/8eJGg26fA owRPFncjlnX7EbTmoy6AtmG3n9pEAbJIkSPnv+ztJ0qINxaC3roJoohjIxxD iyp45dBqiPI9cz/Yhq55Z/P5/jNPXbqwDD8r/MSmKIPxiwNe18M163pdbHyZ oqjyPoQKF46U1qK4StiPSRf5qIZ47fyElplElEZIgFz69sq7Fu73X4LSvt47 U6Sa69Wtcri5dwKja8cfta6PxSHrMoAPEKLs4o2xub19O3eqUEHofXDQiqK2 kZc1fIfH79rymaOftGF/tnUhfr/gFKCrkG1KeNhQON4MTPWE6DvIhNkUKTqu Y26dt7nbEXit4gSlvCK6cIOvDPqHxmF0DNdnEjwy5OzId/bvQ0y+f26zQmtA VnV95H/QhkNroVbXLjBBoupBCKz6cG9vf6D8VI2uJZT9U4DSwjDcXsEYCG56 yz9kCzUiEJBlk9nzF6TQG3JOl93s+FoE7nkSFBe24JfkGwyPTDZr6uCMck45 pi0gz+Wr0bZ3AU/eozdULNJ1vNbFqDIv72JGxbWQ6D3LZXUX4OzNZNWLPUEa QoGtFAbtytkBiolKNW9NpoasVY6eoNzaXGwcV59PZtkRVLfXBmi2rUn1K6MR jFN5gp9XbfC0dpOvgaNiiM/iFPj12yXXO5R7iGJTgtCrR+YSwulTKkOYUaTq 8ekhnRvayR0KztVfF20mzYZN0B9h/+3Hjs64dW6kjvkP7e1p/aZt9u/LgHzg +pwRrtEEHWvxWeZUZB03Spmb/Kya7RHviUt2MMj7QCCJvIO5uvcu0al7wNYv 2Ohay8MRUfqBLfi+VtyyBuewSd8m+kiOHA20cihjtROQOVZqgNfu64Pyhlbr +Bo+MC4szEZHdDjqz1uKpbmrhSPVFFRUSQzErKMkBP/Wp03eGB08NqCdt1Bz S4COv/fYSXfsWQ/pCkqeaDMb2VbCejOigpquUTyU3PpWKVk7GQgqW2PLCl35 ho7tXVybuQzwaFQrfMOVvp02p6KoVTNmyoZmRFsZ+e0BlW+axZZDJgx2GOwX 5SbtWZVwX205xRla+f1DMoR+2BWLiPaEV5cmlCxQ1TjoJ6aiNW5wai0DYYZn Dc0qLvpNGsNR+/bdxuDJYkArjQoxKbQ6ABRQyeqaONUITSWZ8d2QGIyDmwul qDx3eP6Ers3TrT1KLkS1zFx3lFo7Vn3rhMvvOwmIY5clfX8NDZvqOd4KXmh2 3msmJAjB1gffzPsEqTeCh4DTQrhVuhP9qzaz12hxQITToLjyk9JZR8qB5IxK 9koEHmHb399ktilDr39M9hS1Ab16mmIylDdPtFc4BFfWqTV1YM/YiDXLzc/n m9HZ0OZHx2jRfZL85oW4wG68ve2IDLwiT6Oo6CZtlO9V0iua0I9f5jQUu2HQ hM9Z00L86g89zBzjMy8RRscNJ5QmaUd0/ClAR0TyRMH1BecUt9naGTdVnCaJ oXmMBwoCZy6ussx3/fqG2quvESwKEMBnje388ZQRzsmEUi49EJ+oWMYmazxA FfdkQpFmGZNDHgQm8ivvDZQJYwtUscfefPT9sMzD/xf6pmTUQKLYbClSavo1 XktxHUVqBefVrviZCwnjHj847dYMGs8GVzzqR5QUeWZkiXeq3S4r8QdY1d6d 7Fnx9AhVJ91rJbRi0nB4zUuwChpT2Zf5d7sb4ldwi7egmyy25juw/L85O0XH EBGNZaB0Nq0eISOj3okTlL84JODc72gjBFdfKI8M3ODuHaXNuludFYob6KUZ 3TVc2Yl2c84ayCQBVYVMqQyYgPfymEy2BCkD3yghuVepsRnVOn7Yfo7anGLB Qt2JOX7JbwdpmiDUoLKFFwyBj2TuQX1em3RoCDyDnxgZeTG5zcazFlYwMdMh D7orTFrbRCj/jHJF29C71FTx/EhqbZKgC5pc1GkTF1HdiL+Q50zDe1BIj1LJ CcRpSWAVlTx/nQDlWEbrSmO3oWXs3+0LBEy1wZg2uLFXkcz/6HkHpY+FfTel IcKdzcVrq6dKZogbFIVkPbwz5ZxpsRAEQceqwWjT2lCKlXvF39Jb86cq7N6Y RQm2LosV7rCg0x+ri1mxYKOUH11k9FVFRu1+H2VE5fN1UD70LBKd0Sgie1lW ge2cdVE5bpzLByaVkGDVYoTGfvObG6gtdV/P2xDQyq/A7sYoO9zu3kFJ1mjo n4BOsmkjHB+F3m6MLjJSa7+Hu13EyY2iT1ixMejQG6flf5I9YjLJ9VWyZeJ0 zCQZGvYpWiSfDtx1QUnG5w41yivU1yNi78zmrO3lIQTrulsCrzLgriEQyWPC j+F2dfCzLrSZAdsmIkyP+SAY60R9gJdXb3PuqqHoDbxk+FEcvwlljaZMgZI3 y6Q9F1sUFPLGbOFbjyvxi6yKKEklcuvi5HUjZ8H4KXRyXSkSewKZKrU2qahj FOwO4v3PE0JPui+bVDSTcb5IV5/AMJnva8y2mVmoMoPYW9QhpcAvurrU2P71 DC5JIjzVGLBfgprJjdM+s1Ri4kSSdkxyaG4CBC67lU5GbkYe7kIqgYKicx1S MlVOAqycHWyihWCzGD1h+pYRIZ6jaF16d2Z1bsSmtMWGFR2K2Q57XKJlDPec LYFb0lX5yz2SFqjfjUbrc606nfER9GILwEzKNzQv3sqiDnEcb/w4PrxHYHmP RcDtB1wqRTblzaqOtYH0rgU9l9nWKDTJpTiZaHPYyh+v73ZBY1ZVqIF60KcU 2s501HkjF0eUemM3VC7DP6uxXdtSHjuKIf9gSOrLomwQYWeKbQMP9+CFRlJj O5VOqCggwqK2qjRZfvzWKNhcX2n4v9OU/AJEZL+zlmeI6yxuyLMpKMjSLpT1 Ly/j/ZFz+SAVTHTGrCmkCbO3mL0TGRrIZgTHt9P9B4a2SEPmnftUbsxy4VJR YFppzTnmKcJtDs1mTICWs76xsfAK67JoSPTNu21hsgrBdAulsm6wNXBoFE2n y7FmZc5WmbYIzY5sx6r1vrNIYrVh6/kdkvefy2QKzGitiFBaRaPkpiAyEeRs bekGWp4Hnaqkf37nXFS99JvBRmAmC/0aKeqVDB0dsI3cAGMyl/npOcAvkbRP Jllon3KitA7huFyBj8v5DaLdYKjLdkL59x3NurOzwzKqutIzjC/lTHY7wg/A xWoE6pDrEmWc26mI8/O7sDSYjUEyRhMIMZISvPAqIQHrZtAs0jCXiRfSXdE+ S6o7Xh9MKIy2ChWAGTEZ3SKE/qFeyqkY1g3avh/T+ZY41BHG/Zq0p4ZfHgcE 0Fh5hlKTtlnlhVLjdFPRjflPF6CaIOfwDbUbtTnxuKLU0DnGkbjBVHZzzaEX EgEhOA4QXjmty+N1+Iq+QAxqOdyATtshssNwoQaNWYUGWspXoNV4OcNTS8G4 nVH4D1wwQyehWlnoIL2yQ6L6dc/dQAV0NK3isGI7KpK34XtlHcxW1fznHpWw TRchEiZtBYWztBPeJAsWxzqnG0q8bJNcXYjJQRp2WwOC40Tuy7sQ+kkRfiFo /fIg/HjF6bW6Ks5TKVQ5iVdn38vff16gYcuUNQhNC25ngzaDomfbdhe9WN+Y GrU3247qR22H66AL8rwxE0kKLeMDcQdsyn0OdQz/ZpM/eC5FtVeFNtu5MsVh y/3nb2xRabkRZnRWka7mrrLexhBtsGlkk7djxjCY7HSRtBW2wL/xN08BhsHA fVCQ9eoJLckdvHCr680KxYqoojNus37OL5JLhqL0MBMjZLeRyxBCGjvvRN2r X2QbdRIaQOhE3mMqrP3GviJjLM6Rx8PyooKqSHaOOLJsUS+FsHBhUbeIhgXU 8LXeFJ4F88DYLGeLlUSj/rOb5XB0prTbcdy8fo2uhIR6hzav3opnDYtc4Ioe CIrNitrw+j8rPUmrZd23OXq7+zKxDBArI1a0gA+Lxd+egnMPL213NTxbjZRm weLc2qmwjpCPxg/nWTtD1BkjCqhCEHOBG3NnwXQcfbQHLymZB+5e0uczh5xN 8ltPGX4ytEMbInMwWJsiV1Xgc/U2SVydroM2M2mFKv/dp/396G3csJFWKMyY 4Aqfmm/bR6ZyK4zKw20IdFdBylXWWMmy9PcndEqeSpmhPzPCYY2o8M4NruIi eN3Ag/aXvHAdfTRmB6pw/wJ/pEllzqqZ/DgKOGWp2U754etRS6jETQjvxY0x ql93QPLB8tPGVrJzTJ0I+RINxvQEZuBM9Mze73RxT88o60zQxznrNIXFOWJ7 jcc9O3wfLfxYZkxUJkwohQLBS1z9f51blRuZDJ9QbivalAfHP9wHRzmnplU+ wbcyxwl9opVYTn78gZ/TbMg+W4eGhTrxTkdc2PCuuEr+s4WQ0H5+RV3oqNUK JECtpF1qzWOafpkb9UCcTM0OnYfiUNc/t0dQeL1Bk3vXftzskdoATb40heU5 IL6DJYyR7pBlBQVF2EI4vd4YLBpIbLMxTuiCRYz+6LOTpZ4H1KD6W4s2MeKN vbsIy1xyvQMBqssp2iVLjm0PRJEoo02zTJcVEVr/1R2l3G/oOTKBbQbIP7jI 7pThBWKjbAs5yBdca7iQd67z+5lNyvVL9P9XbEM/7+FypWZTZrOdkraWFXxl 9/8e2samGeXnKGQkAdF1QkkwK1IIr57h5+rpTcZCeefwf4USXzMtHvTrwY2e uQL0eqiCMyp2iB/493NSZTpYy5rDe9Yp8843LJs0lvtQ9c5ipX9wO4hT9ts4 zrsHKGh9F4/ngfwUoEejJCzikyZTsMjMko12tGdCrdOUduSV3v+gbmdDIoSi ZDLKtftzWsVtNVBlpxQaREXJqLs4IcgfGYuFrYLz5gcCVyBAPMSHTThRbha6 DbpG9j2qszI/ca9Ax1mhJUyxDOI6j7d3A5G2e1ghGD9BBtECT1vQ+3Hdro63 y6N7jZx2Zj2fr5C1UweSNgpFmJ2y83E4WVe2koAuPBBi+Q5Sej1wQn9Jt6lQ U4cvi5qU5ErAx53gaSpFH5qQpUdB3mN6tBHeufzenn4SVJg9b1vDyS1qdgnI PO5D2xAb+RchkpG9BsROhQidrSf38xlz+n9ZAPr2A90AaeuU4WpAlZpdc0Nq UP2m1kexUjTNCxQQu5Rqo/QEpVfwMn/s89Im2zscuIykPTiSFTIyR8KKi2T+ UNVDCjYHjz9B3SXvC+5vNNw/ui9AbWX0pvGDUwsWf2xacB6PgCRHhytq0ZZQ jiAfZ/Czhf4tZvjBvXOF9LNjSdRpZhZm8+iJD8vRbSpyNY2/jqpwlxpBUp0m rXPcPuj4rktWjquM3bNkwvv+6FRR3aywmi6giltqsZoD5knlgxYbrFVGRRxb rVNNPSUfipc3e3d/vl1Otms4fEbAPIoh8MGY39xGZU6B1ByqSggQ6GAsTTSv f1x0qZcATtDSRqS81cetIxobHEzMnQSwWF02fSi8c7gSbmfkdvfktfENgsnH GcIrGEFydTvceU3XSDLMqhkTWjsbhsiR4TN4H/udLXqvWhdcGFyQjyqKaQ5I Xw9YDsUFhdDffSSTNSngfdR+Qn4BEd0eczEN2IXRjztHnb3FF3wYqMTjDvnq 8cvb1i0WFT0nhIJlbhEuyLlm48y/G8VqE9Buvairs2CJD1wj0K7eqwg/L1T5 JPKSImIbqbvlI8EOL8nKg5ldHrcdTyaWBX21ZobkDd2KYk3KsuAn4grUvCre OUnUjfkUualVILjzcCcJgioFRNLlMMQmFkik3heq7JCzASnZFcR6NCnwGwf+ uYK2KFGpkoy+HEiBZKsD9qN6E1s0vMAk3hDY2a0T/jzi8rOvE2a95xQjWdlt zx+6trM86qEPWysmOFSzLBUvwy5/+9K2ZOh23hewRjesoVfaszMepn+1shQo d6BMkrRRX14NpK2OW+VDRIUeyMOD5m+sTiqW+zQCS9lhqR80qpSpot8gAA+e oDueEZuk0dcORcdsLNy57UKSBZiHshQdgE2tQzQ0wXJBxSjhy68u0T64CbxG I+XOlkH8iasNi+DVX4N6XFVuw8GUVX6HJvGZoSveGF5DLYlWhpkPwqwel4mp QaHIMK8ViyAU6Xe/IVT6LkRAc4pLdZ+GwH9C5kjJuHZk+U9eVEcmFZrU0d0R epGY2Sl7zOVLyauMOrax7QVd3moDv1bIsHoLE/pw5bPvQwT8x9HgKxeNBRbj w67HTWh4SdqIkbiarG7n47NnyEjUXSgkyDEo0et5wTCG1roIW9kG4iPr6xzl EWwtIHgIAWfvxiaqSeOVhho8UozqYOeAGts9uWRf3RDe74RzWzEvPFwF09rx GjT/SiYQCNoIukeeRv5nOu/Hd/UJDSfdpsANVbNUcsuSormAm35Y71JThBmZ nrh7Rb8foNnS1KTA5YCAGqjERlKtwB5BEV1NPuzYZMyKSqK/P2NUdKXiXJwF pPQYvWhH6mdI666ucffrxrsv7QvMpIFpoNSwgYMPClKzRU22Teyae/ZdLVQF Dy9Zu2MMevNgQqTNTzJYjqkQ8wC6oO2B0XeSHHYQYIJsEOtTGbiylcLni/c+ 9Eqz8OyQE2XMqFIYi/aykB9bpoPnGw3K1rd+sugLIugL/n2OUOuY9rZAdQU/ v3J6hNQlMHg8FFt0cSRDGRvGPsGsrcpbqGLWmJ1ok+wU7JBqDSsI1KtkDm7p GRWrQz65fMgxRdJ7wsUKU1QhtG63/0Ji9arJ1IlXoCSA0aSnZOx2k1S9yacY ihx8FQWTm4x30Y+lQ0aWtE+HIjPmeG4oxG0yJZkISg73OAwgnx1+USmgr2Aa C99rfmwB8NF39AIllyDNAABp8RCM586YeZwPP3mRtafFJ9ooYY84BCWtG75N mm4uzkGkyD9FViPqzXT/9Tf40PNzvc242IXGhW1Q2X4a3rdtuDK8wkOdfFDh ASp2FcUdwvUNkmg7LhV87YjsgyLFdpIm2jyYRyVBcugsdqprCkK9X7Qgl0m5 L4/oEIE/2IoQs6jJFCD+NzQf4YGy6jauUIjWrc0YRuwAVeBa1zc06KRkRo/A ++g57C6jr7Ls6ppvLAyL+mGcg3RtnCluzdJETi/G3RVrFIWy0QOqvs21CO+m dkLhpcS2uR70mzDwy43GKFHc7eYpwSvDP0I9q2YEu9eltxtTjR2Ebo6aqeSZ w9pQP65wr9ghFIzPDko/+N+BaVYDEfS5IX8MbT9CUBNEdr8VKY5E3Jd5P1K/ OB9xNhR8sTDnEUHsK9PRkDqJV6EgQN0IF9eKJer5a8aRcXsPNPTiyEdQSsL3 b5KUigNmkZGpLm85x960MEDdUNnA0zrp/S/G2n7wBknSThqBKr+4QcFmYzjP sJad+vA2Yb2nDsXhdO5EVY+eSk/eFWJSzXD2UNgF71vXEUJaZN2SbW70VIYM qKHRjwqqAplf+f0NRfJcMhyvLdrmTFHDX+ZHMCy9KkXdWlXJE4JVUg5HxtDW bW0YD3fh+hO5tqTojBpOGxCWwDkapj0nuBEqWDUujuhX5vQO0/33pY7Jk57V GovDl0Ucn7kG7JcNaLfyqyvo9/sQh2hhbdUOuvnnyyujeuFMlZEdb4Mo/srO 5E1OmsQwmeZ+3NqFSUOi2nG4/P0DNa8j18GE+bQ6DBpS8wtHa9uycqxCMwbN I5SMqnp99i4rgqQxEHUn5HsINCVZEH/Yh6QadG2TGg/B7PnSoHrprzZPeJfQ JzkPNkzs8tG44t5dO0eeoMWlcVCog1Gu8ldvW47Pp4BjovpTQ1GBaS5Ti5pB n+eMjqD0zDx4dN3gzViaVEQbmc7u/MfFGLuv7dFUGwohLxCdWeER+DipERmU cdDHFwili09KriPeXmMoFjWrfup/X+t8YAGyL3V+8/cAza7iMaqyWWO4Vb8A bbXaqxaTK1a6R2yr2toofd1F6CTJTNkYa80Mv5Jg+pt721KMqUhatLKI31ec wSEOHMVtSvNV6NsHiF/zkmYtHFBHRaPi5+A6JDBVeicaLwwIK+w+Q2a9ffd5 QxE6Ql8/wWGD5ifIgwypQTj23A4IN/QyLqretNCF3Dtl+J/cFI/DSJ9CzKsx gOK69uAAZybcE+0o0X58w09lO2qB1zPt3EWyxx+ZNLRSM76g6Uf07YimBOP+ dKgkv39H7LXbj+1R2Tgr7SQfAdZCNhTsxagDbrNvYhrLP18xGd1fC5T4SHAp zLalUt5Wlykyo6UwHVVhLxcC9Z1iMFtzp6Ml4C1aGpBUizwz1PsVHIU31eKL QK5trGSFAU49wk6QaoP2Sa4e7x+h23D9FQg+TEYhDJQ9MssGdr7ji8uWWmvZ iG6axu4U6VdXBooZEnU1lMnQCFvZE451EnDWBNoKl7TB2B4fp+3eooOe2iRK rY8MaqVI93Ze5QnNp08w4ByUI+aR4+SxHawMBTD+azKB4pmDg/YULUebb0w6 N3YuEopR5JBIbiXeYqDGjsviUyCJvzuXKMgD92vY/Gs7+o1ZSIUzxYOnuh58 HdEPUXEKAR8t7RBjzn6cVb0MI7TZYYKfhRF6EuTXvYq58eYUb0fj8O4mdPII 8qG/3uHlUQGS/0G02wWDjQW7t3u4vbThDAq37y7a1l6C1kC2L9LmxGw9BRDz IspU93kbtFK7HOoUm4E6ehIlKwj+sIjRje3tGFYN1dugogxy+fP7UitjOySY dRDlQlxcZXlZbVZUAn7iRqJarCRWPIX8bW+ec8hUa9ZZlyB75ILjGtiSD0rj 7lgoHTWqo59C0HrzOx9nqvfI1miGlFDt6+x0Hjs2LwnnWtqtMLBcg/MBr8/b rf2G4tmRTG0sToHxVgmSgOxadp6XQDPQIFcGGqM9J8yXDzTcazFYWU/KeiuQ 5FjivSvi3KOnXGFM+C/6LdPpCsn012jXpwpo7jPiGqNgHMixpJwpqhnDLKmD qIGXyHL3H1Cd9yad8NzMhIqn4wWQ2p6W9KrwQxE4mjAhwNrLoeL6FXmfvb+B 0WGCaJGLDuGI3+Hg6XdAxIfj54Rbn+h29hqPX3Z5ZxVVEX5hUKAHMSaz1r7w NZpKiJ+/k4yXoHLMwexUEx932TtLH6FHiKfBqXxdT4xxUcJCyTy5edoXuvt+ t8ZSq5zgPXomW0cA27QDGRymBF6IsQeD2YDC16qoevKap58pFe93MqSIs6+r g7/utw+deUFGSDxqAxW2t0nWEZqPHJRIjHi7D1BdkVWygRIPCpKkkjwEYqX4 TGx8qfldMqGlBQsloi+DPqEMesrZUtE1qx1UerrzYyB3gvWQCEo33jhxSKQK 6v5JoVaifN6zR5S3o4/NwkPTE+6TRgBUgngv/OS2HQ2f4LUGbcAET17NJTAF RDx+W1OE1JsFQUbY4KK+uv34eApKdqfMrI65GkqKUJhjvLbdJTzPDS2MlKA4 RkHT8QzIbulQdYF+a35lsD7DpOH42ZSJe6dl9pNCWZtXiB5oW6C2sMJKnBV2 QU/4VudJXBUcKF9yR/f9DXXd3NXWyu/G40KjmE3+ozJDmWOpViV1yO/QeZwa 623iVwWauoLSqJ9p5ohiT96cgkOSiYJrdWHlfqSRPvRq04Lv/iZBc9qYY3oI GTiomQsqjlHDfmljYpOndeaBuhSLMt+Q9ozP16jqSzk1VmENoiMR7KgBaZvo yhkpYwp1d2i3XGcOnaBOTAvCWehIP7yLgaq4Zh1mr/ZWZXR38rN8T+V/NSCk IaawNgjuUfDbxKjAbJPPLqwNlPxhrXGInoutgqTw7mSfp1FX1+Or2zN1vX73 Lti+F4nQ5Hlo9WJTEo8laadNw6OQwR2HRThU4ehGulNSXEAMclTdJwa0R7Rw 4DGnCKZxOtHGh25uhROfQ9nWz4ICBhOoAPRoupMITTo0NrQyFGx1AkMbWlW4 y4IDyp23G721C/ArUzZQh1Gmt95EkxsfKQ9LhAtTE3B2uXAFV4iCf5CaA0FH JzPCUBFIz9GoZs4ij4+Xm23TpF3Wmzuyikl8Y1xxxG5ANQhIh7Nn2XOIn9T7 2GzNzdDlgOoEyl7UYvrViY9cBIxuv2idPGtWhyDYRQjQS9RYbVQ60ymeTgYq /Oh12uG7nWPLTWq4jOEdgp2X9QS5qt5o23xeYRGyAVVS6FmozY79+tc5REZD 0aMGAs9MTyUwlUFXV/QYpU9PhJOvKBADTUiOm33fcTN9E3xpK1c0JvxrUFmr 3DKY6tzNbk+hJfNUGiHJy6bl3em4lf6OW+nf0OfHRieueG0tZDzOff2YPjoV VGeams0UYMe2hsOKU0oWJ1C+b+2ez0LIoauIccGETstlIXL6IsGFIscz4nVJ 4RNuys4VzR6hB3nOyVI8rkcnKAgOViBws4JwNpQftK42h/p+a8LeUvcBW91+ nonMI0jbbkZEDFmVsxbryjS6VQIuqO85Ig540HNzQ/TwcEuu3nQq2qQ1yxHZ G8a2eo3UiIoLxw5SZpPpRPuetfkwk1Ux7kiD3d45OFjHhc0GE7Uphf/60emR uXV6yMUnpIaHjZFMvBfm9Rfn2ZahfO0x4+0ERWcxOt9qnNh0jGjtpg85zbsQ CT025Z2i8/UBygbdjTYD/CRYZfswqOLJmCbNLaBajMCP5bLoZdiwqCCRQD8n z75vzhM8zg2KB26EwsIW/o/l2Oqgwv8mRhQWqpr/DZ5sJqNa7SLOt3RS0lqd lezzyBujpx2VAYm4W7cLc5eml+tLKO88DRxoHTu36HVVP6A6WmacHQOdD9TV ymw3TL88O10Kt/oVBjNFyCsMn06Ql4SWpeXTyfpFa0KJcG+h6JOP+3aeUrJd fEsBsaUpKGLgWtdAgoaJacGvagyx4NIUUYtkCwN795FdGShWQmdWo+ticare Rj+zedr6Rth3cN2POlZwCYq4gKCi/OYWvbdqIx3mmlRpAnhkaH//6iexjl8j KgCiH/vGiPuoBPLhcvSN+Sb0pCg6UCSbmfpHXomeOovfhI9WT+ocQigVGnDJ pwmBhEON8vgGWvaerm7qng/k11e0KjTxCoW6IBWlwMHBWM16B9XoKLaqOSlS n/wOCujjwSwzazpeM8gwt7HbONM6h9VXt6nxfONRg+SNIaAnhTLBEKyPz3QO vtvOBAh5mBViQ98QLgcPLU2xLYF4an4dfQ1kUGxddtYI71/YUs8DmLr4sQFb kJyyFi19WM6az6pxGM58dKvGP7t+PtffLmwYB+C8fooRPZO4yMaqH0QVG+Ed WctmITSbKRiIsNIW+ucGmuR+GKih3DEYO1ojQ1IVs4LEkN0bib7iHrE/wvQL u2ObPHF/m62dn2nDbI+4qIQftg50JBHzzEXdrXHZvEGDxkEedfuo7/cmlKEa 3eLCe0ed3EF1HZaflrRqRLqijExYH52elQyVpJb786Ch4ulA81BnGRSSEjxl GM5Xn0M8e9oeX7y3JH3C4/Yupx5uMdQ+KrLgNpZXBU1JbLe5sgbpYZ27B6s5 v43Bur6WRMLxbLoy7k0VNwZXM2g3FOmb48c2ZowoCneKUPS7peMPGhuY7uwB Mj3CHon9JY1sxxpzC/CIzPmWCsbfD7Kt8VvL0c9LAyUoYahkBzUpRPyohr8v w8PtIW3FJXtHBA09opHgZWwXNI5znzPoKOik9X80hucO+y9D+J97tKPuM0hU Ok+o/zt8n7lRUIbOkMZow3NxK2aFWlDo5DYfhbm+c1SOLNBNcChLm6NjEDYC FcHGYi24BjgeX0yqetx1QuW5Q8B7+NSLF1wFSTAJUZLaR6EHYf2domv5gjuK 0EdkKWr+R1UQOXT+cPvqEJXSXgVEYeFPWcyMtwMxK0apvG0gKidQx2fPx+VI 3H7j4hlRMN1M3iU9E/XLPGXzMqhRY8Oh0megXbqFAE0hSy5ZSDgZvmyN+RhV nsm2teAcaj2yxSVX2mEs3f2G+DGXj+vQDMelk4Xqo2mVCOYjcqmiINmMIU4i WRxTHj9u9KLw/t11WvRw6LY2WnSRMYEQRcdir9NOd+Jq7H6ZqDduix++/uhY SvU1q2GIy+hJzBuwsl7TMXVJd2D9DSHHOFVkRuj5Xm6c2/A98mjnFRRqTf4S +rQdq4WVgMTDpvptC/7T8IJNkFPYy59oFRX9hSsacBpp2w6ZAiKOv3xKm4Ks nemSaAy1f7A1lezHQy6BuhqZIE0zwr9IggBpf1hZvVycXkeIUxvbC2WmaG1h 7gk4wNvkjerKc/g5IHZBizkKY+RWcijT066KxvbfHhL+VgF5+eacC3Qy6ZWe CbhuvKJhudlhMdWrV8sDokRBlfK8w7LeGmRfth84BOzhfTAUskjDA3czIPO1 GuCDPqu4c1deWb1x0r+fkAIcAdYF9Dm2YVG7PMluvIB4QoMhlxnCx8ILspgc FR7vbQxzglwTGNx4Bx1w4ZyM8GJ4BGOwDaxOaxGgtshfIBUCzhV2NhZ/fSql /1rdRpStx8g9JtYgIJ07UoS4FFpLXYfVajB79nk5hkyCsUnKTj6XXzRT5LAR TpWWr9Gs3m3kDVIMtN4ck1Szvmto6TyZukfoPdHXMCbutIzzXOHzmNh45bEl 2Qb8CEV9lXOyGf37A/z+AvnAad5DQ5s1qOnL7rUgjbaBjR+nVdxFPRkUIdlC Y5+/xFAAVQ1cERI0Lq0Z2rgQ2mJ2nYAvnzDI0I9LGPeP0J71auBwRqh3HXzd JmeQMaqMXx2x1aRMNLh+ZoFsCYXElVeuMTpACNrBTWDHcGxvpcXGYKIGaCGY ofSLCGt+uYzWB/LGIIxYO7kYpZpSsDhwWjXCAXJ9tup3eGxkUynD2RNfPuBv vFW4dXnKGf4m30pwx01Ze8LCH2S3Q7M06ezNzo7o8TFHm1pnPz/haoaYJ9av i4VQws/YJDYeeE0Sst24BYfe4u9DCIXutSodox0rRGiTR8rHvIfGX8d5goX0 OlxCDZcJNdvmyRczL32/QVslSiNwUU0a+uJ2ayWUEBw7EcJYosGWh/2tmQ3J id4avWmXV2W2v8EVbYzqDqfsJ6jabeJnIhyoPSY7z2qH6NfVEA895cPiSMLb 177Bfzw3DjMQeiE306LhH1DiznbSAYOO3Qy0/XCnP85DTpbKNOiY4pSVdaO8 awET2qvU/4u2O39D/r5Y52cJgOObhAtpsI6IugEGn+hAVaDYxrakP5FQ0NRC KN0QjM0r3r0K0DcQ33oRNnQpgpDileEXXDte40Ow0Loq1hoqCohhcatduriG 9OhI6jPaO9RkypxdcM1ZHdjB/atPThUpflutVC/royDhaSjqiKHtye5eG7XF EFbY4ZgaHtiOUcT9m0+6N3zTiMpACyWS//YV6efhT3INraS4VQxw/SBzon/8 YttCpmtXzzEZGi2gcUa/Pzeo/yToXOI8omn27Ql9R0Dhno3r+/4Ivcg83aHr ejTfhBLO81NL3lfRxrb55FEbBOWJtBvtktsB+dxmXML9IoS06NGHGsICm/Z2 avhKQ3II61UEp+jC6vzKKt87gkDLFhyqI7RKrDQtM1L52hYJZaofOoBChOQq ic3cXqCgBal8soNqNPtFX4NVOh3lTJYLypdpR0QJuZtHpOwLjo0aHQ4c+WYf i60ie8BRlXG5W1u/pLI7efbrIsK/SKWNsYpUEGZMsxbmWGQ7M/WBub+LeYJM UKAEHG7k6wKteWjRmFD8KWc07eFeO7+j8LlD54izpmY+DWfOkEDD1lzh9xv0 jzSganxGU8Clj3QDZDI6gXTzcZ+OTLUrTHTGDOjbKttLRuPIBHG2Rb11YGrD DdChYmu4Fqd5qFg1BeXcXAvyTfF1gDaTGsFabIqDRcNd/h4n3uMtpiKa07y6 gUxrHeofe7s3JfnA5SqZAfuMXtcIcWvIWv9i3xWLGWjdFMkwoyPwZRlECUe/ hT6i8RIPFnrmHFoK+zZSrskU0NY3rL2hVOYX/yUt6n29vwSUaPvVJLeI/URO 0bWCOAJqhzUKsqZBEvCr477EQfps8GFbGbdadf2NwfZ6WnGevQuyIiyuJC7S v42y+77MAQRdZ7KSZdZ+oA+KtneD8AmXONa3fESypx9247VjszVUAc0ph1Wt 5ZCtz+7xvRHgAwpqTMilHLWclxX3rPHNO5Tn7uuIbSEP8WZMv+PiENJ8YhzO RejimDaOWWkUCmIh2g9JDzkS9YKe4E3lOUW3CfHnHkoz2w3avcsJRTJ1qzw8 aterQrNiLmiFARgE0vJy9nmL6/L33ufUL5Uh3NgJaipLqg0igsI2QYu2x+ks IvgnDQqxiWPs2yvoPfoD2zxz52LhczGiw6ybtIUA2WiJnBLUHI47ckxbSJ6j HNVfXDd2Ic14haRJuBb1BW7kcFhdtWiayaXsttnDDuT158eHg9BAR2vepwlK fEs6+pHB2s4QhW8/+w+Ozp/yyW+v4ZwUAxpiVpDsyyiCVR5iNeFSC/LSY3Iz yDeO0DHP5A6mMH3+iUoHUh4Zm1H+FL4zQ3Ooy/1NhNfCGxtdJlWheM8f+c+7 18W2tOr6fEgT9KbeDo4sayqMfDV4Bi0ZVMEv1zllZCuh22+XnCfrOiim3QQ/ kOZdE1nURIKauxmu8rQjMq400Km4qH2lntRVFVca6vJuGQp/SU1aa2sbTsku Y3LhlBhaf2ZZQvL4fe0eJP/9BvkYVG7fwC8Esp4achVOO/h2k1p9hh0vkYWc KDuJfJyj2TQJFVhmTyk5shNvRCRGFbQLGpD/vgsexaEZsCryEF2L/Re9jmkY Rsal9yprZhpQz6q2woM2ORByw5DKHlKLoyvOfOwbu7qHZEjvAZR3EFWsLWSb f3aX7ueAvJbB/0/deyVLruTagnPJAdBci8+tZeYWufUkev5/DdAZQQeccHrk qTa7/cxefdStc5LJACGXIF28gSSsHPS66xXjKJf9pH32zXIV/rcmw4znnCzJ 2YHLpFRWlKdKiQwovj945WllM9AzIXzVEQQ7DQaxrQye5YP+OfG4B7YJk6Y3 3VC4/G3gp6f4KRQDhzlBJek4VFNGGCXHwJRFL/hd0aa1Yd+l0l+++EUgq1q5 eejzPXZ2dWUYEaprWA3R88Qlr7TWq63XaVNZ8fsTSkdrDA2pBoX4TejHrFQa nI8M/zmGtkVHFRTb3RHfuPwbFnx9haUL81YjaklVoXNQRuF0vvQZQP7ZTRGW w+b149EnN6OkaDbwqLXpcsoCpqdj2+danN9A0RoQlv5IxjM1DZVQAUmXFaKA kxIVCg+DYPX79yF+q50ylHjvumPb9R+0iCTbd4eNTEI/6LErfcdMCtXLuUWt vMEkwRtwXbL8Wzu9zU+OLjXTmw7zFjNHL01vnXWx9UVNgg/Ko1MQ5N4tJa8j F+MRBbuajclsD4JeG/Lhe8c5cwTkXiF8IJCRO292RG7PcUPXSno5XM7D69WD m8tds+2a/TZ2pEOs7ZyGSZ9+eM1/zmFEY8rCDgGvk1kSlAAZ3wSvLuBP5l2r 9djqD4awnaTx+hVCccal+Q0tnCZvA9G8ZbtVkaQRGFY1yDp07GbnpgQlwfWX wXd3eWHZ0TkIiQQO//Bh/WMRL4zHCYbyGdMKRX+HaDZ9vaoJ41rDX4B0QQnf 96ycLbdsUt4Iplzihv241xFZzYyz1JmGbj5jtIbjI9xknbFOMs/rqI9lRuDp g2XYmge3am5HBPLiGlr02Oqm41SvglN9gVAjnGmMLVpilbmquFkjROq8rYX9 8wdxZO3WMs6yQqjfMxbDWTJ4a5Nzli9gI1ypI8H3KfqQKaoVRg0zIfcm/5JW ad2lScosfmXKRh2/6AWDThL9Un1zjlqMLZHazM1xKB7KQk4W1VlSspzlp/qA mUoVJ/f1ph9+B5t921vMJBn4T81wFPVGe3S9WrSL9qOhtKp0Qn78DQ1OJhfQ iD4tMaGM96+heV7mzob5PdYXI3H+pCyY2PMT+nqzvozDldgUksSh2/Su06xJ RQ4+bNaryat2oi+0I8z8+IT6OcQUGh4zIZUrJnn9JIKZjQt8IylDPVq4qoGe MqOzbt5IYo/vwZcrEktiyEaGCud7iCSRwQUzDMP57SDH18bMQgNswp714N9Z zo2uq7WFFwWzfVH1Ea8B4r0oJEZ80LKSEDnGJa03mS+vnylwQU2v0IkgIlLi 12B1kI3YTeJNQx8GfMwI0OFAm+K2qtr9jdOOETTmw4VBwQq5ldyB/gzhZzba BWsnDekk9b636yeUjWmW6ohumuA3DVYEqoq0kmwjh+R3bOPbOxwikSM6RHaf +yq50uZR6VLv1GTU8tHLyB8tLdSQSUifPXXPLQudAKI4odSbblNwfao1uhwo KxCo9nlKahlCxGTRIfYp9rx5YOkTISRTLhHfYXu+WGRh89gIKsUJ8nihQIwh hMU+wgcm2i1bS5HWvbgsdyXIbiA3R6riHhEcYRfrIRGIJzJUszWs6KVu0auy 3OTR5Krfup996+xb2Mz/UavVh3eYgBw5HQbM5j4GQ7ykTkD3DLcTw2yYu/sE HWMzDkGLgVdDq3rdr6Ad0TaTHdWxtqXQs82RXgD2vIQ8XFlffECoKiEuXBGS meRVdkeUMMK/c2OVubNzRSFFY4Pq2qteX2VlKYXOJ6MnzHQdzwH5AKMb8zbx Tk+WrnaCSX3vE7t4gNdLgZcm2QydT9HPHzhqiB4PUTX79wGnksPWUnq/X+/Q 7rTyJ1qpjB62yY7R7jd5lXMFSYXyM4KZIe9bhQmV2Ddf+CEHowJK4f1SkA+U u8kYGPbHQDNiXKP0PtunDIkiof8v9GRpszWqNAOe5iiuowX+PNRGhzbD/ZIb ZVkXUnvF0dwdTToy4cHHmOGh+7u1s3Ooy9RUAcInTRbqhxvEcyth5guF315d m/sjP2PzYKa2yy2Gp73bx6x1y5wzSeV5RzEERc9ynxRd1DQB9m9ja33pnsdu /8ZYDreUiYS43AhTFkGRSsDGHbRPN1Gvq+7Na+MhiXw+zJq+/PXOYFGvkyPk 8XqTKWqxQuOmSDD0j3jrbXQK+FP0jx9ff50rtgHMzwSaEoMb0A5ktOOWh1QC mi3k9q1lfUDKSsoWi5HOQeEq2xwbl03cMk8ZdbZErpfsopcVl8sv+iE7evmo 6QKZNlbWTMd4+IJOk+v+OWcyir6lMbGOHbhaDQwUFy41giIHM8EwVLS2N09L V2feF/Pb6rRkYZax0M0V9KGQjzfdu+duw8YZ30HycReivbqiza5mOwKLt7dQ MBKl6kP4YyQ1anUnkpnnLQZCiMjLlkGYZHzaVZv+8xgXCH81q+I2X+EWZlBZ S4KtaFVmmREIAM3GCwqg4xoLMx/bzsfsJ5T6IHq99dJYXGsl+Eb4WCJuA9YT r4tTVHFzuD6E8vu7hjpNOosUnJoB8Z1Fkdg1QyOk6NJwR3Zz2QOgjt0yH9EM 8efR5tJ2Mm6YgTQIvbIf65Zl1cU5DlJxJ+E2N6M8PKe2omFVm3aojlLHgkt6 9keOHe3mbahdC9Aei9iIm6HC8BVW81cf8PdoT2EOD1EOanPHvn18mO63mDuc /CO79Xd25Ra65oSgINqV8Vx3ZAxiZVQxpGLrn4Erkg1uT9LwKyAqtP75k4HB NEVVtPbWYkHknfowUWupHu/ONeHIvI6403R5k+d13FX8gaKcmkjAhDZBp+Zs l+Es3RMs/DikU8uFErrjNuf8tlDHkTx1meBpG1FeGJh0hLilx/F9Wu7CF/XE K0oe5ujpC22j0b26Gw9/X6DoJKaeBPPUlCDz6rrnGfCbK2Y7HDLcVeZgh6UU kDHpdo63d3/gT5lXxqtAkcYVN4QwB7UNKh04zXWUxnxXbMjdRcX7I7wO5pSI 9iVTQEOQ7WCoAQe7uidDAJSI3OW0tVm7u0k5xuYOjp3B5KHv5CDRTl8j9gta M6TSjvcHd22DchwWFp5Q1L7vtbOtZ5SdzdtNxzkzbcuGziGRGwCClQ82pGBA ME1QTZ32G2/8z4NR2TVjHAwkkCECNPrjIA+JhuSNczS5DbkxI44ZJtjQryBf Lybl9l1rjQt5ZayTm4jB4V7uJtceDbLMTqV7/I42tQ543gfciUI/KSMbpbuM 9QVYPtyZraTFPanhuzujlGXwCSg2Li7gqAFRLdur0bM8EwnnPsjqADDuVbsn VBkIrHigLqby0KiJ2U2NIkf/J9uoT2h4c2xsbDSa9UwK9dV+bQ1AHUow3k64 UIYMyaU0Pz/BH1zIDo2Az5vRdksdCTMDTCNJ6B1EQZwNtT3xhZL8BbM5qs4b PzdmRG/vqJD0G37gGcxd7Uoiui5BOzlqq9LZYaewmGevtipD9GCtopJhuDc/ wRXAz3roQIsFqI05yROFdCXwyjGZhn7qWhfte3Jv17gwa4/MMAij0oDXdY4l fGvRXjC6TC0zBvfrW0Z4h9f5fWGtpzxJk2alWEdV3f5B3BZ6OcN2UCeZvfoF QiM8+u+3rH3Lv4/IAYLkVUQEZK0f8W5kCuFyqNchl+XJaPiHdzbAV8ErSo5B V+hJo3Z2dwySKlqAiYSmMnn5S/re5FEXz29iDaq7yxs0YKz7NfBycbqIQ/LH eXj10D8JsOCY7wIyDeUZmhl6xE8wg0JK9Gb0siiBnS20w+zmMpTYDCoAONwp bLzxQ607e4Gw93Q/mXyatZutGVtOyWfFFJhcdv8GvZYTF6Dquaj7CP7bcwNF zrBggbkZykpxXtzETkgjHWqinaDAOOj8+fc3VDlHRbdMQHn7YAM5JQ5O91mx hNE3G1xPW2GyXocdVOP3WVoEUWpwVcyTgeLONu3krUq7dUhRkS0nO9Rwsl23 O1vq36/wSJZ8dVoFkydrI1/yEF6BWJ6DZ/hLma6x7qmzmXJYYLWdAv2KUi30 SzPoN591yvyGQZu1Pid8zWenqIIdFKpkXe/PtHjDr/NFNA6NovIQgb1RvM2J AKh0PgXuY7KbIgq2Nw1mNRJ9hWVQXq9EXiVEpXjbta/w0iBUtqvlElmV6DF6 sNYIECxOA9JEdPNiQmh5JtDKoM9uosPGCEC3z2zvg1IY8NXbPsPg/TZlzd63 ReWnGEtj8o9Vr8C3teWKBzL/a0v1DtoyaJvniiOQkj6fLMQL/lupCSia99rF dUxYZoqUbF0U5Efl1XmQI7bDpU0Vx5r1kxAxz2PGoxyBhpRIYIND+hIbk3S3 Ui+zvtvGXFWrqx/sj1v3tjB3GNEVnQ2B6SN3RCY4RkbQsp8fURsJbso576Tq 78ukkuY1EIPC6gIAFKJCUlf3OjLEREfPZSOWDVYY3JT9ElVdzq88wqmaWEZa ro/eqMHpSlS6U4kr3Y31cpLuz9E74BxGkUzOiwbdQOH/e+KMTmuiCE5RmbHN wylDIPzjOGpsosMOT/z8JyTXWhLCeOJhEkxhEB8mePFKUuX7wR3sXDLM5q7o 7rf3oSXZePiUcD+QiEpRJz7E5tkVS6kRLMKGZpggS3A8ilzmbClXzLkIT57c YIEUgZt4GWYc/77RHuujNs0An8+yKn67tTJ8RG6uIlQQyRFlJDsP+O9iexkX JQRhr/F5FVxu0fIoTjkFaEOsvJ0XIbzLGn1kYq0bfg1VwRzUBTqI+QsYKz0d +yDuoddyMbNbCGn7RVSjLtbklWfw0DUa/mdTsDYspr2bPcb1C1qikwWic9pO BqZsL952RWk+C7/mcLTWsDB4VPhCUwWWPwTAy19o1izjsRk0G3LZzSOfhOuX PilrI6/PfUEtvmtJ/bnv6icq38JFI/qfZwNDQq/XFzFsURkms5xPaJbjBN1Q 3hIrOYquv2VdQMprDgtZTTHbFKhhHYO4Su/Z2SKFTVB3g6OJQgNNp/NOq/n6 NwTTKv/CNGYn5aBAD1IIRen4Vu282xitJ5y0GSTH++5XNMVZrrKcURY6uFDM +bZ24TuC7KNKOys60COzIPSwKo/3cZlNKxdDF5ATUCCaA5XtmCsqeOAMstGt 08UMGt/xQj94y9A0cf+SfUEM04s5BO+EbsNcSUW4N7XEO8e2QzOxausZV0iu tVOCby3368TVW4L/VdOneZRGRSq/kTr5jiJQDIkfRU+gQe/rhd18Oqtpo4Mi Ueh2KCc14f3Oz6sN0xc1g+arkCHKhmjzLvb7BXWymmuIizZPGL9UoGZQegvq jePFrXseW+GBkPkV/KK+P9h9/ra5IH3Xr83HGKHlj6reF3dAK6LdV+LUiFM0 SZAjBsFqctcb8vLBKEdVVExA6BX0mrajdSbiBnFfRp+5K720DnUTzJVl0JCl tX9C3JCA1jinTiFQXVQipyyuvkOx7Rt5xeQSAiMojGVph6f78Qmvcb6WUM6g 9TDXmaQD4+mOAcXgY3D0HcvWI+Qu7dUUUlKb9O3qvPBtQxF5ZowfFPZPiWhS kH29lOGsLdbKpx9ttMFJshh3dVA2Z0YlbiDrwhScd1ZeXMnUA3xJ9HkHO4hd iM3Vs0uW+Uwb1FaCcFC+86ySxFKCRu90zT74d+HqW+9QZs7vHExypHR4i1pW ISo1boYxejyVF25UOyzsNPNPf2A8DQ3axkarJu1c7p6pRYWo6DVX/zhBwnxf CPztJnsTmm4oKwRqaJd4X0w+vVE3KiN+eNSeBjKFN+XKJkyhV1eo9tE8LtKE YBJ1Q0SUnlEKpHPm4txVe2VdEeRXs/G2j3jujwQTs2/eNfKsFPRGHHkhAGMb Lne5rQypENSTtIbxNOSit9AJkCuN3HT+0DFoHJxyIoAcSTyMNfTQKifW0I+w U7yxm9owN7caRrvQfHmYNBR8eoq9184qU0rOThUA+yha5Fixw2RR275fsJ8v nHWWntaj1Yh9c9Qre0wyyLiGej6oxgSlxHmk+HfC+PkzJ174QkBOVaT61YPO HUl7HsCnrFyRs5qcK0630jOfv8AANR+n1wufgcTskUwsf3bCKaTgnYpeXf3Z neBlCFPxBLl9xxfq8WzWFqofW6NeyWSiU5SzMuJ4yf8Ki6JS9Rm6IaQIAl09 xuaW6NHnb5hBFH1m5bOfkla9m1O/XhOy61g5idZVWoNH5O4jjCitz7vPGQY+ 6FIN3WAJEkdcJigUy5X6KeWWnrBckW2Qcrn10Cf9+EypOC/TuQPeboAh0Xhp UBIka+YCh+jSX02TKd9kthl2HZPvF6/Lr8/sZzxqZLpifyGUCy+8XZ04PbTD d6ZNm/VYWYt9AWkpDvu1m/uUivLXqi8HvweqllruvEZiQcSH4CmewTf7TiiH G3SagZCbEhRHktU1IkB4oTAIVECF6U7kSohunwOHJ8iGa3WpSGnLivXtS2sm 1xfhq4I8q5yT7kUC76AIV2fPNikd6z3aTUKO8s7EavXDn/b6xtnE3E7QPhRV tDjOprMQls4xzhVTYup6Ogz82PE+/fy2MUSyGYa/C8wapuzdBvCl4x4dQ/q5 aZFXllAq3yiC30ovZesjWpQFGr8nFrS57/FFca2WHewrhh/TcJotjgu1rukv f/JCEaUlA6d9Df2l1oMPLkqdI7GcHZrcKaAyvI/ao3IxqSJ/v+Z1HEkZxlg0 aAuFCDpwLB8WPBc7INJlaj055dQm3eqoI/VpYbAhmCyEJMCAiAw9+m2yTkI8 5y04nVrjUb4/t9UPBiGH+BVXmaivXGijUrujx1ManoIT8XQ+UZ+ycPKUZ8wb ef9dr98O+EjprPvkslNkE2sVmpYqa+YuaUyQQmoxkY5HUqC8M2x75KD2ON2P j1gOm8kPNUGnHJNJspKtuHHJxjAOeh+XzKktMsrwwUEeIXstrVXA+FBukDeU ZQlmAxMO3c/2z74rZ3NZEokPfn8GP6NtmbLeQ1MP7zjRSYSuLbY1CVqC1uA1 J5m9DvTtPcay+a2KesjQDMRC9z15B+dS8fBmCrx7GqAW/dKT7TvSXp6Z4FoT M5fh7wn/YYO8XhFvkQbt1mkEdxdCjXiicPi/v7CLVFMNsDA5TSGFQUGuY8ux qf8Ri8pTFRXzWCRoE3AguNk2A/qBn33uwKkmF/S9KBREc0SnBg4uO2V57hFV +WOjfwujS2v3AQ+NJK1AriGCQjsXa0tMEGbs9r+rsIPW1cV1ueovlAvQ0umY B42hpEjGSZ1Ofn318/WGg0QPr8OmCtph9vv7nX0ZSJleN5rtmsUReW9g2Wud 1dgDz87NW9H7Bt/chrFO9Aaaz5i55u7gzs0bw1CwxnQZsuvSeG6+hIHq8jtB 2msqBRo5TpCDdR4cqk5gSmszcHkK0IXBlJGD3njFH7fOq3bDDS8oTRF1YUV0 2467wND6dX1I9IqHP1OnLZzNIWbPr50vyDk6i4SI8rWG+hGPyRgnqxJjt41R +7FEpRBcH73y+m1iSRAU5Abvd0INZDeoGt1ZZHprGBs5n4JKF5w7K4mNoKk9 DUo+ZJQLdj2HD9HBCBJTwS8eKd5JqnNk7QoloWV4V6n4d9DeUVMHmKGgFXa6 KIH8F9y81cxfO465nzkDXaJSelNPoUJZvCebcxMmWusM7WlQZekrealsf4ht tjAy44m0mRBPZfsivOo/V0geax0GTcILijXc0Z6qQAy2En3tEjYruQ6I8OPF x0QRmwlaU9x3B7IrqkGE4qARtGlYK2OipKhtb2z2urMlur7OCFRp4gDpNxNU ZobIGsFpNqybyIAhpwnXIvgNniPZ/lHv9w30xmrDDQRefMLzjShqIWggnaAW s5Hk8k4f9+fK+zzP6iu+G7diMJg1xiWd/r7/Idb3ETu2ws9+4SVsbe/Pv+Ky dWHBEs28Uoxsg0Fb5VE5d7nDIBpCy7aiUT26h2+t3R4m69D5WVNFC5onZKWx gpRaQSxjSCG8lIbFMr0jlPdptWOCPDqjoYUOZIf/P/AY7Cu6VYNpgrGn+MzK o/Q9NLWmQdNDMEDa0QvKVm6VBaczHQoXY83KY0KP0oRXJYhz+BUdMSjNEXtO mLF7bb2AeSuszcyuOYOGFEj+yTn4PQEsD50cOTlYi7KUrlnJ1jghsW+LLmvq RTHvCjfaILqm0NAoOxQE6YXD53swmZ78XUqYFtzO6+1wB6NjlcN08UFHGIjW Ewzgfs0Ph0H/4kovUgbrx+aTgbRrk6vBFEIHwWuzKxcWNjDLXdqCzIPaCkNa 2vESPH/2tpgt0UkJ+tniYCEzwkTIFfwm8zd74gIFvcosZGbbHz4uf6Nrb1uE kRpgXZEsF1hWMhTdJk+6d9kRiPbBsYsOe4Q6UbRs1u49J/hhfPaNy/rJg3NT 1fLQQ8dd25e3i2RKLa/QmhEXw9oTgop07G9AKYnBjGXiOV35QP3NcXHF6TC5 PyFxhAZVgTirKUC/FgYhhDJZhTljdmi767IYCfMb7dkxNv5q+CValUcVUHHO lPFRLm1SJ+9DIfWskTyEEjMhTw7+6B1Vm58/OSQ2jhoHuTuiGnYHKDYoEyL3 DsxfcnOpfbRs+MkptwY7Dvdr8P+tvAPcYVmtzzkkVLpPqfm88bpIfZLxHmU+ XSTIKooSFLcmi33VEBZoA8FmMu79i5BJz9Yeylmg++E0f2w5JTu4H+6Lwg6a pxBCsW9uoset8B8E1zXsiYjrLhUXNdbTYAp7py8RHkTQFWrnTHd2B/1Uq6Zh M7LMtKViN/+g34XqjdTvRUZhVavXiGnZBr11m3m90BBChqUIeF6FtDhZMbov pzomnEfOMRn+SIiJHWbC97POuUXk+YjeRx71VeVkIdL2bRF7/0dEnobu25jY 7YT/fhs8dPyiXDy0LXJu6G4nojM3CP1DsGg0W+snu6vfEToIAv9AzaQJPsAO XjfvJeUarTvH8s7K1eFH73RO/cC4f4TnYupz6CsG47aO/ws52DHEq6RjcyQg /M2+qA9Vj4kEq2SU0cK0IVSQGZTiLZs2ZLoE0RswaQrO5p1W7fsdmsFo+OeW fERtk6y9F59YZB7oxB0mdvxduEqG6ULcHoKxsVlBpKwsSquVrYq4xBa9Mea+ 0ms+e+ru5Wvd+kBvGVQuqwZJPOMV3qqjvUXSDs22siPCj0RzdTgrnNJYCDYe VVx8Q9AGBmnzeAALRosA414fnByTy+vbxrUy7b2v7vsh2TITrNK7mH59KGLK A8OGJFASXHENGrmPk5g42IN37jFXNpiNWR+mswlfl5JnOxFsnJTl7rT/BD+X 5UvfIN+a5pTrUCrWe5WivKAQqT/QFCiGPtdjDgnITAkwtrlOxvj+CLY4sVUe KgEFdnJWfdNiUbYGDdUoaFpG3RFCGEyTwSnl+5Hx/OaNog6fuHhF8rbSop2Z 7l8G1mmpf4pZNSl2uuHr3wi9ao3XYFqe0LiKPCkRz+jre3DO2ujVKKIhKYxL xSWP98EwKpfGsurQFK4B46C3lum3ElXPPqYsD/87+Na8ci5sPO/Tmc/lO6OM O4ewGwhn3Tt/boJFCwM6aubH13f/YdkhBARB29Spc4/fCa2x6hcdk0f3B5Pt 2JsW0ecOZpYN4YS91Y9G8wjoc1I3s519weRhmJW8V3nCrJbltLZzGR+4IFEd rr4J0O9bba2nug4JZn0TQh7BHwi79+JTk6jBpDxpkDwBOVg5q+beSQiK9xe/ dPjVeRzVPzOkuRF0oLCQL0Arn8iyuEAa9980tMiQZVMryXb/An1DS2CDHgOr TcqkpyBnmP69s65v/aJcUWziZHOIqqMbdnHuTTlwUD1HlFd1MTkib/0PlO1s ioLWiJbGll7fVjgfkT/PiAKkFBss6uiyqGXNM+k6BxMAe9QdHttxXI7oGbcE 0vZrvvlMuRjQrMSrEFDIYrHtO8Usd0cxoe/4wQYmwc66WhNfRpNbSj9kU8Tw R6XYbpsMIOJlMXhuYdQXIThu2WDAc36xdeVl7+IvJApmeOdmlbcA5eNEFaay /CmQ9CEVPHawhU/Pu6KlQWJidbqHZOCaxTbSEyfkdtguFl6CHhiVPTvPlO52 R4rLOmQM74nAXF0frkYrCMUiCMUrr+oiR9xqpHNtQtUNmnvF5of0wT5MBopt 3tIfPfu23lsq8+qtwsWUJoPyIMMRfyPykCNQ0YBCKrm8qc65/j4vR/J69Z6h yYf+Nw3qpIo2NY0wSUcbsdJwUHqCGd1vUsd/brKPiW8hgsNLb5QdBrZOcTOd QBfA8QjJhGzaF44J8/25Q4AUKQYGfeOt12mshpm+TVVKjJ0ms+k2rjF5+1B7 FECAOTPPTRDJBtDhQL6Db7psGHevGkIhLilXM/5Rr4+gyaF7/Hy+Tlq3Npje JuggcnZ9/QbpcUMorMja5E6eNsjjIrXBLFTR7Wp8+6FDar0FoXeYjeacHWmG hU5iHjWsYUr+/SPjmHrf4YV/PUFT1UosB7S5S265sIs6NccgpwQUbQufYr01 D6Hq3C4A4e4lWtdCcf3MTrPKqM5wJC2q8ABIaIt96TAGtYwaEVEqbhmUHOmt 39E5Tfo176Ka/R657gBDJ4niRa4k+zqixzwyIQfkrIrTDM/J9y9WaWqfAfUR 9ZhVgVEItrmj+vw73PL1jI+CjN7sKaZ8XuAuis3JQQcYjWwR2diG3IqNpLHz rMXFafY3VLvMqac3mIoNEUpxAZVVTMFqC41E2Kh284HABVY/5KBtV6v4emM0 accC8/3CaKXp6h06dTVplbfnTtGqYYslMwbOhykK+7MSleLW/TMll5hUhkPH O7dg5E4TrIaczcnjaciOOC2+AQJl6uIMHspT2JeBMEenMOWknldUAwvKGep2 19+nsmuyRUFvF8zGtqRKCd/OpNzqIVjcZCVEZMsZt+v/boK1BDslb6XINXnv LPDwO0K9bCAdGRNuOHCbxXWlOAoZz1hH6RSLFBTvDVm7Povg8iMYzT44mPvS pCG4udtkDV+U5cGD5o89VCXQvKM/b1w+6UW9r3LAwOUqUu/k6ViUX4e/IXMb ka062owWcIHnyn5JVmB/NTAJNYgO+K8MTEmmjGaS/q/MkPGhORkNrtRwrodQ LUhs+QL6kr2nquAGtY5Q2CONQPQ77nEhFzH0Ifbixo0umAltYnoNJgrUhky1 PRDUDQ1F8GML153+YhBNzBV3+qTsx0e/jKerCWW0iMBU1o689STJIZxyBas3 Ffv6np8PJnvL3M9ihikk6Y69kmhnlVWmkFF520oQH+gP4HHw7z7t+xd88vMb Xk+LCaoK9CWFLyVOHaK+ldKJbi+7t9uFiYucBuiId/Apb/chedOUldm+KodU pKe2OiJZMUpnurHqY1xp+CYk9BnftYR+vYdmI9Nzc0K9lwSNbidHi8rbEdpq lqO7L/iIIZ4tqFWxNetAgO4O+DiO1lbYAgYzyGod9GwY0y/a27W8vMCUYplD tE24eIsUULxP0C6GHtF4mpF3uLcHd4H+rHT/YWzB0axVBP4kGLOCI/COOnZl R5cQPCN3dSe7ZR8Ik5mym1TKQ8w+n+nsW3c7h2kMjx4ESv4PiyvcovPF1ZCZ NQqFG0gBadOn6hZ6u0hOoagjM2XohaL0odWgjs0dofVs+z4WsRq1UfwC2pEH 0le8xzEPXehEJnRv1OLsLK/YjAvsxXYgE6TXRB27o56ZcFj81JDLyAvORqNz 2XKj2X5Yqe2JOjGRn4Il37/U+nVtcsgAr9+QmlrVDq+QZwX/p45hkrSIgNhx ozbmJNGaCK/Sln9nD9octdcEI+zmGziKSgg4S1EB/ESqxkqB2AbSVb/5PRJm mQLR/9c2MyMb4S2jmZsXjbbZ9StF/ga6zPC5Yj8EFg04pk6uZW7UxikWyxZ8 MluXzbcLKGq+IRhFBGrrZKwohSMirluagxpzdEIbk4bwXa3Wv4ItgnX1Bgpn U8TRdQ5wosL+UgPreafPGlhBUhiw3vkdK+rHe40I0190hveIo0Tbwl8CcVYQ 4ygyvp7JosozPBXEhfyold80yzrU2z8XTgVFVtNWw3AJhSvZniSuIJHVUg9P QQNHRKqi/ftWo3jExPzgKY66ZKFXKN6ce5+aqKCOfhnsU+tf46rwNZsyAG/n OhaRjhrANfuD6g7VxUiNt81RsxNQt1wdJht0E9Zh53L89IzyFhQmZ1yEociH xAJWmMN21v59Fv2eTNpRvfnJc310qFrYZDF57BNlQsrCtyDZhgxYCT8duxeT XdGHEY6aH59YbhrUi4FfdcrQj2q22mPuxyKawBZVeuqlvk+eNTqh/q2aecYy pvYmh0Lkoqo3GoUDg9KBmYUQWK1oVrAIbVex0QVwrVdjNYUQC61NSgwPL9j0 tnUtZ/gOclShg7Du7VCV4s885tsccsbtWEFqSQ99+QyvxLYPDZkCiXyK8F5G nGIH8FwDgMRtINexavw/qFrBipyeQX4woXn5NXewMcFzvYXYHSm5MUScoCeI uV+d395hjggNZ8cYnHy8LQatQk9x7NSY2KItphIjSxHKVUYNGb1YCXYW7WfQ 7baQOaiADhlnhsvsjUnBo5IbrXnyh0hPs77ftZ9dwZiuGKzHmJkIXnbNwrFI WjUkE+idaEdlcR0w3IREKLs1sL9fQZPDGIc+WISGF/mFAbzGsE52nznAJYVF uPVfF8plpYIkZQsFxFPh2FNUC9e8MMYUQH03E0KxI+yo3VyhBzNd7Tpv0Rkg Emw4i4Es7UOK5nG0BKchr5xG3mu1GvsxKeomBXuo2VNCxsDA221k0xyb3k4B Khv0/IBJrHvNun1Grwuy0IPpJmHLH4dw1knSHtvgkXS7zbUd9i2C/eoWCkKL 2DGQ7dFntuD8B05A0pt2NjGBur69IruBG3RJdJtSSIdid/8MbRZTQsbbm5+U j0OCwlnaSf9XmYuOLeRZyqV7r75Aq2bveUKMowOIuO+FcsOK3EnbczGKv/6G VG6y65lNwyCQodVz8vDRUfxDchXBnslHIJImQp66imN3P1AyLL2mQF02qMSq O1bYIhvuP8uiCyIn9+cuxkTmJFQ+RpGeRIDABFwvll9dcOUDCicbR1aYIr1O tlfXHt+gqkX2edk0G7Okju2R6ZP/R0flY6TGSVn0QOx+VpdXMSVHCht0+VBg cN0v7aPq7nyT7Z0LyqpGG3U90WriHmpZqGQrpVje6zy/G18uCRVPK/nJIuxd 7ndFz6MAuZs+row9q2c4RKIaZ1TeURK6c7Hcf+kVUEOunbKyblQTVJybHTT7 +FsRXYBuL8F2q3Gvo7j4A5mCqyElB8U5ONcfQ3faygHHeboDTHaP+/0H0kKk B8ykDcSVsaYno1hrVu7wDSXWyGqO7kOfV3/9YVP5kSiqK8A/p5UNaVC1VNQx 2GDG2T6j8zjmu00t98uUvW6uQs6lhJyIkOot4MlOBG3j0Iezl5ccUVI6qLB5 Kj6SB/4kxMo1D46/kImWSTML2iHb/bs1nP8kBQZ5v5CaU06u6yD08RNc1BS5 rD16NkFTbH4JW/cOliRpldjWR37F2y280cuSRP74rt919HSXbVEWNGlXVMNP EfHea+KHtrAxbPuuvnyjuTGpfPCB4CoQq2b1pOTtiiIc0Rh+fhOLCNk/oC26 TrFEg3A2er+DXMtuMAnH+4y6nLJCj/S0GTozFrlqCA6Mykdo4dmwR45D/R9E ZjUfm8logR29VqdmiQb/WTAoA/u/+rmd9fCSFxUZkTnyxxnbMkeid2ry8AMY adAXTjElRxS/g1EPkBXzAFGBJq395dTHDyqt0uVUyOhEjTrh/wletCF3fJLa iUKbNBN3fOj/3KEjGj0sRWjvoKTESCBo9FIjLl3h38a+Q7mxIEcEj0Oai0UG jQjnHxv7J5tLY1oBPy0CP53K/VW8IM9sLJPbhDZlJKf5rDbdgj6/dCqAsyoc UC3HoeBFf409Kno9eKuVANdHXtyNiQX8xJxscYnsYhGpFczPZDZqptq2xRdl Tz4YFzfQQaf+pv3sC21K2jY+Zjc5KG9EgWxEoJBt3VWREhwmlOxJbx6vy3fI vqdC3RAlEzQT5Sp82uLEYQb+xWaNsTEf2toJd+a+wz28eoCfcE5oVPjGzrd/ U4ADW6St3kZt4RoTF2a5FV57eOzFA3Q83fby+m+IZaynZ0WbQp6yiYTBR9+x aIaXWizPGPwkaDNBU+PTCpM5xsGXQX3h9jmdN9MCOtttgxszCsudP2V1KXIa N9C4ZxVS92L79zst1Om1Bw4xQzfp06Dyhhah1d5w4MyYisy+jNePDmUwoKwM +JtMGnr4KBoOpj2dKfLRDfHV8WBr4yZg4rBe+7owwWaysYwOZSFsUKPeGR0X NLT51fTZ5cscyRcz5NglvwH7POofn6H8RvhFJBdchm8gSUvhjkoPFH/HUJQl 4YsVZM1t8OGFoLJeDwaHZ/x8RrEBiqWNDr1YoyP3Q6LfLiFnYA7LpAGWqwTZ rBmH4E2IeduL3YtnqGeJ3GB0hNI0QSS4sS9OFt/I0bI03PE3dmsWht8z2WS7 KrH3TzBcZDLNJegFJ98xURWPXQ6mAG5XK0PWyXxktlYnZ/BWQ7uBMNCVTVmr USFFUYXXLDICI5aZLdLg4JvZcU54CzowZQuLgTil6Ie8gZOsmwaBSSVEBmWF 0LHGoDv01ht/+ELms6FPbBHxDoORqHUjanVvwEGjGA9k+RC3G/WHc6N820xC ukFjq2i5oy4tEl0aKoSqpcGbJa1guljVGiZOVSxSpXT7nnKgxy1tUA/XhgI+ GKenFzkel0ePcDViWaKwVLfkSzQzazAm3is/Bbx+1kFLZMYkhH32kdvSniBa oZFX6GMR0+zMGK/BFtoF1a5AB0qLJg8y83vUdUvue+vTRoB2W+GRuD8TvT9n FRnqBNoGKNvREkD7IAAwaEXtVE5RroAxBAXDku5ePa8ePAxaZK9qcRPsUUVG Os6NG5N0kAVrRfNqKydcnGkXWlAl/BTQ02eoysO9mMjQg78oo4kUiT5B/2qR eIx+ytAE2J6z59l7TkXHpD4QWTvlpDTpHAaddTLM1Aw9N2jTZ/QEQ6bacYN6 vYT+K7X7BzVjHK12Ut9Q1+E94egxDFLJRgLU9u83JNxAiUIOiUIwWdoeOFxK ut5by6lC/VtLhb/fEQX5vPJmw2LJBuRo2oX+NRbC0uMn45jonGw0WdeMTSr9 kaT3CO0tU8eC0R0CAT5IURRY3JFAw8yWkP0t9RoJCWV2c9x61uOW+sGowrug h0OkSmVU4zBj77gGCO/EcRKzcHtLNhnSP3QwqYv1uvxA1CqJary6QP52qgPD FkRAN56420Jy63VoJDXMYt3J6PXSQzWkqA6rwmwxWdQaRVbBIH23PxUf49h3 y9vzA7S3jAVpnYbQ8IvD2dhNWfr8onGBveouzJaNGqgRhfehfm6+OYNH9bSt sPCSp8UG/sRxDm2wGReiyys4at+gda/2qQ83OP9rIN43rkYaPZZt4KSjzvco HZFgGuXK83nslI9KPKj46Ps6LZ+f0Zl5OK+iJqNRFraA8n1RFJNG07dfpC0a 2q0pFIYsGiANwPnMQL3mFE8HXaobPCmOIha7+xSm0qLyhLblprubuPyAvB6a qgjtpp7Q8zrKLl072A72fvf22XEx8WuUK3/jZohB3FEvLwcXJCh2J14DlHp+ Xh4a7HzwKAle9Bz5U16dW1c8SKoWE6kw2ubEZRRP1ppvXmnpDQd5foeDnNQe v3xDz2aonpebG2u37KEFnJ14IoCMMC7oX492qPli55e88Y4/byAgmaFDcmif 6xdRiE1FEAm6iudfijnZcczgS/YO8eXb58xtVJxC0wHcTIkpS5RrsoYx1LtN z7rwgxzpzY716OUTtoQ0eUX49V30Zfk1FLkrgLERzzNMWKE4uw4oNsHYW6WE Q7heXMK/MpCbIdQHhFDYose9OXR0NpSoksHFFEYAXhqXUtCab+I2jgv2R6fs hoamVhH+Yas6PYOoI2V9YPaCMuqWrKZSmiB97XY4H9Cna7pIg0kjTkF5LT2u 8H6Lemb4R/la3P5qG/U8UUhiFX+yjpYaIyA/2SptRYJZ7/YWDFVT7b9bToyD ITRG67qT6PsrVFzaQno9Ky/m0tDJCqWihsWi2bgWXSvevckuzW0D0O7fU8zz pFctz7KdrLaJkCQHnm8OWcU1HvvcyIVTvWtmd/fqF0Z93RyiBRR8lwWDJ/EE pHQQvVIcsDzWIYSQpogYn37C/bhDO+iWFokGrgG6MdUpuaKsbjZxVNCPpASL nj0wv/RTwsWFCyXPVeogKaAulorc6nlEdXkHwjwEnrTBdcWifh58yq1DNcJp UH2lyPSLlnFSeMCox0QetTtBKgSaSGWM8VuHob8vURWiaK2DDi1RcdYTrkJi 0+CipnpyY6Z2B3XdDmngDHKyJvdMh/RrBcO87WLYBVWbDe1i06UIHKyd9RSd M5sb69tbiG3VMOqNzai3Ub1OQsyR3Q1zYlNu/4xZLVDtFPJSVGS+05XJKRNZ CPQsn1xaOPyn+FQ1kiYuNQCNsYf3zmyeCD+e8N5jeApDNBIEq6UkTqJxJl1X LIqKkBCIpej34eoaacQRxd96b/f3lUUTCR4LETt5h04OckUT50h0ZPMsIoa6 cghtJNzpLQ2Lqit/1ND30COxCUjrzbZ0YaKqrpgQTGbSCvImcu1yoZruidNe mgWZurIKLQZOtGEUo5O3UdVza4NWpXUek7WAKcXMTRqFKLaK8aE7vztDDBzV HUWsbdK+IUR2ytogMyd3W54VnYqbl2g3pY8OD/7+EmzRm6rNDVOcfLbFQOm0 HrIAfguoeTQ+jgGtFCr65tQPk98fEL+5ScgWhdkNvO7Uk1YQ+IctAjh3N2SH ttLBV5TVjkD01Z8E4cPNUBHrCQMY0QImJUQchJNxrEXrcqdXzxwN+UIXlp6Y L17+QDdG9Xrg97RTzF5Fmdep+85Uw4Z7qzR/97Ty5yqqtKHNE+0sCk0Htn8g G6ZFKXNQtWAJB2PRYTPO/0IZOfkRjc90w+ciooZ18p0PTuQMtXtSO0Rz0ahv ppDvtrUk+/hJ8D2SONAoOz2hZdM8Em6aSnR2DZmZqGt/AnvzSHCqh/dDEvv4 nZaxpRre0AXXh1yWtCcuTfmGL5hAE1oW33C7P3ehb/l98ZhjaXSYI26yaFJS dgBikRY5Ob6YH9StcJcjwna9SW1qpL3+gY6deo1A/GAcaTVoVC+GSEqcvNeX Bq+o9dDf2ry5P6uuhvcpKE+1dBEClFBUZ+zRRdhnsuViOOZB0u574HeG39rv 2PqeP8MfY1rJk6BnIJMXB/4aucyrSc6O8cLlrSpFdHi/Q1K+vfNJZwpDQgdj jeZMXfDf4Bkrd3cTa3zkOFkoYHYjMR9yyNOPhzmJnoeij/Dpuuh0XaQ7t81R yQg1ZqgTk9v8CD8voKls2Rjzvgr+I/X43z0R6xgtDQW5CdoIYYNEebzDbsTE 4S1fX2hfPHBWoE9UYcKpzTJMhOBN3TSbgcXvjo3kOpNa+HFVCJWn0rEr/p3R tYwGQ0TMn18sfE4WOAkp8+FZfrtUYBGyq01+06uqWrTeQP6jBAc3a7vB+G/p NYPM0aLHhFKa396KuWnfRtIhU6z7pDeXeZGHpVksQnOhtNbijqrjiGFVDhT9 MJrFnJ+cWSQz5ab4SZvi+cXULQJ+cKG4hI1Y8+3cZcepL6u09d6S7eNOmyJK RbfEEPcTFBwfR5AFnVefcxoeR9h+cKt6HLuit+RKwqY5DjVQHKrfi7BAEYy0 IRYxKJFVsKyiruIbIsObBi5hqcvQLROWJ81q0hremszFbU96VMqK+3yDsSST fTDqgboJ/pOvgIgt2Gg9M0OorjwLEdBH+7k30bXuPtrBEDMZq5z87iTlT7tY 24wLxWyLhFef/zU6cjSHFhtxYRFTuUOPbXjEu1YoWnZrayO2vuRSFLc//6NS wUW0RfyjUpXSGgoKRJgs6Sef34JhcTkm5wfZBr5aV9S/OxCtK6OLVWs1XYTZ Q5Toho+kqU3ayKJvOCCs0DY4+0fEt8usMu1uAjq3KKOUHQNwiXLXqLZFb/Wx e5hdQPi274PyeR5C4br836UW/jyjO2TiX1/GqyE0C8XObEcaZNOpw/lE8HuD rpEGPRegb9T9rd/PjQ/RNWtKKLlpQjoRkVBkHbqoKB4UU8kbuhRYt+fwfv6U EOL7izS8KaMjuHjTSJUdPV8+6GiorbOs/tp+aNGlzbHn/MUka8h9ANKyxyV7 oXMOsAu33uzc7trECGVjmsswPqM4U0GCitidS/i366bIuRleYheBpR2Fgh08 5xirW+EpI2x7+VQ3xL9o18uAsgaRvi5ovo0abNDhW8vsJjAI3Ulpr8F9yo6d POewQISSlBuEVc6MQ1aG8WJHEu1hGSKOED+3UHrmZT9tw60x+KQ+jGysRVO9 NiBk0jEF2tudzHD7Ap0n7SBgNMlmUijT3IsFUcXaweeCP+npo3Dcq8B/n12I 7GkVQlAXgWjxLDS6cOqrQq8bJ8SfomBOl8dwf45IuDYmvLZTRmTESM/TMaCA WYD7fY1dDvfZ0m8PLhcxGXqAwVVbjFlzLI9wWd5RSxwbJEP/VnR1A92DpnBf j7YexuF5YDtBZNnZHWYBLg7TEQsnQFSNOETUec29B/57pxcn45regkR0G3Jk +bfDBRCXJSZye9nuOeM4HkFYKqfDTvn4vIBmLpJvMGQVJ++dcWzaZEtqqTo7 6LnU4BOTQDZZod5zwYmKL/ztvQEe2OAiBojWvQeWHTNUYIZ1/XmuWkfpfh25 e4ymIOXoXsQEP9f2Xn3u3F6MT4ZtoPqEuGN9znsV5PInGNsaV6E1MxpEFlWx /2AOaFxps+vvUUwc7Xluew1VtRcfCbKa5knauWCmnNFm5JfUHwu26i1M8QQI qwwGfnHYnzXP6dFBO9rYA4iLaLVYROCH0GobNEm0SHc2bfq/1PJ4EHyUrQ5/ MB7yC0vjFMO4RgfbJFYBxU5jpRBBowbVO5eerKfWHvF22AS2hpYVn90LtaVO dP8qLE8ZtbuufO/fAXd9v2ph+agVFKNsY+dqOIrq6O9Rjrlid4PydWGgujYd EdRM7ybrs2HYHra2ErnKwSWKajdDDWfQbhO2eHWebaBqR9DxeBgFVcFMjFEh +21Q3R53q10J2gPMQGBUPz9Yn6hfmIa0HCetZTKG6JfSroD71WLtgLJHe448 9weC9PnDd04+0/4H/bsnC21ElnmEojoXOqWxE4UYr0RPSuqDj0eKO52TZsgu 5P8GnfIoZXNwxB8TbsPlbrd/ePuD1jyE9QTtmg2T1VpqhpMsO2h0YcyNYDZI o2P0rFtV0IkyWOoMfnJLpbqg3ge8ynt2L+5s3YfvGPJOoq1uSbgWXF8GYwxF Trng9OR1g6gUpBJ3NKHt2GrKJiQRqWJC2HxkV84H39p2I3MyOad6BsiDBjR9 EeBDqY07IJLrC5jg5w6ClgQVDIKuqYy1MNS3vDdF1LjkIwa14EORNvQy6F8x Lp9cSpbx3lwse6xT8Pc70Zrl3XobrUifnOuDkHQ/Hhz0As26GmZ8O6FglhJ2 lB0uGbR/TJKgc4erkYlQHmBaTKoyATvqOJ6nXIRBjunLGxQ1hkRkBk9EokWG KvwsJqGwv6PUk7WmGAbKljmPEKsMaA1T7bxHcxz3KRh28vcL4zTpaqL8uJQP i2JmGcXD+l/eDfz7WRwrpaG5DZqbX+6fZn+Xr52RM7Qdi4iIHgjWqjUijtK0 V9jjk6eMKP0LU3Jm2kFsVy0eORfN4CFnlxY6mfK2vezNm45REbYmnt8nZWGK 7PS1PQ9ck7kniuybZI5JVxdhWr2Zx469zW0MljqVOewTknZW1K3exV6ceLHY F8F7eYuLqk3VLJoEzSI06HZcikmS6EqqqAbXaIIZMba/XIfZefLOm836e/43 qzLekrLmkVaGZ1BxXO9c51MIjk27A9EQEFADjVh/gvz9le2GAkxAzwMfgjfy ufg4RDJd+FDWkPVyodsxcEXPuNXpHm1l3xCqx7Tags6QqqMViQyC3MvMjE1B 813I4MEY7erQgaq7hLz4RkcfkscSDDyTNkbFcWasH1w5deffRUnFGjxi2M01 yOE9f7/FBT7NFLdRhyXmzG1c6B5kMFloMwSGQ7XUTbzso1u+jBXlgGZ88Edr ua+Rx0mTIyGSaS2TWohwrl/nhWOa/XaLoH9FkEdVNtRqFF+d6E3Y/tAzdVdw cap8IfaurNeX0ZhW3wfaNBR51mXIGNjiyjj0aOjG/L9hGw4N4+uVyUXVkSlX 4d/Y60GikO4jSSJvdMfc6/ZWz29n1tsW550hmCGNqdxhunWcsZEFQd+0kZsw BtLxExrTm2p509yL/x5oHLROOGjJ8AzHfdRGLJKaroebh3awBPQcBBMxDkLz nN+5Iv/2pqxvVp1tmKOngNsrGbYjgvt8LGmGS20P8KYr4ecjZPLRKkVFwrJy aULbFjcyAtXAnT2ArDywrQ3EETa5Lazy+xkqmG8OEwZZK8kblWocolAe+GHb WXbBHNQkgNSKltYp9yefp2ubTGsj4RIO8ZD9iZZ5rWi/fnT8kgJJfsNoaFhv cseQ9eHRoAVBHbEQctlOEfWYxSzR8Ys0TjPZalmClGIHYBqHQuHUxrXqiJj+ 8qlABStYKgwlCrrtIYuZvLeEOlEfZjZvy1n3fd8+nzXm3l+EugnZdErRJaH/ Fa7aMw4G/ik2Z8qg//ZweYD+827n8TzZgi6sGknkl+GcTJmbA96hB6k7gpQc dKXzKvUsb68enSvAuRqWrvIEsUfGiROPwiXl+swMOQa79X3Zkr9vyHkg7ST8 kmj+nZUoc1iD/ffOPTv6cWwO2lWR+/mrvQoEkJG9g+5cN8cqYjUkGuK4TAVh +refgwFVhM9E77U8r/chFUrKGrxQLCfIYsWbfSAzSMi+GBKzwO0pSq71DdL+ pJUp+8VNAvLZVXRuxrYwXRAkYEGnaeRlumzypj1TO+tY05FxExIStC/Z9LfU b9foqtg2auiuBP188qOcJvF9G3jdhqSNJM9JK5QS+cVTUDbGwN/3cei8RR4p iZKIDk8GpWjlFLdbNZjC/UBH6bfKXNUN/1iohPhDsN4H0gW09oZMTeTj22ok Che9dB8nWzpB3zsF6F93atzNl02unZccYi9nUeNeN7Ejy1TN82JbucZBNtsw 8OtrFAmhZUNZaICVbtBPIxZ1TXYzbhQdx+RW4g4K4+bCqSItWWFpY561g7Sw h6jP2sxMzxu/VeL2dHh269v5WVpMPBiSCL5LPBV7yfQiDy90/pvrX3Vqu0J3 SUYJQE3fCElENjeQJa6gsDMe6Ql4J6hukDpdtF0RqfdnBIJjFFTtAx6CvC9U /O0LvIjmzGnJE3SNurvzyXo+As0Apo5qwreOseUuwFcS0V3RcaAvMRIWu7NU +qe1gxjrzfAWGY3vAhz+vBtTpNDpYh2S1xSMKuT4TVccCT2E896GLsUeE1o6 bR8tu19jdAyX7MKsx46uaduB0JHl8qn4Vg8ZKpI2PYRNlNP1Hfz0uSFqF+CY UaFeotfKRYK/3wZqbIy1IjS4x03/H4u7BPoerbYTDD0dlQnR7majWnWnnRWH DgMZdFRzm0av1lfnKYTWdNlF79FVqiMbt6lzV4A3SW0d16WoZLOjgF35Pteu 4O8q6DkkfBhuiuDEtka6BM1NOUY+4XYlXSojk2mmT2w95M+lM97T+Wu+pIeo yEMSoQPp67ahNJocPjwKrDAOG6Pgd9rt67ugg6dv1niHEn7JaQmCKZSquU/R RlOeUuexyRJsbwZ7vrAqZDIvopAzgrW9k0N1FMhWriUDzpgwdplsy9msQWA+ 4E612dAhmFHBJ6VE+7sTNkc7VuBrrOYdCNPVJQzMicIEIzSCEzRwBUa6Q1/d lTEY61CRwNHya+9vfdq44KESMAS2yVnsTEVUoF38j0dh1wxAESboS8o6Uyzz 38/RO83wNIhknBZ9qh3q8k5/OoRKgVS545L7YW0xI2MKzR7VRlXsUPDXreEW kR1tRv3YA5NSavVOqP68ZOdbFgE6zk0e9z5yMIhFQHlG3ulos9AONU4wBBaB no7yzQ+U3EDmQT+vjLwvM8CAijDf1hvPvEYL5mM3IoKtv7CjCsN7QAMVEqsw /aPhhPVcHnR7C9AcQJKmJ2hZ86/uSQ16JSvIWFs59eJGL5Kw1WEJjzR6sV7d 4cntKT8O3XNxS4HlvbtW+XnFgkt/chgDYfgyoWMfKdHLvLd5g/I73AFMGr7G He229xubvGtFYpI3U7TO8L3KCK9vhz3ZtWM7Nv95e2txdEO9t5CmNvAdqEdt YY6ja0K23JTmbKTb0SVL5yLKG0NIKDvOay9n0aREoHYQMGmCXJLI7Y5GspTB gnGBPW1fwe34tGpemqXUOY+eP+LHzI5KiC3XMBfIwgCiD5jhGhzyoZGogRqY srwKXRf13zfROEdWFx7lMFDUPEi1rHPJh+kgMPxif4XF9y1xUjhZ9VcYH68h KNfI94SQMmroRzO4NOxoS/uQGc8syRmkjhCPcvdKpdRdGT1c6BhaBwJIgW6C SSgT71Ea01LOM3ixoHHSxbgeloeoG75MHlKUPJ6j4hgVw0axFugy3bgYtqhs 6uEHo+enPux5XXOYyRhXXpaAGvy5hdEnksKSHLIBVbKxd1gQwWLwj2c2AstK XsQdKqnJB2V2cJm3XzAlc09aBUUFRTGCkD/GrX77DMSjiaAKkOeUjVsf4iEs 3t6MUtSVAl4FzO0+Rd/T7BYP6D6XzpJgc8d2NW5GKYRSJGi3dvbbhOJjUluw QeC7bA3JcsK0xvFW8DMYEgF9w+d1fwi9WlgcyTp22t9oQ93KKZpZUhbKrDSx 98SmgmfjxdC930DVUtEV1HhnHH7UughDVQQpndGeOuR6E1Ija0TVUugVI+vV 9RhtFh2x12a9Jp1pnzQhy0LSCNDtuJi6C0WRUZAyE9OU8bcUrwRRqiB+utSS 8zN0faIBi7BzKMvKi8eazsRmcyGW8LXd7knBaejOEjSzW2u7Z7x7xIZhZH3E Mgwdnf81WBo2dafmWEhWMdkFsfmpP7WwK2X8+0+EykG7tID8drS2lAVhBRjm nLyMYTHR96Oo/JN3aDsPMMJTrndEMXSDttV1oyA5y+5Z6qghuIdF28fi7UL3 Tbc/qAlAxsyEhA34b02ihB1yTBIFm1yxFxwRG9u42WWFK9i06bV15BidpVw0 i2ofRiTN5kgHColitDcbDxL9sVv0my364VFvLg3EKf7bmaaQTVMwZZeytxel d2adCo9iCHFQ3Zl3cUmXV0aXvLjumVGizGbfyIyNSX86iE0GWhxaOqAOG9St TZ2Ko13kLcxjibSGFqVH0M2XuAf/g8FA1GWqIlZx4pO3UMBoa52CQyjcf2TU LeUJN0CDOznvs+6TzqTJIZvCGx41Iq9MvSevs9sBoPy5hLlsfupj+rLWRTzn FUluoZiJhlBWN01iH764oJrVNvzk+w0t7KjIp/N5Cm6Zw/bJLg3U1nB1o+5v X6WDPe2d12tIBjRoZ8CqsjCvC1vymji9yXYwBTY2ojVXpQNBSuEICf5/Dtha 5m2QwgSfpvmvji4Gfx/ykvtJbO1p4kx6MF0bpfOzHJWmBSJA2oR/0ufINKQ6 7C0rvfhFa0ETvq/sA7W+d/j9YfB25fQo49S+dYgURxOhCZ68VdF22xtpSrcQ X0QCdCwTO7cnZfMbunMdDQ8UlPlDN8bYhTivHTrlIurmEzSDqDqrSpkTaPWf KKya2rDGCd0m7XsyC1LDY11RHaLHH6k5X1mICufBsCW4cbRn+LKLcyzFzsBz TNCnBw4XZg2E6H0QFdVbKHianV2TQ81olObfsif6uTHQezUbMTwWTTHhs4pR 0FEAyMGo4dPq+o0d7qrCUunzCjKmZ24SqIWU7SKtOTb1iPD8XAzBasGgMYUQ FIvxqvQenQ3Ds8/FXIceiAOyU2FmJ9tHFsMi0A5aKYZeOOXkIpB/azsMlIFv zy3oYLUsH2Th0mMN4WdBZRX58GR/2XZZjcdih4iv7sX46xtmIGrpbOBvMgvl OQklMn4TCqdIhriUt8K6+gjPo9HUMjtlA/8QBJYIaenoNDmo8xzBNrQq8zZu bnKenmHmDfTLg2nRoTiACiOS0UkGNzlUpaQhPLRsEMhch2zxdhPiRiOEO8kJ 8U1sS0IHo21duQ2KiYxpJvcrqBnKocZVN0Fc3moXqMl3ipDfDBL/hNNEZ/uI WqfkM+u4zG4M9FCQrbFxflF0IHr5Y0LS7A6vIBxigv8ckxoUMS8xF0+rAfkj AmmFehWU1f2m5/kyQ1WL5MkNao975OPKG14hLwjH+b0e3gi34op79hVicRpZ D4TQSE5Wm5zlTaToPZ0gXZIucowUbtBcE6bUzcJ2iIaPWwt1rVmcZ4TDJrTR Ys0OgbhKScFby7bRsUt1WM+vEaLWFJ/bDorgyjvVSk5qFBFCNxeuI3OiaHRR B1aMXa1naOMAEA4mpblT2Nr+fp15lVlkOJhNYraZQDZONA6cN4Ca4zfkfRoZ NoKaUAnadIU5bn7baFpGOyrmTk4lqnzCOmLRai3ELUj5AH5H4+qmmDL0RHGS K/VtxccoVDyA9kc2/Oksq6H7YFRV4wY97LzFBFdcZ8mQdERH3UQXKD3RuuQm 42LiC5VOcIjke20tyctJ7oHIshUyM/LMY7/2XT1j6WvPb+jvm6wyPWy3FM/R lf96IOtt9JlRo22o2vSLO7zz98cUS2muGiMd7aQxbjoBPaho3DnB1R9gEmzh b86yZczgWVneYXIZRBDUsPQdiZRB9Kzfc7a7+oyQPduhFD2APLwS32ngpUEp LBArlttGjUUN6ijnXIyXZF/7Dw2jL8kXCM1BfevEZTb3YUhzFVlElqhzwgiH Aj66FE0/v709hBgNnZLQpz2E7IicxH8XSuqMpe0ePhg95ZDUjnD02aVNxfib LS/+j0LUHr8ijFH0+AmTGcouKhuGET2y2/Zytl2DRUTI0Ot4RLJULLd6EbP2 CpGoKOkyOO0mZJTLqNbRxrlMqFvLt/WUELBTMCbbzRn1xio/n9dXae5ZZRH6 sE7CEOEmMCeqfwHe7jf3N/doZthgw2FaSxPkNuqlIT3tztc2VDYOeucyOeBc o8do/ZvDSzET5GCb6GawUz4k/YOgCxasDoL+CYTlZOTPKVWadRnVcenMok9A 205l1ZSyI9hQCXa77zKqxAenxc9s3cJef1JWFIdt0eMExipvWOtGZHJEaQnN zUT7QJl1fAoILzRmRwnjCcqzpWJrflZ3QCX/X0Pzv9RnGhQIpN+dzMeiV/0d PtbDo81eUWtql5OdVcZ7EmCjbOyx+y36Hyvl0taR/LhhecBjJnnBAZ1JLG72 WCNB5um+cMAQrJZMdklPCr1td86jn1EXM58VKmOshRYEMvD41U467GZXaIpr XeuqflUY984rvn1FOxtfP7NHHX8ox8kKjUPH7szmwCBTfW7+2qnBsGDgi+t7 e7w/ep+43LyGDKZ11z6sM9BBgBmKcO9fO1iL5pEGbvUmZvzQM9x9xlgcfblk GZILs9Fy7hWxKd5FOocO4a0zNJRRWdsfPC5eUyoQ8urChIIoMMAqWVlix6+e hcSImfbexeD7Ek0oWtEZi4DlsHh/j837smCvT1Rsb6yEYDOps46mfwx7fYNm 0tN20vkEKS6WS/nA6NE/1lRtRR7Ldnmh9Ul+GhfQI9v2Yh7xEgFdm+1hrcSJ I0FDRT/DDg5/3SFr7LxNkZPvXBQeMvypjBRjYADHu83Q4aYnNaozHTf6UnyH 3Xf3avNz5tDOkzxwxnEwoujwWFB3nHXnmZjGhhk6NvmkKhTTUa/qPmQVGksu 7eaZTve9EneoA1Va7m6+K4yzg0qiC4xWXlFcQaDOfypJyZCnwwTRFKQ70zjV YYfzt94au4Fw/g7jgaW8ZCQ4oOdvtAJ7IMnMInQOYemszyxa1VqDm6ILegcu /HUXkmpfLILtICWrop27LfsgjaAuFEXZQRbJMiQj7tPt3MFub7xmfjAmQMzi flmWTBFguCf6sJ3qBn59ByN/JEOosdFMBpp2IhPYyQd9IJ73w5qi9a1JEiw4 hPDTNQzP80yy9mw+IPMLX/4vGV0luiub6Jleq+5bWnGeX4AZLWdVsXWqbdot vOVE1HpjUtDEK5tGl8UdPbC0CA8OudWSk55FPBq0RN3V6/ldWlIfUTODXgSa /OFVd4faXAzpWZXepwWj38bitNJxij7TKfkGq+AyHtbgb06QQSOVWoA92lPU tQ/osZ5m0NMTpCiKXIkKz+nRFUeNPeQKU+XTodTjoeG/0p3dnPyP+O1b670j hDmDMpOTyUEW45EnPZjE2TN245h9g2FKKDu99cCHtuLyGwKXvlUN/w3UEaPi yI23I8kAfaNlHVBfm/oYyUTq6Hh0fNPI/vtF5XhymhT8kkqW5RBh5sH4wIzQ Btc/Ds0mnYk7Jpl/vC6SW9VJDMXC/OIVciKGkOFfVQnFU4cmlL01MXnfA0d/ X0PjQ0258WVBvU8ujxVCGfsYY2TJYeiQrjEqUiwnOenBf159iO3CO+BRzQbL mmQi3CFqyZnEZLX7hj3stosHWu02CsqR/vNqTeHU0HO0xutYyiGJoP9NDE4p IRwbLedf2oCi06OLm6TgqrH/gccyzTEMag/8ZWMuyyMRzy09NGT3yCX3B8Qx D5ranZL3AN9hiwZxyToUVHZZXMGJ5y+bGknXU1QQ9gU9P+6gn9N0ODU2wHDq jCG4t5P8i0ekA6gCrZ/gt3Z252lvcT9H2k+DlKUIY56WlZ2kkwIqjcz5n6Dl R281kmLSUYn43eboyMIbegEPnYQrBgInCe8XaSfPwEwdbZ+t/eYChd0+5b4+ +Vh4rNXL1Qit0GO5OFVvmpdoSOecid2dqNbrEsGBHNLvx6M1wTR7K4P2J8aZ IpoysG4TN4VQQGmO6EjEE6Bb4QumTRTWITL+fCCzmTb2KPcGHUYD4iVChdLe Oy7mKfUg0q117OoYcAcRyvlLxAW9o5Fhk4wNpFP4hWwh4EkhLUJj3aKLv95B +hCWqjVys6rz5oG/2ir/hpBm9Fx0VYL6QdwkhKflrVBsPPWGqEAho+FVSluK 4EcqyJcLhaFEF29BKxgWPTXWG5Fc/2fziw0jAWGjcTw8fVufAz9DQrpxylk1 svrem/TQ6JXdosROgxIh559Zcr4+x9xGx6gE7Sdq2+pB5KmIT9YxMOUwEWxB ItvrNHXi5OYZ8gtDqkOXkLF+GisqRm4iZIuudfOcXQds7tgumey9owZCwzCG pgKGGug1Oy6hu90FtaqTADaruM8eb/DqLMWyD6oomglKCVpJayc+aMdkBNpp NpOm7mZizWuqs0G+/O1MQemypUpCpFbsEkDWfphTlxZ377qrEI/RbW4IMU2Q /I3eQjDdPniVWicJbOImC/ExCO+2osfasmHhhDHxS8Mfc1mwIObHFTSqOOV9 oQs5cxD9vw3fvXqCvMvuvdAjw8SE5u7/Nac5Hbnewwl9hkZBJ/jUNtJGBeB8 hUjOTL21/NXRekR45yJqs73ljEmpbLp3HL/Di4Qq97/qBg4XBpNNRXFooE4P prgwQOQOOK8VaqC41byxOrc2NBo+XDT8pQbZAnGM71fsglpcPVyGlGYhTUHn ZvQMDxGsAs8edCx6HZRtnJSGOIb2nq21JPGq/wJuWkNhF/74+oahSUDHHvVU EeXjxk+8oo8DzGXs/G8kXjdTdUachyn4Kp6b3699KFR2imSBtwv9fFKDkAWZ q6eKbEDVWAzpeNodVbPzZ+O1p82mR4eV6JzyAmy3J/HqikLWyBZg4wAVA06c 2m/ocB0+vq83CyWaznsB8sWUFnVHMZJFy+GUlf0nu3SXZ0/mTZXfp7sI81iT JCK2F1ZBqhDPqFoST/DBNrjSgRMN+iXAC3Jhi+B/82GtZe4Y6NY7afjDRHNs gSQ2R6oPTBuov8Y84oJSmnw0hTPe8QY888uOrVqsZDXFpPMg01g2CkycF93h gJBLb4TfNAWTe1Xj7i9q8rSOT/+X4TZfV8ZwOTYXZpNDWxpdWfRbXF+Zch+r w9h0w5j1yDNEtxHVRkQs405AHx0ng3Vu/HAz6tg6dt7F07RV5VfvJOFrj0mP RwaMEqjuhtLVv8Q1lkhogtaQ6d7JWyyqX+InxMKY/kn69jN5Rd0v4dOdeyfF gViS/hnvgVycQ43IjA6xep1G5Vhntirz85kPUbER3wdoL4MjmJsaOK+2Cf5b tBRxZ1w/IK5vNNSt2NoMf1ymWE6upHPQQcEzZm/6NU10KQoqNoOo+JFRuU4Y D0KG2WLrbd7cYI52/GmNQ8Suh/+brBymBmmCMoiJXkTN1sakdi7RUL82mnSF qzSjRTpxRxL5cNonFbhPcz2gMXFpqW0KW63C3QcERiJKkohDhHIIyeN/lboq UaDuso8lW1e2QptHjpu/ybu5LSXBAN2UniBIGkojoUAPWxga8f0yRqOaPCT8 LD/v+xM8k2+NtnJGN5MY+KfWuZOLdlHWsHtolFsIKjca8s5g9PdLwzjBIY8u wF9b+TR4VBIbd2XN6E67DRMktUULfXS/0D08QK/mm0kUSnSGKakQtQaGJOno D6N3/JfWc3OtXVWQD20Uw7AEjxxS6CyI9HfnvfeXbtkrOjV1W7cV0rvnV/4G mSVQqxHoCvyUc6CAU9a7ud7TokYBvz8ODaPb5LaPs+xtItSVCJ/RFFS2eWTH 1lGFR8EDhsXS4udIDgcWVdyS2ZHs+rrOtpggVoxdlDuZsnFpJDRqIFnjjlMw HXW1SUNiNzAI10SFZoZ6DlAFm0nEwwufbMyRHHxZEZfGvqwTg57Ky7Z27w2f 0aRsLBB+mdXyjQQWmgCDchEpaLqnniiu3Qx8BRRNJkuNsWztdsAg17eQ6nKr 5gad9aQiPM1YshMRTpBuLdOP6fuDVwIL6Cjji/6EECLvbxHa41B/lNZZPE5k yxmno56vnouzyzPUBg7cuMm6VLCEHVDLGQzZLePCO7wDBkgz/7FMQpXyozQ+ MggKFrtHWdZ7D2MKTSR4RptchnG5o3wthUdwnt9xurWQ1XNUK0Bpij5Y8uk+ qKSosnSGzBngg+z41IhSb9HnxE4iY0x1fF7vvO3jF55vjArzpakiD9nZcdEl Mg+cQsQZECIjiG9s7CG1554b1PtbSoYfnnDJia87i09qxLNkVp7xvceUKyFV wLstFDExL59dOxhfqPyfR6fQEILV8kQocwtjEa4fPfcflNB912Lr7zcU6xZS iGgLvEFyIjKtINKjooUnTQiyFQJhTtttNOGR6HYH2So1rbJ2MEVC/NhxBqcw d7cHnLGbeopYqp3fgZv+vXQ6tsfqmb03QYsUKdz0H9TIIDN6wn7SrvsBMvNL lOlFyfL5grw9L97dJMWE8xEbOUUYuuzwJUosiC56xuzsY5RXBm2cfDIFrti5 o50F4zzBdyY8/cLQ4AmLb3D5EVW5WdTSNzKOr50RXZ4MasvPOoNkBfbnDtJH u6qJBhXUYTYK9RQgmHT/s7pQrUSPhvbemq0kcnjWx5sM+ZCen5BBNKEgY0d5 YVPybU4gmgum92n2lT8JiiCpsMkJqEaUn2QN9ZLTMLamyUAryjb4/8CYtd4z XQNtTvCgdehDoazX7WL06hkph+3ZGi3OUKS3I/IlyQHCRGcZAnxM6PJQWsQS +PiJ1lWNHYg3EanfUEIH+Rcizt45w7Hro4ulPRWf98ugy36DWU/G2QbF8TWe 1IHurcrNUCsHY/+Gtev7d9IlRawGCzg05uzCye5rbXoYwlo4i9TMnNQOAO4S eQZMDNmg32ouhk0DeJa+KtbAmmjjS9u1z35+8EkZMvN5FKNxPmV5AhGpITlk zqgeotLj0QuG+rKfEoP26TLmAn4i0KyMcMjQ2e1visgs/FMqItMR4yCbIvjw J+Oj2qQ4VQ/8FPGNkAfWMLKnCRF3YgiPiitq3X25XLsZxuGkUlGVaS5mV9EU odf6STMWYyhyc481IuvVx04zm/qBPJYczqRZpX4Uv9zYXARw688PDdNKbK/P Toc8SYweNX85w6m77VwO6/CGAxTHTa+jKlm8OV+k3bmsqZ10KoaG4kwi1mT0 haePbAfFhsJCENluiD9RhDVRXa+Ajlc47XXuabJwk2bAXnksbaN4D0h/fa9N AZauIllea5QyDIatC8lJXdwmm0IBHcEh1xkNGXZond4lqD9cQZRSfUIX7XxV Na7uHohb47FQbJ4VouHCBd0xmoOxPAyaqdhOdDSRnqD7dRtHNZUmZVSSUPRJ ppJF/F7/OSw0WuDGFLui5H/frVaxubq7hHaOPrggbS2EgjdXkMV9pO7RukIR K4NT40wNlatfQh4v8G/F+IUQHJNzOVipRNca5BRQBmOBHsTH0o7SRVQBDDsO Y09vFpIDGZVwcQH9hMs+ye9XNIJAExQazv9T+ubllUcrxfoLRNNTmLUX4OmJ zxsh+9Aw3nHwWnkLvmt08/E32Owb/WM/u5lHX+wyZECvtFCxNnOX8L7xyrFj E44hR6uNV5sLToAu3gJOsDHl3KHpiWzeGDNbaWb57dKvDZpE9PvtyoKenQeT qXumzxp1C0IZcDdhQ6IOffRmdP8qM8aEcHh5jvDXoVCsoFHpTbk0oCq0K14q KxyToyP8iS4oOyMUSANxlAh+crpRG8vJocBm8J3+QUJbwI+o2MFfRou0KSGp KVq9A3S7evDBGno0CMHGycA0xyXd/nmkG3HS3KALhW2zv6pknENOUw200Gc0 cTMwQg+qb3bYWVAIMl+qDKUN7+LORHp/Z6GxJJEdy0Qak5GXgn13Hq4pLUfL kWSRcC9YoH4NzPse7XTbg2NwbnLRJd+ZnKWrNAKyiYSlzAuqbNzwrqQWb3j5 hP7pbFESolIbaF8YcXAaWVDUAj07C4qxseOgZ9mRcn900HU0cRxxWWCMp6Y3 wmDXLAMz0zvSMoeFTvwIzbQqlxdJLuiHVPf1nZTOpHxoix+dyiUDjpw+Nmtf CZCg+Uw6tFyLCNBFlnk/azzfRdxMkJxnoOVA0X0vr9tEY0KbXGBFZRDhhHb1 0EWGPYHhFzQkaBAtkJ+xU03FVmb7mUcjuft+l08w7aXj+69sy2KLjR3JThbK fOjaMYtrbVXcU+pd6wkDEyTwGcrmVmmIaiy9hu9kHu8oZE+hz15YDOxPcXcb ONQMTCBqr3Q8PWiXmLqJw2BCLlwNTSBHGjEjh0L3rAN46HAQInq7FmKGeOz/ gEzkyYUmzgKG8Lc08pVj06h9bjadnSG+FZdwzFgqoXWiDaolEx45LD8p6baT 1yYYP8Hc4boiQuIDQxix+O1by6/Gmn6CP7soVXZWghd466I2TQYyITru2c6g L6rnp7IfGCxzK0gFtaEWsRKxQn9cuFiEj2svRci9SessgVSEhy2MPK4WM5p6 IZtBSsquf+g//+M882uHWc9NKGooH26H4d+i7QfhLCQVenvL72cPLTwjq/yf 9DH+eE6LMiLTkHY5ImxIyW+0b0JQd+dD0B9h6KxGiwcIZUvWJVohsQZygWOC FJLxK9/w+BiZiubQ6ImdiVc77plnkGZj5hA7ZyaYPQN31xmTesTyR0F2smQp 6SAhrCdnlNkR3Hm9hPlUNd065ktEJ/u5Lo8cY9arV0PG04kzWlT377BgJaCU wkTkd26hdz862o16EdElRhnDdY4GyU05msA00bvgpTWmUUWxcFp6d1D0GG3W a7j8R3XpHOQkLDoaL0uuEedEEiiH430P8ZoWrcPqMo7nLofKm7/2m7N6FcQf 2zfEaFlpjDz3UWlMOCRdhFAW9FVF1naCBjjJyn7rDqWJ4sCV/fr0eC4+10P8 3D+FVLh0THwnmylmTfWwJemS/0nXiz6aXbrH/Zn3UTXLCJuthfYBxvv/QLCZ 4fK+bGPW8qxGFDUidAMRRtat+eLuC/5PlrY72UD/YGJU/EpHC97ogdn2wV/r 8dPZSsG2tl1Gl0QCA3TINlPBxiAH64YE7PwOk6GqNX2V5dVDtfvLP3xA5Z2z wIrXz2jA7Zy3coBukrTn02Hi/rqdn5qyC+yMUjaxUUc8zDvPZ9oXHhs1J8ke 8TXG+uGdpAggdtawiWLuqXY1PixarFlvujq71xe4azBNQkhx1llQiZ0zGP25 Ty1e4bjdnV+FisiTgsnA7zhy3aOzYEPV/P/ANGo/ksc8o64uoD2gdc2isqnz oVw1/n1rPcuVGsUh5mM2Gjb2Vf1fnxKk4CYHm1DO0sUi8RQIGH9wFTU1fei2 a6zSZZT0THv7v+93+AjbpY+Dko1mVOWWJbdto3K2nS1Ve+vwWW162J5/el1S HDX5xKOkhzQ0WPOE+8zW0eAfrPyOmNZXSA+5pSA4KCfWpPJNnIjqb4zGClyE pb59CcIE2St4vWMJ+/g7WK7yCOVxSmgCwRLfiNNnU677JLbD9LFnCnJ5dXBv o2vLOF9JjLYjX2EHohKQAkDTR9dzbqThrEbVr6hNiwqzOdjJKWvYdN3JItIE ZZPKXOR2DASLFju/Op3I3Q9eoZqZFc16J++ClmzShP12wV3phnkwBqxBYdst zvHZa/S6PYvGpKAcapOEZ6z32AxKo1VkE0hhR+yTolWa2kTx+BVjSrTnTN5P 8dBHn4BFKVAfze2th/ZVB4a5VO2eX6JJrQTE/18sE54/oGk2dPowEWmXFnrY Loxmh1ZVj6Ld01ElVgqxaorvp4zV/9Qqtb1zzrNyWg+mJEpWRKcZnb8vk1jZ QmPvmN3O3u39CcZP16w0Yb7waKZpTmj3RcsVx6lJfWdrRnZF9S40f+xXvs8H F0rbX1vPoU0MtKWcjjfIibahbNuIFtYQoTigsOAxbRydYZ6iypp4NDmPIlI5 lTF4rLcY9PEqjI49yeB8eNJ6FjwqG99EXSj46wMrREN678pOb4QiODhS9bR6 6Do5TzBXZdMtdL/vdIievGttlId8mcJo0ykqmdii9EDKyUBjZPGUa2HUaCvK 2RvEQGqnVhh28RAWCKuYjH/bh4UNd4oxsTzt0Elw+dWlxHzzjO+WchCSUREK IJLESWDQtYvY8cCQQCvg0Bvdh6Zcfke7gT1weApJJUAGzHd3RyVxtt5IaDBN RGNV4baSBPH+6ozdcKQMMyAsx47buajbhkdC/2vwxLQBPzCb3LrjyfkB5dFo idbQTeop60R4MyMJbcvfT1sdiHDimLQqVj8klHfr9ec9SoyQI5lHTAsSnApj Z+B6I9gQbFDsnKxu436t+9iw2RQ/X5sloVWm4hEhEzBhdw0ppMM+9AaJ6kX3 lHZXsmWcfPZ7SqCXD+joR1aeMF5kBMOXzL0NB5N229kXw+R60j+BT34AM7J6 /JChNyE/f0J9PZdU1DSLscQgVQYfOKhcqyHWuEfdAK3VvH0Q4/Xrbwya2p9Z g1u3CC2EPN4L2WEhCGf6wPKEv0UaRz88lG+RM8TbTwxF+oOBUjB3G71YYI5c SYeprPIVbCsy9lBhrxcIYaQQ45l8G6GvLTgjodhtY7g3yke/1O0CMY+G7WdZ 5dyWD6UUmuAmbjX/3wFhqe8iVR1vdm5jLy8hF5YzZWj7GKcQsiOVj/Q/xyfl NxLNmYFRZiBUXvN9NP/VpV+Y5FW9C1H56TAJy4tXCb6GrCEGV5GP/G0Ew6c/ VUhXXjf+XmTIZu2Ap9H1I3m+rCeECQkxaqwfRoKsl0YoxpNXy2qrc+B/tsE6 Km4VcQ0DGd8MIvrrCOZXc2uZs1iWKa4kiJ3vP/j9e1zuJiseHvqLSVvbZzSO buTlsZmAmBzOR7awh2XtwfeQiq9DzdCGfzQgUameNk7OyCc4SlfBsQdo+r40 8LfauEtCvwbjtua0qlrOVBTED0uknbqOjwnJzsXyTsrGv799KG9yLdYWSS24 PO7IBguH0/m6lArbp+rlkyzyQoNX74hR/rkOKiRGX1QKKzz00YOdvITmzyYy X9hRtYE8KbTy3Jj1D+/5/BK3Q02CM9DDz567g+5W68ZwU1UzWLVRTQb7JAvd nc7G7SBhL39HqAXEWyM6HSYX4P91CFij5CVZSKOtKhCjk0IIYf+Rrz6gYY4t 2THgqj4pp8cCZ3P9uTg2RYaAm3nBo7JGe6pjFy8xpPb5tcVjKpYd6vQ+ZrOR TPTMvFIeVipRArThgmbH9De2L3cpF5fK9caHZcan5CQmRdozyxsAO9XfJRS6 CdX6cu/6cH7r0DuKv1uLWsqQBLmi26jKd45M43GQ5m8mk4zaua1fXeC3RuVh okHkfbaGoNEFGtPm2x1WTDz4de1oAl09RRj5aPGOqMARXIiuv9MajIP/xi1e JxKIAEra1i7ZiFfeQZdHNSicHvuH/2PkQh0MOu/ltYcLmPAUe8PO6QlGqUTM ggXFs0aAN2u2hdOnCKxmi142uWG0VbuBTxRgNeRV64wcbpYW6tZTOusZ7ble 8Lw+2dkNGUwLMGemrjjQ6x1yUpu8AJUOpYVUhw0mavVZw+aRDkWl3XG6nDe2 Q18/brFaptAV5R28U8gkowcQUWAl+rIYqQCb/5Od989F9Mq3xwQDvf3kbejo C5oNSkWZ+EoHMgKRbu+m6Fey0/rcel1ohBWvBj415EM6pgzEmuVBd7lyXtqD roRtIeCj++t9yqp1BobfLSUUFedaCaymSSwg1AdhjFFZjo0ADKkeW/U+72Gw yS0sGrpQhWDjQYSNOIkEpRNbYqVBgYeMVlIoghTkZPbwmhYlt0o0waEsolHx 1EffLcnd8fTYP6SZzZb7/cPTVzBFbJfusVANz0KrTNC+JBNLm2+Lyut1IPdt 5pcOQpBTOTow/8YzZNu2Y1/nnDFEAGZX8GMWe0hF1musUSejqY4O8r72oYfz P7/K8PJNHRFYafDiSBmjg7gK+Hcxgfa+In5FDoIPCF5e3OESfyBPkEaw89lN DjHUYv6VOSqxGFey55W4d6zA9RVrHs5cjnM7vp7BLLq7O1s6/O13Kx5zUU+F dQ99Gx7uajNB82U3oY6HR/6+g2pBEwSKcKIcdjYjA3+nm4hIyvzV8uH3Kbra KsSYl4OlLF7zriEPEE4mdFsG5uUl551eQKwvQwsx5zpBchBNijU6Mq2uUscP 78YZ5YgBiEGdtuywPv8SBiIt3nSL9FnwFAUr0yyq1fy8Xxcn+esIExp5qyaY jPdRCrwa8RXYWaTEUZuS5ewhPfPHVfKFuVHR4GcUdyq6rtvDZupuqlTRgBhR ZycI451NyeMfFG5s1mxuvvXnaKMYCyIPxCoVWP/rhJxWtb+HZn2LvHLx6oOL 5IV64w2eVuOgB5MZ9BOIfd7S8bBrtyGaNf3Zwo9OZBsdCgzo7LzIf68bhu0o sGxLovWQJ6L32/CD3y8uFNLRWs/mImF0ivI8IcrxoWYDa3lzf7G3NpDLekTo HT/esWo142UOKBYXl9XZ0A3J9kW4agHPIbguGlBvvdv7L68s5VsaFAyCDt4o MQ2IbsTBpnCKsOSqgACNOUy2bgdRdQtpTTWUjoDAGadMydLbBNzRRbWW0e7r xSh737NRunwPIbF7hrY+QSdUhtGR0V0UmfDJO/59DfGrIi4/U0q6nxRebhOu +EhIoCEBlLMiyjoGFZX8oLzzadRZiXa/BpJpVuWaIxxkfl9DRogtxypjIsbZ c7A/EzUzIufQyApcG63OEjYiZv4L6lwb3i7jQQA375219TiPpkd7JS1EXjas m/jct0vo0EMz5afZkN3gLlhMzFbar4egWGKWz0YkLUNgQ1rQO3jzy3dc4FNI sY5qQha3k6ZOEb5ksiuLybWDkGGu5L0i4GpdnByBrd/QmIZWLlcFBZXO5h5e tKOwhXZPjPA6VIyNR5ZEDpteIkd/jhuUxG1XPcmnSUEW0dLKYVO4scyajcFP d5ZYXFStm6CBKwZkHWvi2wDtYpMdoDYaeFzjer7VQkKee0koPEzDs+9tv1a9 OJmUtx2VD3HxfQ9JJzdKGSYiWNMZo8YESjY7NZuYikPs+7Ysw9CSF8Qp8/zD GD1vq6r65+C/mVARejAFSzhHqF+RpeCTCXYyi+bWQPkgZ3CUFJk8zEqKRUcd zyL6ADX1GMrjhKf1s64sTBV9rfi7s+Q34jopmFccytJKTXLe814mfsbdA8G6 dbeIlzK6svOpoD8XGr4zwl7zCg2Xos0dbp0EXwsxMbWlvlD1cVmCa79UVBrl 13pzBS2bZoYBCVJNhFwji5GIwsQW7T/oS/3f6lTffDqu+KIjCrB5pkchHV4a ceLC4BslgB3zmoZxxy9HgJ4RJooiNO0OLoPypK1irfKgyB2uwObQO9Rl0xfv XBdonoAZmyPnQ4qa6j47j8I/KipFAfs0eKW364LjgG0ZPUyZtgFtOveM1m7P Icxtg2vVykPPEwsTSMaBSctrGAv59GG7S56FWqCx1CUft5j6l7fwYgNjcigk sgVX4LciuLy7idBBOZbFcveCsTaU6AYRQ8rdOnf5rPEaS743jf59zuQsl+V6 RfnPjuy0U09ocZ4qHeKVJBNcTq2uKAxhk0Z0qCwjue5P6D0WU4phaWwIHbq9 RK32PM8Y1NQIx6Odtl3Qt//5DpuGGJQGmlqUTlFmvcxXO54nFEwhSRZSDhTa nIegirnS2d8MWuhDT4CwjjmfVDXiOUG/2pDSZgiPDj5GWWhW4POUnUTp9dek K1vhkKRb/M8IfvwQujcv0ETOXU21odYKwgFaMZmNZkRFu1jUewbZXKwT8xpK 0iIPIZ7on52ygYZGQDCjC9bVh7cxgc6oCqt4SLysulXgqiZAPu3mrvcvxFo3 PSPkPIgDF4s8uRQHok5jSMYwz8L+RNFImHXu2z9WMTcDCNqM3lNh0FFdJE9Z a7mXkyzS0EI9qVRD7csSVPHzZgQk6/SUrE1y9hW9htC6h/Q3nSclWQ2VYiGA /dqXH0bMJ4iFcjZlykRQBbVJymwvR+rEy1Ely1K5rhHioozGgfXQX+9IQP18 o41PC8hXCRl02vBFWSciBitxRyiZIDV23Lwvz9EGuwE/uP+XuvfKslzXtUT7 kg3QowPNZ4b33ve/IQ8QFUsiSFBcuavGOPV5Te5gKEjYaQhqbWkwKgywBY3k LL3nOBxGlnxfCzJSwQCyAq/Xruf3IQRmG6KSnfUMkoBDTbIzejB5UDbijF5n NPLJJDF/1Y1mT1fk+1DutZ0JE1bA0NGV0VIiXmAPYXSbub0D0jZzExa+dUi1 jqjXSWGt4+OohXDcKSUw3zGr90EpMzK+Ni50Bu1fH8EDlJtDMHbCOGLjf5jw LKQ0WwL+9vw4Nq4AZqJZiG05crye2ahqzVlD6vzYm4tQnt3t/FpRdHdxfLaj d5Tqn0+x0knFpfYYWKfkPIwuYtIexR0S00PsrEIbv0TQGEVSaEqBHzA+V8nk 6c6G3oMvU838Gjv2iwgE7WWXzzR0s8vqDlDNg2km7ccTa3woZoCWyCgTedmP cUrEEZBREIfrjG32tt5OvwIXZbQ+PcNSTzVIltjGkKp88RpZhzfoJttJKJsZ vMF4G39BkpLe+rdbwlupATYbZIDPvvBDDihS5YHNGfNO75mRl+tR2xcwu/rG srqu5qLDsG1Inb27PlhrT8YWNjHnmW2ZP9SnaktS27BncnD712MSrRZLkZS4 PH6cYTWd5kp3BmCGHKY2F6YLaDxUS26KyVnfD4OXV4lYTfz8zgc1JbDByJSI vogKL05H3cE0VplRK7dTpJ7dxGB1CcNU83rUHpHgRek7rIkY70DWh2KzLdfU y/w6xWBhS2U5rSORu4CZ+0odN0eDJBsKRdLFIWRfItMl16fkftxGaNiXBWoI sYy2BS5oRCCKb5kIFbw9esc/rljp4d3AH54xhuLpf55MSKFW+4yY3UOqeu8j Wa+ZNKqYw2sa05XH2qJZvR48BU8TZBtt1tJiIJpILtgMRZMe0zhkDOyIlngx Fl/uTOdFPli8M7VlERmoYATPkUQO4FJS99Gw/W8a1Kb41cyUPvbHK94IVy5S 8YelyWIZAT1qSlMlOBsOOMeKJSWhuYuvi9k9YGp1XZWY1xvjDJPeoUttnFLi ek+ECmGI08WoQwaTFUghbDgnCNmYqQN+PCFOe4NQE/EJRK/CWF7cVWHaZMUx niDmZD9hYexU6xc4cM+f8BI0vFOdATKv1KwYGdPkwXq8zOR9cY31cjhaNMcd +vDpXbCQyj0P6V5PGhbte6H9kv2hFNv/7mgerVckJiL8BdvKhD8vxmTN4nJp QsxyZb13IhnXiPjo+euavN4YsFVe62qr2ipBv/fgZsaHFJxsjQnQTZSFejYJ uq9TullC9dEsrDiiy4tPz7c68IsLsBm5v9EzoowD2MOwmd12ziji8UhYqLyv Q9K6giLFYY5/Fm2edG0aVkfCG1Fl33ihn+o7LZVjAjk9LHxAYT5wGCWeJadr e3UICe8LwcUEUHxHQd6Q1FnxnProxkU7wOAPJLPmbsF2cQ+YGAovO1LyxPek Y+EtOjgGx54pMYFUGSxYbCHt3tzl8dqmrJXKIquzpE+puaAOQzeKQ8W8ks4C S8ycepQt7HyrLD6IFp+GCs4PBgMdcWBFiEJvjO+y7iOfxO1D+bGbt2bHtf7x WdPmlIdZgBQmbfIDPFJwqSoguLvSXjBbuyQfmp4vP49400tynfGaOmmblNiJ NkEgeZtjFV+mD4WwXzSQ+OAenwIGKzbFB0WOno4P3cbU1u3i6lYwvbpUbLac jngtsKhZ2IPNAdH1GRnYV3cC0zrEyQNwH9QRRhWDLySOME3dzdRq2LkHv3q5 wa5xTg8b/IJLeG68HEoewzVFoBe758SApd3979pXYKQCG3aA/g9vRltTdhfY l2ryfC1puPucquUuxzR43LIYw1upCULQH6hcfydMFWX1ADrQvw3Zp6bJbhaZ 74tI6NCOshgUYj+Dl3TH4e7rhrQHaoC8xvoohhh7WsU7lo2bjmKI/BNS25lm k53PvdGuBLcZjICKMFBSdt4iWSpVDM8eWQ8dX9I8qChQS/1VRd8rWHBvZdEz Iw61Lf0ZWEcsJonFrpuH4L0CjYxik1UwNwqyzu919BkTsQprRcJ9a5+Dp4Ao Fgd/+Lt6ljHGDDoMQVjAxJZCym8F8fziTL5UmyemgAQmFvDjkXr8e/Kjtse6 FAzYfsv0s4egUyjbyTD7uISURVl2+MHV3jEACwi6r3u4bD6c6uBGr0nDteYE YoNu7ZR84LRrwYScj9whD5FHFBqLPRJ5E7qm9cXvZ70nK3JfWjAqinnYo/PS dyuHKtJ6IATFBNbNGK7Rz+KkFYj80gZTR1bnLUEavJMHTbpdEhgfGRK3j8se rsEuv30KUMLdSdErWtp4/WknrJ1x0rBf7xpRgegtKjVls39f/u0XUWOK3sEb MojQuhLvFbpJZs8Sga+1+s15pRfZsUH6awE0GySRc6xV0VrZeXFcFblb1m6V s1tZ6uKcbDUKopnG0hW7R59cb5Mi4AzqA+Y15A4QkEgYPUT79xOGyVBZ9Dis 4wgplicIIuZWKqvwHzJdU63lnqtYBxoSzofsZS6+qdML2m2Y8m9PoGuLUUpJ kiFRnohja8wpZ11g6PJxPbljKNDdwz692BB0hawLGPwno6IznZVxD65osgnY tgYQK8GyM7DEAdYO+oyiU5K8qessn5KafFoYFu1Ot//GBs0Jf5GsfTTdya3D TF/jqGwArFyTsYN7tI4bJL7juYtaB4xjFkh2UcYWNYW+vUmKjRhJ94+kmgpQ /j/shrHeDMyxQLZF20wcPVlvY6RqoWLev7Hl8dXKktR7pmBC2SUUGFFp2ojv zpenHJVBoh/pSJm99/QeXyONQbdBOPhZPAZ7yM4ErzOsSdgWs9EBiJGtQMYQ JTrbDXRkm17BZlPK7dTZZDUO2E6dCxF6cdEHiqtM9cfOe85uh1f3gZ1EbXtN hdfkjM2AI5moLG6soy0pBNoMNbdYW7ed/C50yDCuIruFgIHbkFBad4orjhSh 0suTF+sbtK2wVd8c99uqPIxZ6y8dybTEVlwiCcXFBxxJhZKqFSRbrhrSTooc NmZgmWwKcq5bcgsWDKUJD27Yj1IWa9E5qR+uhTytKzY8oPtgrrtX53PeX9kl PmDQxvAbjPy9k1RF1pDxsepcyhSbo15Zm7UN1sCAtbmbiHtv5bmiIO5fHbQv p3n4olZP1uTKSwoNf9+iyzMvtjj9HzNFf3uyNieBcsqMR1BTIvzOn0FjmFEi X6cE3sbeCHtD5u+TkHTtMY4JPhFC1PUxLOIilaY+vEf/b3Cy11NnYx0bNJEc Jo1dcYfCNQi37ozpNqJdAsZmUyk8BhOh3JTgLXa06y/GyhIq4Z+174/bS94/ Euu37HrBkHG3VaaYehROKqMm7cfIKBjim+o9QufLnYeMUtzOFPC6uBC4msII vKbt0eZLGRZZkr0IEM1hyIE1e2aViuUmJyoVsD1NtpgsdqB5bTG345UVluLc hjxraO/NTh99VFBQD61KHrtiEuIW77AgHt+QxVJdA4eNEg8pcWln1pBwEIv5 wr6spiIbT2in4DMOWVCpEGWsU3aJHdGG3vaVeqcaO/mK0ahygoMhAvujhRU8 QG8RBbC0SS19vN02Qlt86cGbVrT9+9cqHys0mIdE9lA6kzzEsdNoFlMD03Cs AKZA7I5+bDg50zaZ2jrFODurgRTpobPlHaR+DyIHPSYLrB3yeERAB73ekI1O 9akp9WKbl5QSgTeCvmPNU++PHwUhqc3O6Ra4YLHDwDsp/Krcj7iswkQ62QIO 5G7rppvamLauTk1ExeOlDzbW6p6O7juALVKwIMq/Uyd0tw2VHG333n69YArQ dctDDgLUwlp5ndNZPZHIEBPFkwwxt+UiOD9hRa5dF3p1+R4x4xYIQZewvdMk WzwoTyvNx1w0zJxodIjjHUZ9F/eYvl8mhQbOP2JHAUn1Lseog66XS/ON5tVu dfb5gNfY1zwsgy2F08EG1guzENz3Ut4uUQa8BKyBKemFLiY1a8944Mh8RgAf IubvLLZ7pNtvWtguo7l47YCJxB98l2/69z1gkV6Q8v6XdUof8FypGvuDm72S vAVJWzfJZBqMENYOft4CTQ4wBa+D72OzHz/x72eKnGG1o3YYW/D520hMA2nt a6LS5YFNf626UfpcsFbF4uo3//6cpqCZTAwp1E/O6iN4sWIr7JUrWUuyZlAt IE9ODZizoI98fLj0KdbGmAEvCLYYeCq56xw1UZL3K6yESBNZR+oGreOwq3hN 0Ni3G9J0CsqpQtGvzHdJqidmJJ7TUMDh+/z6jbT57jD1PFmYb205+zWkNe/w 7XfE0ERWOvYuJXh/UIndY+bAvr2/1bx7wj+6KnwQvKc9B3ZHHSXuUYcq3R9G bhilYatvXTZwFycJXG3sQrTdyTtaZ4r3QJruglWhmO4OQhowW0zG6Bj7k9On c9ICKLpiM2sBK18JHY1ECm6MoZQd1VYtERlknZMyE6JTUbxgHxSYLWbyWPj4 kEXYhBQiReREWnXFeTtK8kW1Zj2hWFNWz+yssM40OO6UgjWqjxiZxzTwmzon 85reAUMR+e7Kmw2sjCdWlNuRfHy8cD7rVzBVJCDfwDDY+o/y6vuX/VDkG+g5 qFw+YS3MOIKOsGUB/1pOGv10LFSSTszFIdO59xiCpJpGFfC8lq2avEfvsoLq ejNmOeyoZRWkLf5tr4gfXLYIZKoD4fLEGWOKrRDmC4J5uYxKl0YoTQDBvIQL mQNdzPu6XfOvKbHD4O9ikwO4paqFZEO5NNZKh/m6qh7WSDXs1uaBKvaEDGzU lzXZONCobdXGr8DtlTaKrbFIq4kcMoaelekLnI994SI1B/zpTkFw61zit+H4 /MCGxFXgKG1JkMiYkMZCwegOTstrzTqYaZsa9fHmUrwRPbh4bBpLPKyQvfNu 7NyjULl+nblVE0/a252h4OcXmDh/iY3hD+H6FKb6gd0h70B0YsZVfTFx9pVN JL+GMM+lO7atj0DOdsXHTrNBBIRxcRtRMQbLhFR21R1yeeH4QY6+KePTOpXy s3UZS7YZFSo/GS/PAJJkcFcnONM9ai123c/O59ckoFFgJLCDoP2jMkOy4r2O JJPjgbWsWh2xFctCbDzuXX7jBy5HF3ipzGRdigEGTi0MBWYYuM7Sh2VTMrrE E4A+GyDrHaExC9KmpxYBMw5wXd4RbEd7gRe4ymXsDjYW9SajyNd8p557eXAL UWfN594YN4E7gs4gatFbbEG4GPJYB2C8x04UW7yWSvrjjScVwz8s9ySIMIHS hn/6Qfia8c6Wq9KxGQFh0Pqf+e+t1r4ScCZLumSdY9+5QK+JMKtkLL8VMtau hLj2pQLP78kBtAgiwRJfjuX0Y4bJAxOMsgzdnWDcnKfkbcl1Cz5h20gDZWl8 sd32tw0fgEka9mG4v7mEOIEYaXdAw3cvPulYIC5JnGqKGP86LJddJMV6X4c0 haOLE/7nsvR5586+ArCtiI3BkcEmdPB2Aio7vy/P2uske082RGSdxsIy2aaI xm+D8ngCRqUK1Ri1xoSC39l1robkooC/teK+BENVnSOPmKTs3pe+NzGEAl9j giKwaIKOr70s8O/m2nZ0z3DoTzQJMWeD8F5BFJSNRe0MPmL16rVSgzWG7Kdr 5mA4qii6hrRI4vlqZ/pycYd9iS2mL8FGjUWsVaJqRYfvjemC6RrJS5ItU5qU oHRwcXdYFED54gFib+Ww9MRXIEfiUWphGBPbwfZvwmcDTQ+eDfbqHm/s/Ouv 8TipQKuVRXi2yT2WsO825FnSBiA4xPrXZKz065ohQIFu3pyPJZPLBCBqnLWF BzSbB0hSaNgfzH/JtcbsQoEWciwmOAV2x3r94xGry7L7iDbOciK2IwoiMtDx v5aYN9AR9fBMfQ9RuX6TevFEGr1FhAiYNCaVonTkjsi7cZFV8EMZWaLGbDcK PjG5dGpvJu+gApR3YtkgxCJ2C5/DKDPt2RMQ8MrOIjTl5sZrIPac99s4Juya Ki3yVFJ4ZJZ/oa7p7UT6hzsrhufn6L0rrjB4IJt5bdzYyFuc1wf8FgzA380X DMniunPjj/OoQol6dVbNM6JYaAdJYhU7mBvxpIyPRgHf+y7N4OQcK19TthcE PKHtI0hbpySbcpmQfWNHVgnlYhoLgQhBQYNCvznuPYEuGTs1gJvIj2aeU7dl eEQPP+OULs/bgYwWpTBptmsT+wHt6pPM5EouWsBQigVlTLxLFlxV21pHli0S +tyNzVIa+1yfrO/3GyenSbXcBwnEp8xil9mipIkXgzqCYvXfD8brvdABC0Rn mjLYm0nQqcWbXjDrMdbBpEkee3CcIgiazFgsFcplqryNnGcLGR6/S7b+uA5O h/J64L1wpJ+nzLjTwmDg6EgKFdU8uVurqGJW1GMTlJMvsyxsGDHJhwmUDSCV w1FyxGtBoofeoPeY8ywGqhZS8+zFmowM2Kx4bSAmnc/cA+npjRpX9MErK19m z33l9AkrXVdsxqwlBfWQKUFHqUnNaRlyh75ZnsviwHV2I0kb7GvmKlGMxNdX +LN1mZz/H/JqOvtrlAuG3+II3s19hxlhIgjKN/OmF58IV6Mfe3yBNHp8bpqE NuTswQcTijaEnGQmF7HCGEOdCnqK9dRtiBJIAaMj+vjzY1SwlepfUkrNeopu 5GN3xLBN1Ez5r2PbvW2nMSdl3HT7O/991TFDb5i+DDlPkSqjbKvZR3uDDcMB r5wXx1RTVX73qhffRltfKyLY4Kcwy7kLkfmIDKL6rOyDLFYzJN/dBYzWNTYv Jso3UQ8SE9aPy0FDMfNLtzou3f36Zmq8G6QvNUBD0jhh5TmlWPV9Q15O5IgL 5YGzgdx+mCByWlAqkxIFWAC+O5O/N1OB/L8gDro/DtrHeT9cgrdcxBgL/gnM ECZAwIrMx9a5YB42fNvo5VPHSUbUdYDbDLHOsPdnAnpYbpGPAjbYpdpLZ50n Vs8pcwGOHWrBLun18YOE5SvhdkKlThSnghDjkmwT6xeq7KYH7O+XVnkEUoGN wfdr/ccXE5Wt6a+YcRMGutBxMBTzNVYMib3EcEzNtIMku3skOeWiWsL/ESas mp1nteh2yil7sWAKGixG14ZEh0CTnubY5ZBEvjBTmHLEiY+S7GIzMnzcmHle gJBRR3kXuuZ/h/iGISoFHZtyapsMfRlBm2LSghmbtFAjOLkRkefy2nEk5Nz2 NfB5m4Gsnxs2vXPWmwdrfW0Wow2B4ELyTLXyqAS9qSQGmSE64WdKKWWaSolG fn4ne5Fy2wge/yAugB2eb+4QYNcScyx9OBqgOZURNR0tbBtiXQNZctOKRCIr Tz84pyfbNF1GB1m9vwBnWawrXAqNVur3wV3fGet1SS+m/oUYZNz2SJCDqsUW QzlBHuOGSPOKQ2j4cRgESpShCXh5dVImdcURbB+rN6z606A9ejxBv9e7Obcm S10wSxgMThPZaXbendhjE7+PqToM+iNgT4HVLsS+/svFc4zJMwVhAkg6bFuN QMsan13IdXGNibS0Wkgxc5WEW/z5aUz2Bi0Hhnj5sYwwzm9zcuE/IO3xPNZc vnxzR43ovSYRF7Xjm3H+YZO3RQKB2eXXqFL3uDMDGKQej/IvyGvHAexgI98u rde12TR+6ISJM2RXsjEIlpLaKR1M2f2ZPuji8DtESw8LFr86bob1YACYcict VGiepNmotoQtiFSXxdt8ixUTecnbKiMpN0XS2mgNOh8uk0u+ksAzDn85FV32 KGs/QrHKdNmnYds8ddcjh96JBDjBxub+9EDkPDMxr4U3uxy83BM4Jt06YuO8 p5Dax7HweZyZtFU+9AP1xw/Rb4pUGCP+iYB8ADvDC2lqT2w0trMeGmfN7In+ 63uOJlM6+d2Ik49YVMkUInGZGlWGVA/s+Yp8YrSevFdZl1DW9jwJIeo6XgSS 93RhNNaN6l6Jz28ju0J1OjjjGoIQmztxSbNxRqX2RLHHR1/4E/7DlBY/iGZb YBnaUkQ4LJ+nAM73cTifj87k6mRV6XGzSJ4NbtCDI+2tTdYWsDtDZKWT3wOe Ptxh61Z6tRpyEDeYmzoc9vEAImfzjTZAe9G+wQh8GqdikUxIbws7GywfRPL6 jnDTwPSbUfgIiWnA9RrrnzuweWGy3Uc5jM5JxyK6jcyHdp5ftzlZSw0IU0x5 Vt5Zrb5RfV82KLMeOHYtvqu8YETEbJ6CO8VGcmkMNY1V5WQsBrwdCNQD9iuq mhOBTwaDtMuPtw1vkKp+8q5jtt9jU0SsjTGNYWvavc03Fw6yEPzq8acIu+p0 ABk4IqMbbNTcsVe80mUvmNqKMq+fCU9UvLdACDgdnOH6eIJATyWPV9X5Y6YL 3popeIzB/VT9dY23tXaEt5o8G7zhPCLpyzKnm5jLvxF6crEM3oUEnN7ZmIWX 1w9MycZpUFZGIGvRivw+/9WhgC/kfdNon33YOrHLcPo+8yGrB2Y8yTVpz2dF AjKdvzHsF9mltUNFsiEEp/ULJG27ITvILdxCUA09JArDGlKEbRgW/A04TyUa Nuze8fFaoTi/snN8S3aRnGHyqREjHkF+gqxeIXZH+GfgVfBYYWmJdGyS6dZn J4/4AH2RHXwilpvS2bRLRC+Ifo7zjbWZULOZDI1tSL2eSfypiRc6APRu8D3U F5d48FibYeNaQskGPJkXrwv3T2torfDMELIAhDwRetHGsck8xhNC3TixO+qt orNQiDpuZboaNOxt866/Y1C+GrvRMGgyIdqCoDfoB2xi4vP5vlDplk8RlMmK FbJUyAvmPVeSZINz+AygYH9sRUBFtwYLWWzmWEKvJv0tpXO0F8Ztd++YhUs7 QsAjTlhIelEuXpQl8M7MqK217u2ygZZlUsIf58H2lx5XD0QHrOaCXmmLsTrm akrEQPY9O9b59hDq2NOwpxMULk/B6Dk5rDAsUleG4A23kypLG4nDGGNkpJQk ftiiu6T5f4CUGhPiwzD+CgNVrRhjSB8ciz6vhV1dx5DBJsspbLKGSZkpVGhJ gv9+2dtvAFOjSf9fwou9vjmbqejb7i3BVCybt/zLdQhYjVVTZAVv36x4/czW kva7MX1npMvovC6GDlbZ3H7MpcnY9k4EWwVny2DRrXzXjgLwY5GoevfwN9hf uHqPoLHMpCWE17IDlW2X6gQCZbu7vlbaMnnQe8iJ80/QkWG7fQDyR/HZI00q fUXkhEmZzb5pK7qDNKaqELDqVrofkG/ftfW6aoc01tg0gs+CJ+I2TEJeEZmD wSc6vihFYo7tqLydXJKBZTVrJXVMSumgB6GaolmKcoaj8TL4si/KI7XILw8e H2ntHm2xX/WY3PXI0HJ7n6v1bmQ2GYOWasFjXUGkqMbnPmyjn63KYMpN8CDh SmvAMaDKkUjNjB4Dbrsq+WYUhCFsgFVUbuduf5wYaxjvxoOZIIETlZBim0A2 3ww8bcNrYNdTURvycwh5tlw1zR/axlBdD0NNdiAB67FsKDakARyzJunvEbhw RegPXC/OtAup1GSJOpExfTRdcreoJQNBs7pD7vWKMsm5ttj4oc378TrNw6qN EYmPs1pZIfJWiPqLugnGOvZhh2Y+OuK7J7fX1uX9PerTl/cNMd6I13lS5Ck2 MiAW/I4XPT3Gy+rX+Gt4DlhOurzr6gzZLr23tRkbFmUeZoOm4y1DrfWKCYD0 NdI31TPeYR2hbXN771RGCa/zCqxoJm18EFhNu+6Go7qV3AZKog9eGA1zo78d AOERPfZSY/egORHOtu3BlcKg/RL/VzENevX94z0ssXmrppgCsTwhsZJTqig4 viY6ttPv62zWFksJ8/qO4vjrI5Cd8p8iYURP0sd5V72jjc4DWVTMpTsvfPaH Kd43jV6+fvzS1mxKTEUhIRgVu9/VCdUwxqHRz1oUD4uVkpgXXn5AW6aq4iM2 SFal1Em+RjpoTFy7SN7GlV3S7vb+4YOUkYoxD8mvTlgEx6HqTFD8yDzHxDYD O5qEhy8cI5Zn3qpVtuj3fd2ckLpMDXhWkCwWN3kDIs5ZRTFKp9h0Qlt5K1Ak Xm/b7gj3V9jm17CIECx5P0Ce6x+jPdGiBnbbCobKnp0DnJ33B82NwNtZiGr+ tUvnFKvwRZoweh1GZXayiP2gao2Lezv6z0+ns5v7OrLSWKZMMdm+W5VcPqoM WBiSxS/bCyB7moz5kmmDF9RIlNBiRdUjKaRvv3Wh9RGlUYqJ1ShFBpAWr62Z GX5vxdVFMFmFrbgVdpa6TcpymBoTpOgPqlJyjEDTxxJvxMLCno3VmdP5UW/A MhE/L1hf2tmNreJsyrjeEQDVtlogI3SVXLeReH+yOhtKMxXQ6BOWjKGQ1SnH J7LPJV8a5fw7pCRODtcqO2yW0ff9lByxSw+zSIxHp0AJRcK4mMMo4Cj/KPHC vsYUItM0I2i2s8kWRIhOzThY5A7jnDVWNdiNGt0x13q9JFR+6WM2GynjM9OD CKkOnwNbYSbvEMcIgXjqCftZ0zLOONTpWPb6GiBKtBXMdhYKr+FCmq8P4+HR bHfe0A5mvyOd+zN8S7p+aCZAokWck++w1LH7aEt7gVFbpUA+5DaFprLA91fy zpdLrYQRN0XMENKCs9ewx2Ab0WsU9SDVkQdO15WNttwXUQGJwQsvcLc4F2fr GH4im4R0ccwb0X7SJHfd0frJNySoB0/WpTC5aFWQySYd7wZPPNLyhQ22PIlc kmDHufnlQZt8uQ53Ijn8bTE6pHlnuU+rFK0cqsiWJU9HRXU1Rq6eVPT9T3R5 lLrRNcPEgbHN6j5dRsRyEJ6tEAzTVhzjlPEskWaxC7Gnbnbp+YXGl0cy3sp0 AJ/S8/Mq8Wys5PlIaydQyob/fU6OjaYjqDBFa1wQFKwFj/TsNh3YfCn0T7ey G9wU9GIM0Gkyz/FvHQtFGmOxdpx8NIVW3D878I1WZUd0xjfPlsD2PEZg+Tgj VJQf2bX0KjSX39gIJmKLkNnXZHt+T6QByU9OFmcYG6MDtryQQDI7+gd9595V r99hntNYgLXy3PlzUkw+DsgCmtQbjFD1CryBZXxu2O7Ny1WvHviqh6H0pSeW 8jYgkLMKJmTrhvgkoqdSo6/v+woslIGge3odj18kQF3dAWfJYsTp1Alio/37 mMrWLx6i06l9Yioogxn2smma2e/y5FFCmgST0/cmJEi+IuvXNIakwKLpE83u scqNrLWwiuRpdTBpmMQgC3273E5vjt6dN/xyrmnyZTK0SGYH/OAf3RUcBhrx AQaELLjSUosTVq+zsNJiwbK5tmHMDiNCe1l8/oYpzRYnBE18cKzOg8xfkHbZ CRzjEB2BH3DOTFFFpXcUI+7IUZMrkitLo7bsIyjBB0aJLNr1QX2sDnME7HJL 3qrkyu6dd/NvtIH0BfxFLQSQqwap87Eqa96PyqCuBAAs/BS57/bu68cZyScW yynjiSLye42PPCz+1wblZYtJnlITPnAb+xqBF3c+pRra5xSJI5G9joxWF0hC dWGj9REeEXm8XL2wSwKpV5tVYsNNpLUnqm/0fKZD3rFvOQvdBviw+SPut6XJ TH0NDlTqV78EXCZvgrdn0j519KbFZQq9zPLDqjH9GBWn1ke9u4doSt0N/PpU 8zgdRqiEnaGjB27L0nfjZF37rgH59a1L0Rch12KLOUGMnt+GoWtbFzNjE/MY Jk1RqLFZ3TTA9zG4OYpvRrqYviZsP/UgVkTUygadK/oBwlv93AKpJyRr9Y6U 6DfG2Vqtx/hkyZ/KaXk3KHs6+wy8K3yphhzfLEngkN38um79rXZPLxzW64Uj i7HkYgX45MTFlSj9b7D9Za3OYKYQvGNWNT1w2WxvJYnBPHZSGfKwpt8CwyBm CQO6gXLavb6/xbgwHT19x9hamzaTqgmJj0Ecg8EZcdEaueFGJ1kUVwB78Ej1 Vasee38Br6CYR2uSpptCULYbHMSaLGCbxflMYkAryWIYH1L29+Dn/HjAX6Nu dQggQhDhDJ0Rh3mjyuNDECEIPQzW97kPUBa4sw69t4t86MCuXchqGsMAp14N 2BuB17WG4hbW60OepK7PC/vdKWjlkmiUJpqM2Zityobhxyyd7cKQn84oklYC btidaTXhLbdsFL0/HZvHuoZLVKajZudmUmrPF/ubMPXO8jtMiBfSvs1wwn9k 92eyUPY93356M3Kjf0GQnR7oIbi8IC5rNMzUmkC+/emuGClc0qy9NOKBSwZ6 wtIQdOZv8FhxcweGzRpAhbldy2RjwUGqKT6XJ06BsbDyBGo/t3nVsnF7v/Ym lAxzIB6LI3N1mSUmTsmT89UfXhYZK1qfXY3Ku0eCMJfdL/5WEesxB/xrDmAu 5qn+Qi/bNJXd6py9NUsSS7Cz/Xm9p9lYMdw3jihjxEZh+KGRcR4v2mMGLq+7 FC1jiep4oWdlK+xW5w2BsFD5e2FU7pw2BEgs0Cy9RUlwpaP5GFy2Nhyt0Nbp bqRmIctdyVzCZ2O8Ki+KdWSQbVIFpS/hGKJhpc72SSOs88Y3Jr4C0Rv7qgk/ T0QiLB6jI1Nt7JFs6nzlUWkKMaAVGyDnW3DD3xb55JGMtfT2MmOadVMyJis/ teckfYBD0Uz8J9jm65dRRpc1DxanE41NVanyKNRlPOAa4MxiGQbXGIzEmSSc tVw7hKZbvGC21k70JG+CRWwnqYkClfVIR95oF7UvvmuPlWXqR+PnG3L6LHv5 OKvIQh5FHgkgwsKZJWDZpLQWysNmeMJWN9lWxf746KlvK6NX8pTk8qveW6/u uQUfMSTR2NBYC3ZHOPHzCdNwqmBwzhvSmFO+wzofFYrqsxA2SjX4uDF46lZZ dhicfWtjUw10IXcFvEzZJmKg4xTpvCab6ZTboH10Tpscu1V9sSaVmioaQ4vF M1d9HPvKEt3D6sCR6DJQoCiACDOmSajmD5+PfH6REFfBK3V4bEJxGJBuwq7P fKlIub+zBNDz1qo5nD7MHj4jxIZ9DV0jR9SQMUSczIEFDaxyGKwvdSSp4LTj lHj9CCG3P1tCBUFHUvDQxxaNCgXLTsDrls1hTtUJj7ujwvwVCdzNP7efRdKS zcyjf9MBMU4Ba59HDu7Jh9hifN0p5u+jU6VRqcbG2ZMDh5H3LYOlTmcasYpH Y8+GnRhEE1rjqMvLGPKYZ31zygKeLxnJnavn77lIbg3VEYUye4DJOp2g5al8 9xdTSem9RCXuZGOAQiRzO44U3xb+6TyjiA4xVLSZxYCzRbEUGM5/nG04kWCz iRnC+YKmJlm8NrXMMBCyncVQBbmPazm7cCkPNje1pCJ5aCo0NsctAKZSIRkT 5zr35cIZq0pjkwagdzQ/ru8s3ubG5Be7TfI41+PGVqOOpFnBdV8yzJElXsri GPwaP38AZNud0h8RFFZ1fuHN7du1VaW78+UaoA/pXPV1YMLQGaE/iDo/wc6/ pONSr4DlfipHJ7tCMDPpzlZq/VKJs4lgJCXpdY6jHeGBEyx/dbnIIuAeflvS TvwzkpBtS6p4kYtyg+5yI8/vt6J8utTLaGHTw5tAOyRVSlqzZqgPJ9sOrI/A Z8BmY3GQ6r/2FkzRCWvsgmcAeoGZPvqR1elMTrwlPHKZngqmNGenEawt5wtg 44TZ0knIp44fDfZ/ZnSI4w53lpRU8HHlQCAli9cXzCe+KmsCleagnQ0ywEHE pNtavGFob0mIFaK39Cfq71dUiBXRwJHph4kxz6SFwYM4QnfOzBPoIQHJUu5F 02jRZwXZ7iDdQKqJ43hqqsJsYMVuYaskwjMil1GR0RlMd8lNMcIeAuru3Cz6 j+vUIWErHwI2qOL4SfQpxn5ac5Lj0CbT+clqaJMpzm/wKpQ6kuCSmsjh2kgX V1i5z4dMLg67gK+FeCCpVQ877p1nz8lkXMsGUmawSyIpKyUXZcOwzW6U/RX8 6fcKN3eGkiq/qWT5TFpd2ZNBtG8RZ9BLHc+ahl1BFMDEBSaaHfW1J2fyw2fs VpjtuH0YS7umW/viH8oMmkCXa/g9jOzjswkxlYKHBKA3GJRGOW3SCssoYG+u D33h0vDiMOfpxOqsUcjMRghhRHYYvTDc1rtrNJZjJNcM+ur07XeYxHSB745W z97PYaZutJEkTUjGou7DFiqdbLEtdg1BMiIGiv5Y5PtvUH5+pmsvlLD6DAlS 0Q0PeLjMe0J8fYwCMojv3rsFd482ZMb+NqBhrJ7wC7E5+j+42TnFia5hCFFC QuX9fuLrNJKh7vZKaE8WtgoTR1feZ22QeW2+/F23JofyWrsxrFYe6oLyt0h7 OHVBMd0JDG3k2WfUEMCkEyWw8+bGIn1A6qFcC3qyKTu+VQXwK0aIsmXDxGIn F5IuFGg6Bx4d8vXByew7A8EuYmZ2CIu305eULMN+k0nglFRI/1GHjZaj5ZJr 0FhSRzt5ZULT0/z35C/nPqZ52FX6HGL7NAW3KIQfxyDDqKVs/bkHGGSS3eiB WfyMoancwWLKdpPBXNtHoYnLi2D9jDFYwV1jE2tNhtnR59asszW+JUpwNVhz NpLYbwAZQLkujhm6axnBltoZAy39Hv73/IbOU42nAjmqQhwlnXd0VIPnU9Y0 JoVo97BezzfeZF3g7QxFw6S8jYM6iGqQ6nZM6NgXg368MtZDkbqdx6AX8J9y q6pRNY3sg+n5RLufWw7ztQhNCZuHczwRFMNsDOMkBgCVlNW+qGf2lAwMppjG 6Joe4qQNxKZr0kG1+B18pqSsgiq0KbJgEnTdOUTZQ6NMZDsXubwoTvxbX4h1 0dULlcCN6hg70+TxJnfXnT0AVShTh+wkUgQ3hZcAw8zcB8msnNu0dFqMFAsG I3LsqluJRC2b/2hbiNrgNxYC3O+FOPuJTblU+l2jdkOw623DyqJySGyBIJsJ MEENN2FNvAc5uPqKAWqTVLLnxQsS8zBAfIKS7ChmJnWEVdKKAyX0v8niix0i 1A0E54pRS3TWTZocEIS811nSYSGTypGAEi/ztrgPDqMUKL0ZB61BIun8Vdfo a8BNmE28H6HrpA0nspL+Tao4rjx/XYctOwqIdy/J5PHqRgHREsUBSh4ciw+i EojNep9D7lNMWgXLQ0U6SN0rcHeKf2pfROH/Kb7W+zVm31TwtawmZnzK4tgD cAL+pFS2XxpyaambuhgU3j78OCtg+fePf39m8avX4A2Is5duLKzqxrg4WGoo tvaUGabr8HIffH9/YlQoDd508IbcDtkApdMQxbGCLINsRrzpMMzPay1hA3Pz N2AkrWfujuzdPDYK8Ecc/Yh8ARUjX20NyR4StDRhFOpr2p88Y9rTNd7eBKun BFlnobkJF5WhVAx86N6dEq9PbIV8Hrzd7h2eoWTzk2KmBaY6IGge8omJs6z1 6Z5sk2Mt1qn4Q/tT4ZNzvErzD9hA2GeVYo3XYnA6te1/msCdSnA4yte36III D+N9tufpgAyuE3bDxXA4kYiGJYHTYe9b2UN7eQbbjDHEiqM9nc1zAXlG/GAB bBXhZvII1scj7s5cmCA6pv/Q2SyvAQ6aHLjza0wNcxfFBMM0aWc7VxjMsHQB QtnoUmAtxd4Qe90nN2ndj1dOZy+JcrXhNUVfrNzExWFnrhqtrWwM5Ky2QiCC wuKWRukt+s35C8GLqsWRxQqHcMp5rS56Ho96f3YXhsz7E7CstZClMzvEsm8I WV9j88IIHhpcLhpFUtmo2fsx7IUB57xv2kSZIqwZwBoHW62UhLXslrm3Mw/p otCW92Sg25t9f8SF3L6hzQfiyi1e2UdaBqeo2RZrR/50rRGCx1ATQhMAsZlV X2LlXFMC/pc9vM7uSNy/Cq5YQGtCDusuGHWHIrI+tzHPm+SwuMH2EXpg5ee7 uIw61+LB4D+Moa+h0SdcDJEetw3ZHuXx4Rtadm4mkloNeNUhAzSxnnMRZhJD w+xM0BkeEYiXnfK0Q2glzx8xmelKfgDTJeValbV4j3JLs1jqcuK5WBoUnBbn sB8MmQ9cFpB3pxhVGYQ2Uh9BThWyRZrAFZtPCY6pexvbPeVGt9XlzXxBwzuM Ek4SOSX82e6MSSyV6l9Xcps6i02xjgFtWVepxnQd3KSM1TuTmo/nELMkzmYK 7dVkMT/00FwiI4SU0NhV6MeytVYnwi7MaanSQX02LuM+Szh9JIM/F7PR+z+5 b68NxUj768KMIw0tG7rNxvgDc1ANqcZMbCfiZjlZiWBb0DaRJTHqchImz/aL GelhuN+m+N9f0i2ol1XJRhLeOtIXei4cDZea9XK3UxwVs7/G+LRjZf3yQCbG FVVeg6ZWX5liKNbZG/dB7DHLBA/h0BoVWmxxu0/eIYW6mQCF1S+mxlynD1Bx +tCYEdz9Wq7vo+5vzqJPqZRlw5eA4Tj6wvFPyskVMsbw+yGGtZpXSNWWT9ab BiV2sxy898qU9OhITrz4ezjbzSEizx+fb4HsMmZoCqnVIuAqELkfbpzNNKay lMBSWE+kkSaRRtZsxyYmpEXIAnEa08DUoGAyVrl5+lNMzH6T8+WddXnqU0Y4 lWAio55yXDby+irFK82ABDvd+xrooJXwDu3GF+hUV++YQuJECc+ORI2OdTvQ ELi81d1mmd1qO1cNqgnb2GxXHiONqqvLkrDuJFRdMV8rjLwkyHiEyBUnxbSy RalpIqFizwT9WH3zaa2rbzcEgzU9frLCwqmoOMWqyHDV3A72thU+YIJkzY7Q 582TVqZec2LOjWrCpOhLacd9e/T5W2OBxMes/TngWiHFvWXyF4a32NCPIS0J n4wS9TObionzS7TRs3zSrThWACOWSika1++h3k/xPTYepKdZMd4Zz2qlkXzY RkU4zXBrRq74WibJ1RDrzGuvq+4vJFCTDtEMefh2mfdZRn5AqrIANAp6LQci 8EmIqtaztrTZtVhQcTCVMHvj2dzrsi4d9CvED4UFvFE7ukiPr0GpOt8EmmVh u8v3M/sT4syTAV/sFLIE/f5SIRlB5OLeh9z4lqfUhkyKCRbffn3brSdfJXve /fVHFxvJvPb04gD+ewyLZFGJiSDdHsziqdA16dxecftlAx+/qz47gpXOBGIG m0nljOD1ZgLUzorkozzF5H1HkUX0gsQynykTHkEC3cOf/LyBtbXeKriI3WtS HakLeSwfsnTJILtvo7lLDsEx6cZ8aLO7P7EYeas0ggUltlbYu4jI8rjBsu5Z 5gxRmMmkodalvLlLi5EA6/0A4uSIlC1/UekK+GVSvq2XZX23ol4mc1tvrXeb erlqsC8sPqtqghExLEw+LnJ1xylbRxsYLVx3FKY2g82gJkPCD63VzMUZNlW1 NmmcjWU9Xp1BBTppPgSkpv1nrNIsLgI5Zya1Q994PA/gTXUxTMBqAssu60S1 QpHB4RZO0Hbt2Z/ILh21AGjejN4+UrCqqooDGDMlpYL6jyEYIGnGwBff3Lao t2rPZO/uXWPqrepi8vKwE6kUbi/zP4r36L7UJsPO+A644+1Ta10XakSyJC2O QcKXaAinFGOz96EJK5LOY+9jstivwC14OHMGarptTEmTxoyOw3ZgaxG05+Zx RN7TeWUGeWJVTBZ/f4OLH/w9axNnQ87vGA+NbH85KinS8Y9cx1uSb+SB13xq la4bvUQJj0D8kSHCtngaGfSRqYBq/sdbtRYx4G3reJIswJuVbBc3cXVtfKwb PoyBCktOPH/f42XwG8v6DEVx4WN3Gnf+qSHUKLYUSQE+Bc3VJAa1Uawpg9wg 2j0RmbqtS3Z55fCb1uWFDvhVXfJawC9tbTIYehEyqJBL3v53uN31FyH56tGK I4678hlx1H5gosrQXBFrw+SyOlmvGMBJie83JDw+Ys1bk02c0oQYMZl9KdkP iHBWp9g8KI25kBDaXeeL28l3X2lpEJgMYHAT+Mg1TssFibT0jy6vcjZH7htf coKJmaL2OQ13ICBfMYWG5jhpQyrn8o5mYE0iyiF4lZh6wzEEu0TG3fikeq3q 2bUDVT/HWbpMOxvDwHOs5BACUzWUhyurRAb5PIF3/Z3D32vtWh9c+ZmBmVfQ AwW0NBmfpV3LgKe7jGJ2bZZNdtlQPd7YCLbqThy5RWN+d4U7WwEmlb6wN4or OOihQh9saLKQ3q4xaqSqFgokjW3d4uEu0iCkIZvXwJTo80pxt+kzFOV0TDsk wPcHb2PdqRqSXaJNeY+jLWo5qwyAGNJPby0ZYNK/3l/iNb74SZRY6oMbQ34t xg+XnqJlhXGB/x5xjAam5ykVeRA3Pv7Bx/zOK1V70RpLMYcAcGNr1rUxXFN6 NtquKGGDmGQgeFswmb/QM5XyOvkG0EzhA6ERriwCIhKKg/OGRes+Ou4w45jt VCFbqHfAcQ8h+BqUDklRnI9arpy0VOBhiuL2UvJYppgt4985YHVo+zuekw8s /EOFRTXBGXrhVssdSh+IOhT5CpiRFPoe/uqFB1h+VYwDExm3GAkn2aFgYihN 5bjLy5+1TtyGDJ3T8nXEIPLzCC4PA8q6SWEdrfEvMx5DREMDfM2MfHdEA+vs RKNu018+nH5qm5HBZRdO9HObXDkqL9OO9A4x7jM2U38Kxj6+sXizd13p3t68 dVDfbJUMTJS5xuZL4sSUYLDlFZK1Qpim1J7p6uMnaRPXAHGSAMT/A3TMbUeV SOX58wbE7hq+KAcY5Tmmb1OdUdNeGLsCKGaNLD73h2Cl99TuoLGtvHIg4pxE rFkbb9BqEnxLoYe1F3EOtOgq9g9RzH0biTmyjjJWh27lcX0OIdXf1QWDvbBP 1nQp3CtypzmNwV+bc+OHRI6IaknVmq+XEY/fWMfU4YGUjQgrCFa+q1JlFDDx 10OuYdESjaEZ8uhHXvF8gI6NoWjC0EyC7cUKpdOmSN1tsJrjmPuXeV1RmUCi zpl71pmev6fkQ9UP2HluFnQ2TxGb8lEP3jSKXXV+0nhy1Yprv0/x9QEr6vqb kyLgZI3KIr/i6l3K5MYG1oHHbge+vMUYdyZL75i8Y+1FhEWKoZlo6oh9itKU +H0iW0nI49v1sPhsqdN3acet4RUbQahPrD1GSIXlRocAtb5FvoE3iZmiZ0j1 vrKutc1q7vY86QZGJ2JPOAUX8t51gH0upmWjuCPvGGCcOloSbWwCsN/xmjVK UE2CJUFBMWYs8ImiVJBLzMBDbp+K5o+wVxZMnrF0lNxeA9ZIVSsSMbRN5A+u xVVgk9efp7guswPXImJIgIeUv4lePI8kBQD205nFuqHeu0YHGM5sKCQf/8FC NEEEjjob05KyhjDv+OeqljxbMrJRsS41o0kwYYVhCnx+IVgqRgosa5gaSEc5 r7jGhHyJTunWevvpM2lXi6smS8gGq70ZnM61CeoNC5KxgcauIcbDTyRFmOr9 KfJhpFnOoNLRqHp4H2u2ttgEbCK3lt7Znz8MdjtVpgZLosFWKy0lkg4qkca+ NThupLpwsxJBGyW8iXcXWOHWm9fZXMsrBUPKUoL8ytK3toy29tGIkhXq5ujn ZhHeYCi0aKkwyptwARwjQigXDn46QkN2TSsGUwQ20P14/fQQQlbi5+UGlv0x i2+2q2gphFiVtwals87+J8ZIN3lt/A5z6vTCeFODIILSacIWRxc+D2VXJW0J feSWCWNMr13AxueVcb5mJAUV6KwqY1VFRpJ4iZ1jOUXmXBd3GBTNXbJZQ+ci P2vv6qX8rO5Go/OxDkWNGqv3Q/VSNXs1EbEitfDuv2X+35+kVM2lilQraa+g g3kQoV7YEJdXuYue20xa1M7NeLqDBRZe9iTYQE4edKbitye2g0i/IC9Uir2P QBQvRMewu2tsgLC8T1HBkJlVks7dmBCN5cAQ2/jwh3OsixsgRUsblKic5Kaz zXq8AE3Ae5G+ve+qGKHShNFQNYXR/74BNh/tjXzSg+9sh3y9UWruXl02y7BE RcLGw5rGuU8/bbT1lDAGLOao5uzwV0WCl9eBxeCsJzDMLCGOp1pcU8pB0clP MlFXx4VEe+UYmVF550tLRVGMmkNYnUz5aqDosAM0JJ/f6gAfHzA7qXrMRa60 WFInLy8h5B4Q0yzTQZbd74qagnJsDHnz3YkYl+R7UD1BfESz6n+51i7PbFu8 urz3syzpDWo1/GJ5hDnt/TVR/2uQuMfmEdKiQC3rQPYL+3VMewTHEvY9n18x LdVQHrrL2DIunqn/SIHJ98MwsHBnlVZjHUicJyla0ldv8ebSLM6xLHSQx5AD x9VcGKl1EE0pr7OLDPLLMOrUmm/exAb4IeJvGFWMPUB+W3qmAbgdG2aA3o61 fr/n9Tm2+akebcYQJ6UwsIxraElDccxeTGcz9qGfh2ARYVL41+4BQM/uITWA 40Qam3wA2zOdTDI60YVK01QezhYsrmU8K0h4vF45/LPXxETM2I6WOrLAwJ51 hQmG+V3FMWaJM7tNyGWyqWaVRMw3E4EqdU9BqZmwZzxUSo59YtP3Kt7ASBZP 5aaM/uMzgUCrK+1AqwnL0GxbfKQmgrOKQwMGUZUGezzSwGml5q8rR7AcflKL lTGpSfvuKkTUcnc6y68wkeZh/3Ias0IedEue1bdeN/RzAH/uBAAqtqeGHesr Et1huL6xqyDpH/xehvezGIKqPnHADhVji04F5brTewx6AGd92wFYDl5DWohn qlLJ0T99xP+tqnIG9h/YLxG9Xi7Ymqqh8xR5AT/zKfKAEu+UrPOh1Sjd3mA/ Xa/F/m8oau0XlkOCWjdfYEINunbYgk7Evy4wQ5LzSlMiEvL33YLKjmiXfgdB 4sEf37DINDU/fJZ+AlXyw4/sQOYAh3/hQh6jb2a9cpb7debZnXW2hsKZRCDm VO1NR2gwvLOOYJhxxVhxIfnHHBy4v7T3tdgWRIM9qserJl3uTp+HpQzDbvXR Q5skQrYk2u+AVh+ugoeWXAMAdl1G/wde2hxEQhaMGfVk2eTrMFmzyIuId/z1 GRNXzbQ0JLdO6srFqmTIxMklpdiqsqvrvCFh7w3rz5+8U77uULFcnYxzpRbQ gITcDL0whjPS5MS9gp1IddG7FF3/cly/krFGVXpiDxMmvM3cLKQs4qQvbFRW uNlciUHgBYaFPRzDKQbkekpEpcfksEGZG+shiTZpt+qV4Zpn0EV8/qIaPA2T M0a5skS6w0LT1PAWwlBFrEV4TScBzPhaFfKYdFPe94u67VIkYdJr0k1+q6Tb E1IAqtKLw+7LUJlku4cWKZakmcbNjcfm3xAxYiStTGfzfv4VTIOZTdCtiSTi kzRFjG0Pw/lGLElpwACwFBpUenKEXepUzd8PGpSuuRou6Bk/MrgK3jHkPVZY 4FeaRn6Hl5/gM1KJjVyCnUAFcMMS1aN+PbI7bwFH9bvaZ88vEBoGIlhDA8lr 5znXUZopGSKXJ1Pbay1vsYsjRwN4TxbmWcWUOQHr6wuC3a6K5BgyNJXbYhzY llJl1m6BzBjLh0Bq7Boyt7LS4H/AiFz3KxEPQYhEVeAoh7y7MU1x7er/5pj1 +wQ/rpMLddbG/pzkJ5K3nZAh0Ulc0uW7G9OisZh2IwS/o5Z48uyVDzU0zijA rO1iwUpjA0RpmoGpyLF19WjSbo/CD8PZWx+zexGT97CYsrW1g7Z6TeGM+V7Y yEhfumP9VvTbFqsNEsigayQofTxe2+RqgaWosDmzKloJD7zV8vu/Mardig2S GHyNsAawWN8DcJOsf55ncJj1wNUgXqpLJKjeOPjPIxZytVcWkEk1pmoY0nLY boA51jOoxKYGXceOX+f0vuLW1Yk2sQHIcW5Wv9O8lDs6Z1dbHiNb42xrOrK+ 2soal/Ojs2dSSqxJz1pjLUd9goxWFmq5OWhYxYKGbCJRKoVFPYGNdqd3vbyy YOvQ/L/ouvj8YnyDLOcwQZOoselNkcRGSmecJoMQ7df3+xii5x+yI61XPFgg k+okRPm4w1oeYzM6m6aA3cQO/en6HeN0I1hEGplGq6TxZ8dTxPrIRRGGIKk6 GQysWNzsrFOvjI21pHHSGgiyLG7YOzqZPuW/yxBbnNkhkJQPJq2W0t3PV2xB cTBBKzK3twUlrqjVWqE3Y98gssl9PyXzyWec4UqpRRrZTMR9bNiOeKsm45MR gagiaKgha9bf5yy8MtMi4d9/ROyQ65101GmiLbYdm7vJ1s0Ys1m/0bdu3tTt rbn91bsxtoFJxjs8ESvy+K4oK0lmt58t36IvlXIod8IUsIOar5HQ63+/Btfo nS0pNCqiBnTo+KNy2zvN0Ko/oyZ82DlClZn36d3aoBoqrhYmTCvgtmVOmcNE mQ7sUkd1icuRsTDC/L20TzeQdKjJsSTOYax1QyJmQq2efSoNW+R0Nk6NuEBX MaTVXmKjyHdH6ISaHuuJ74AhQbK/7mydoquy7yCnhTicWmVd1o4e8TUGgTql ee8JDkWauWMRYpS43hEHKHYguo+Ufvgmkcuqn/OBCh2lspno0ZUkJMWmrjIH tSjMQpwCFjI71cNP8KEG6+HfSBPjKfMjBwAhe52cHbsgNCTzCQuIHgnnLURX D7rJTTpOOpjiKQqGT3zy6i1riAYXeioQw3xHeuHp1ceG66LDCoLUqn0QDtzR RoGoWIWWy8T91h58W9T3/DsQ8YEfMmjs+gLe/DToMzG8+Zfr9Rqi1yWovz1G Z2ocelLkEUTWdaV6eQGwEF0bVGK7pQ6et4gRZlbjyE4/nWXNVbJQY4Ty5Meb 0up2LE44E7kk/4hk4J6o7+UZBNs4qSba56+V3I5uCO+NY2AD4X76OJQSs61m sH2Czd27xQq5xoxhfHCTVzmvrNeBDQH71c8G3d1dfB3o9Mq3gAoHNN4jSXrX 1BoTYSLgimZowkIpUGqNsYNi+SKNTa2dbU4rNyHiwmlTd8aaxHamZKLqsWtE oS+nQqVY38UOLoZ7UTXpCKffKUAtTq6DioQSs0F8WeIXNd5y1ez+sGH9pGBb Rga/f/+LR0tW0fys2BjgTQ8RetRzqQK22mkeubrjBgaGBt/8rI9n2LDouhNW sxi5K1kehReHNJ0O+I8axkn7wmnEKlF6x8Ly+hNcqnsLrA6wc/euI6a3M3wc QVoVJcKutOXLhcf2oeovEzYckzIxL0llRPwo70ubfoHA1TWIu0Ymmq03dkIo 1nrAQGJxnmDEg0AlwYU3yw17Nj+NfTXqFSqIbQ0WrjtGC9c2WVVTasg1CX/n QXyYGuYCicvl4mYLpdkH9hW+rtENpjJSeMvycE2kjygnFTN0huPvBuanHpOo MSE0NvcHeMTFDHOuPq72mCaSsVm4doQB1L/bm+/bHVVz9s8OePD6Bn/JBkMl EkZeZ56YCDofJZ7L24CimlRumn2D+v3y5ZdTDX6KJjrxZErbobJEk1bKQenK 6VL8xnW97vHn6kUxVejiXt7w5tbbIiCkrzfWFVZ8LOSJQUMrTkP4P+FvsZ2l 2MXwho0uCR1ptS60sEbswPZith7b12LNtxm0bj7yS3BQMx5NnO1ofOK7raOf Yo1FESv5xi1pzlMO08Fb4olXz9BETZkpKBjTjxFtUo2yrF+S4Zk152rf9uD2 1dKVqM6PT4soqpkG0u76RU3cpLmaQjexrHUobb3IMaJr3/Ljk6/XMgTPnLDa Vm5s6jZsRCpf7QIr5lK7gDpI77/+6vKU5ZNzgE0JpG68FpcIwUfLEOpBrp/q +0HShTEq01uY3z1E8s/iJ3dYwFMJ4+PYBxcMMqss2XfoO8g5kdVsCGpHxuLr LmpXU049di0TKZ7MDVO7yxZ5hXVeT/IEo6j5aFXqw+JE3RwSPTxjdVozySz+ G2JsZHH9ATTh4eQM1gTaFTqBg9sRDMGze1xs9VxfF56cEfiZMaQbPHPSxUju 33iyWkZQrMCP4G0zu3z8TQD1XFMTt27SkINfsy6VXh2lfTYZGhMWctQVQlba kprtB2obaztwqwkPjp1OG3cn6GTlP3pe+2wRgvJciGkj06gaMp6af9fnL2NU Y85iNDHo3aiis2i1bRc6Bt/ljQRj2ug6m93pq235O9Z99f7DYidOiN1eSXfE 1nFoMN92JL4+DU5BdQU83lVSuI121MV8PS6/EthWsrm87zL92Zzbt+LAzVdU oc4TnpgMMzpWtvjtkDSDz0DJLWe3e9T18noyP9J7jgxvoBoRl6ymsTfQupgY jUDvuLcBmFAOunacO8pP7SKJZ0TdgqBvQtyb9lBb0GKaI2ciyMKcYjMoEpuU NSxwxD6klA1nSNDZ2bCzRv3+TK5hq+SwJJrwopqCk7VfFuUOK0t/jko3LTuG XdDVzWW0qrYOxO8Lk6LftCvc1MeTlvY++9XEnkvK6w+5KVTP0XrqesE6vuYd oHJmzdDsb7PNJn0FTja5JQdt55RuSd/cPHqla7s7wJA3xYWVOpBRRN0mrWJ5 LfrCTQeFLHxGhiSyWtuyA336EiA13YkVdgbJqDJql/AbKVDrwJ1RMhd598je xynYNCdMMWycvIK1NasJuzdsZpIfA/AK33sez4RgOdyte3oW+7CgcxAs1OCs ix+8dA1WoQ+K1IqjkWrOcWWk3KvtqX37GcdqTP8tnt4TuaQBQrcYIfEv6oXR V/z/rBTigrJsH9WHa24oChqriMXQXTYcecUTm+oDJ0+NkzOVTrn0jTkA0ium iWTsgNUPEP+S5Lbo3wpA//MHq2NNWCHuDXlX60HJVnG9FrDfHYaWreBCJ+iR vT3q6GoPZa1oGWcyMFqOzuJAFDtFnrL7mlOHGW7CUj+ZvmfcxzMmjjrGYYPh yVI5gohp2SHaE8+hDMx9gkKptd9ZoGB1pxrTLR+ouvO5bW32fl46b66f7bCw RdEAYtOJLWfQO+CAx8fkff2dLTarpHuvOZZzZK644yl4jDJZglmDOPsFCX3s CXnP1EhE7F4wgHh8yoO5ZVDbSR6KFi6Ous0N2VQgb3gnXN3UWhLUUd4GWWZG BH1DRm3/m5u1jin7LOwwyh4hmjr6zTR7zE6+yDCsqRUHBwaYwuwx+ysyUs6p Wwwn7y9Bh1pqxKRoJ42RUPeEk0aFI2VYST0O/cWWiCij++hMLfylHY2SCCHC aupdlZxFP4LJqqV+6XGYHri9RdDZp1ENb/boMJ86uswy+S00LkXWRAE+OugP k35xMNgh+RTnZq6s5T5/iFtfNSraEcAam/+MumoC42S/exVja0e1zw1RaUoK n0sXYnT3qSmKVxfXJ0W/ZSjyIMOiyh7yVnMHs26c2KM2HYCH11iD1OOkQEKX 4Fwo9vLlhkf0irOVl/UxWwdHYwnMgfNfVvzIpz/4V6idGegfRhJd0GwryEbL IvJoKVM2z01uuBtNCfSf3Ml3jNBQ0TI6TYEmsSJboKmcPUPPMLIPOww2vrbG gtLGzDbpaJ+ceN1Q58Rb4idlQ1byGlvCila2OYDklnM7QDDyWKnex8b5QFj7 zUPp9tr+cp5N12S+4M0E2FIaWYtWiZXq3JB7zxQ7Rpnhe2JQJw9JN/yYHUaT CbOkcp3cInaJzgWGXus4LDX4GphhMJKa0IJXPf7E1HBEdFQpeQ1uyLNIOPu8 ZYFUmgp0EIINudRfhGBrzfb04bEmanA9XSIHhSQ90g5WyXqnGU5wDM9KU32l bTYC6PE9MeDVknfYspFNYSotJ4b8zWq0cMdeqQ6EZFw30WponrUITfn7X28b KOcImnJP0gW6YOtkK7g5trAnYvVRdF4HN0eBrXGG/WstcgA6ucmDKyVdy9md NCklo3p2I7pQTIY6odU8LPsHoce6/HA61T4CWNkp8jTNQ/URBJsg4dL42tC9 1Kx1UTE0N7Lvf7HWqb0aDI15/OL0sHeVGSs8ej6V3lmzLBOEXXzM1zuR9Rpo chXU5G1MPcO+YZ6q6SMI8mF9CNgKRtMEu96/hahqzBc26XFK1oYhumpqe3TP txlShcUc83SXkDGbYeNVJIMPfnYyDJ6M1r7Y0B+5g5tLawCmWLUzXjqU1sKA 6SD8+5NcDvsMYUyUKafywuLImqmyTeEK+H1X5sPOggwcMHDt2BpfYXMAtZOY 8Y5YLMoN2Z9tL3pzXJaAwTRH/N1/hTyE4Pf9YvEn1qo/KmETj/9WiYW2uB/C MlsxAXwtC0QXbSMEUg9xei7gpAn1B0mFVd86UI6hiWIHKDMqcS6PwcrVeEqT DaCaximbpHivW9hGApDSajaXku0ySfbvc4FP0ccs3rE7Ids2D63F4fUJKR7W 00bl3YSZBow45+1/2CGRn0IY5aDyI1DeT8kFuK4zIsl2eAL2y3dAFNbynOcs 62AUtC8s31II3UnHx6sjcCI/bzRYXuM/lvUwRdUObxLfzXfzyKLOCHhjo81d kNxDnXhoJGsMgnrSKYYkTm9F/C3+9xLroNTYeI60wLBBykcWrsP7T/QNEXZM 2OQOhglwXEu3z3HelBpjWO1kYt0/bSHbxEypRc6dcXaWs3ZjB++o9ZMUE9t9 myOABtiXTEEtUwIeLt7xUte+gxbLWyLWRHnuvGtYtD2tPFcqDSdI8VAvYI3q qI/kel/PyB0JVvhgQcRni6Qln0zL7W6HyUi3GfLYTyqHbk6JrVRjF5NJ1O35 JGuci5NcDDR2FMpTd1GkCEna4L7rvvz1SELf1blJJmyKho7/Z6j+lAZ4MTiu 0diXiF6LOEfiSHZnXfj86rE6r4M02SNikw2FZPtW/0fsXSlWMt8l2e7TbU5M ZK9Wy/f05oypiY5YXRhCakIPHSMbc8da/17u+tbKEostfDspf5cOguorBt0Q 5sNHMDnyxJZ5rzsN9ZGejVnRQxCgfTnHurO2jAOSWCOiRBxr/ETAV1pEsEbW l9vqgmwbvWoqQBXYP2ggkOg+kG9X7M/4Ra9JYz1TLZJtUwpWwWISLa5S7mzS NViUpK6ICa99hwM7Tk5Kgyhnj92pU87FLsjr68lpXwsHOjtv13xGaB1DBqsa VJjLzc2YVm6uN4IOyeMng8wrF4qMi5/YLDI8aRQbCH0Ioyijgi9/LizWD94t K1afTDK/C8r1ObvnZ1FlvUxGh6Asj9fSdJBT271ra3eisVZku6s+W3odwgTV k3g4ObOLSR4fA5A6H7Yl2wwiqQmyTbGGLO4/WuizzG3DhEkt6e7S5PzTR10X /HTkKXjILhVHLGLnnQn+J9kUQKb8syEAFvwq77IlmOjbGxYjNXIRnwL+wvia CzGFAj8gNVSYirgF3hHsRizYJvIJ6Ur13f71wdVi4d4SyoNknbcT2/9ORD/O Z1e8HG/3PjbQGg68wxbFeJCGAqo7zcJ/mYW+C4rg/mRgT5j29ZTQ7o2dZTAE o4/jiuyyVniWzy+w20MIaE+AkT91WXfyiMWxbaAYLY3+HaQ0fGZRitJZZq+S ho7sXN9D6usFS3tdL09SdHinowcp5EV5WBB9hQvs1vlssa1mCas+lPjrFbyp TR08MQQdmf7JyGc9OETs6FCWUBmsevByZq9aacBxSqKDdWIh1RAKKdJEprNp BR8YXkqOd9tpsp2c05lMJN2J+3fvbO2qGmkPQEKYsle0rJgYFOP/5Mn0zrwL 74LGl9U02n2/tlgC1RAT7UgKGgrGucTq2Bkjj+1UrYOWbtDmpF/GNQYCs849 NfZKnh+K9i7kpsDglENNFHF0yKkJehfg8tQnVxtPasLcTvi2gMWzIkG3yay/ H7cIut0TrwW+a/Jt/5rF8pwRTbASmjBPpD50vH/KzZxwiGcSqNAKC36v3kna 5Hw9V3GB3BOXwWpTl1gE4WMnU6p/j91UQysWiG0ph4005j2GCagVg0CTXjn4 Xjva8W7En2vZ7nSnbj/UOJhEvWlRNQ5Wry8mNYYUGDqwvzI2o3BGMACisYQD 48sEnEVWBrqOXxEbsZ8+J6xNXT5gElYYynKdJUP8Bkfepj82XpE4pDvsImSs tYRoeSUuSV02zJKgmJpDRxZcEswwi4HUP4PKOjKDlw5iTc4ncVpsoXUGaK/X YwvBkVXtQ2Li4B3VnRqPiM+oqzZ3bcDUxBi8yVg+e+1Zz9+WM+cfOOW8X3b8 A8p41hB3KGZ9MTHNfd/Pr7T6yKAo5RB7txnnhCSXi96QOM5pSNgzeKq7TZ4Y lzjr90uXXL30ANL9JTZHUTl2BkHSlJtMmYq+SCZXFij2qCelXd68d8zj70OI tX5KIEKax5vsR0nxo4ySnhdwMYYLy8hbap7Pv13ytf6Ewd94ivj3Eh3NdhVI thOKIZiCJX0dlxvfTotxElT2xWFTzohpG1uc3DKO6A9IaC2Vp44bfY8hcH6k ZQEQTLl7/pNTvMstSSaymiBUDiuQyrZDmiljYR2Z1M6oebiaIAE0RXY2p34h w6qG8R2JplvI3i/jCrZz3YFlz+BgpTgwXpOIAWiHYH7zZoKuZUEtNnXTrNwn 8Aqi7IfoTDbrGlvoFMNZ4pfg50uthunvm9W2hvtisib6rY5hbN9baunoCIHf h0HDLad3jUg/dWgQd/6XOTHPNxaPV/PfsRLF+0AKoX/axb7IiDFYsbPV7wDh dt/l9eQ0Yk1UXwdML6TiAIUQoYTB2Zlg9vGFrCCiuwsxi71KpfLFEyxQa5b/ SABfeTVoA7wWdWw0CMmxFkXWlmdjzT7C8OcCXOPgnqyasbHIFitjEBdZjykD oFZ5vzE/UuI8d5Yi55dRN+6JdvMmyKpRWULBy3iRgjSlINcx9AxIYcKqK4aV VLfZXp9jUdSyLcHvjpEAekizwUVlB2JdxjviwIf8KTsCw39d0LU8qHWzG3rm 7x85/q5SuGfuJVFuZLeoBvxoEw1/WmD8zU3/66C12rGBenFrpJidZAqu9rm3 H0ekLnA57JQmq1MGvlRgjJNkVT0zwCepyHMaBgu8DuLaLd5PXGBqwEzVkipb htWX/cvPOTkR1l1WCGoi/zu3vdBFRhStub1ObHU9lBBtxK4Qe+eGWdDzZzC+ AZlVhiRVEifuSwbGOxg+e4SKivf4g0NYuFTFYe8vwZpaHcESpShhZHbstCXv RfqqXi2KuodoLI5fij7KkBOMJVHsbpj4PsEbWuuQgwGHfWTShXdqWXZKUTiB YjiivtPDryWFw79o2jFov/gOIdZhWJNaMml4Fwrvnbw9akZ6FBHX7not3355 5+uBuDGkX27AWHF/owenc7J0Yn3e4PCTG2dtH4Jx/WBiS/HRA4na+gx0kMeK Is7aZpHirV/QEYoIASt3b7MGLI/IF0/ex1qq3uhAn1n1NDRH2X2jUDOCDJod CEMKrqY4YwB2ZtJOFRKVY4RyCODZTk+e0BV9H5VwVmWFSvlG/L2P0YZauEa5 jBPp2U9aof9TOjZgFyPlEMzUHDUv98Rq4gbLoayty3YR+AbA6YqPva0nRE8b h7e/qJSTWOQXsRkUNlWB3O56R758iiRLVR3ZaIX1jzeObc8Epau24k5Gco91 2+vaV2q1D0XFBwHhGqNbUtqhlrcshdhAf9ghul9XbPRW9/Rp3i6JjVjFYyL4 kUyM4ZIpRR0k2UiZmJhNl6yPXhcYTu0ojN+bFtkaqK4n6ekowWg7Sn4AkVv7 DVVuJJmSQAfojjJuTqxRtZUmdnxzo879jv5BGY/GeUzVvavosPW16JsffVM/ WA+bsbOafAyF8v/W/2a9yk3NBpXRR0MipsV5AV++s3lwL77BN4/1V9344eXA AstZGCmR0mY8sCcmLVbPawOVrKEYnXrknZcPcpOqkdcuzfrHvlgFClpRza9N C7Dyaw+uA0HtlHMf1z6FmilAzsz0hyrBwAOErnmumLJv51C4a6CeHI0Ho1cr r++ghv7klKmbqZCwjHMGD8vyCQN4SpP8lLiV14762WZDTDwW05QUPsjl/0CL 0hUBG0DwwUsYok5HZSDEArCcRQ+G54u/0gfFxz0l0kt9FWwidKQJKY01JqLR HxH5mfjnoCg2xegY40Zk+vfMVzdYYtbuj9F4fK0mGSe8uK1Kw55HzxgbNf7S PFkh//kVlauVoTz+4aeAX4Tn586HlWo48HngN8IIL4o4jenLuUVtTM4gV7Q8 q6VVA2nXh2iG+CSdYW2ymvM/xXhcMmsDhVUIvqOIcXarU8MnlsRoJh0Xsdtx odVF8IwLH/RZ1it5K9LQEHY8Nn9uAlkNV9/bUS0YiIEkh2RJ9sekvOQcwaGu tTImRhIqtrFfgp6eY1tS+7Y7sjSz2Hf7DnBWwrAnyN3vv7BsJ+wNsrhuZYn+ 5bBDr+cApFozBcfBfJ3pi6hOj/0nC3LmCAMqE4huiq1N6/TP59pCvRD2s+Yw poQwvDgRN2zOWV8eX9bWrzO3bYnFHnyR/mLmbkjSY6c/OZLG6cxgUnsGMyOs lznv5sTdm31IKpjVgnZ70IH7Exog1hINzsBkiDcrLuHFUTj2vVA2Vx0Pu3IS vovuev5MUddeSDYRb5QMemX7SDm7LKYUpUXMCB1NY5kBKjQFGt5esQqpRwPR e8wqpKIjoxtEBezFknpIo6F+e1h1YhvYfHmft6R2U5dw2ir8DZctd7vMEJ2a tbLDiokb0jVp92G46mp1n54H3RLQJEgX/ZLi8LDzcTFVWlZyHmEQglUUtvYu wwLLEu721pKgHD+s0ySnFIMt7LsKeLXoEpncnN02N7arm1lLdRRLkW8SI6pr TO8UTNRycNLhkUi5OewSpf9POczqQlRZ3E1tluomjJ1ZExpa6BDwOmFp4GUi /ihzeQeyxToQ07Zmer8NSdcddFKJ0DwptwDt7YJEwbEhWW4JeYysneQs/PZh g69pnS4kN+FPsDI1pOneniX8s+flUOO8TWYBgORMNnoRv6/r+dWCathK/w/j hl5uCOBeixdoTzt3LHQGURZJskSuzR/Ft7Yu9yC1Rym/H/rjKznbsthUmARV ylP2AckIqbCEFOagVph2yXVDQ/9ygd7ze3x5D67h0kTWvZO3VizeRfZme9E0 hILDoBAjmN58/vzNplgLBPyP6g99/k0u1TsbLNFMwObZcQzLwMAqI6uNK5Ox kfFlDQRA1GTUGOpZ5irBbayqiTpBkb12MDoLV0pbEGnIbZPijhmyMNX6qckh oJUsrm4jSTHyQxqHYQZD6diQWEhvNbRpiAIJqhcjPi9NbDgwAeiEkW0xkmqJ n4rct6AS5751Z9mHhEESsfhzdxY15/jfdw2ogqJgqKLq4qalShLvj+WGUaYr 5LuoXaq2ccrdGebhhiiEJgt7Ty2z/MY6ohDY4TFnmmxrJcfbg9BJxvFnViI/ 7dkLBuIm/xX7Hqd0ocDfubajht3HWDTsG0lffGBhU9O7XYJA5njbYRrrK/rg j2GN+w0qbO+s1x9ehYZaj9LYC5PLJ9vaFQ9OmrxjzxqZ4EY3WRzGDWHPmebv LSTbgDF5pSdtSbFu4GII7pkZSm/9P4E1E8GSFtfWDlPyIsRUTy2DpTZO+2JI zGaAojcUDTvLyzx4ZE3Ud4Adi5TrV6zt60JTAyg7BVNiQMoKXlzMpMTFybrw 3fU6kxsAYcC6AhYvZ06FGjoNlkwhrY56EBIrwsca3OSOfXTBM3NxwooiNOn0 W/B3UI19I9mbYu2n1LzaHWJtiZILJi/zh2251lsTiFijdEth5uDafUWz7gbX mkhzgcSAxHsugKgbG6duBFxqIqGa/3l0psETSVSu0tfNmwrJ31oq3JK3fD6R v9IudYhImopGD917ffHifaYNsHtt8KNiqetGYp9oqFkrMfZdHhmaJZG4mwtz XhJ/g/tnrEXr0k5rRRwSm2eyMlFcAqhDTIF9+NRnkqy4PfJEMaqpbrCV4wgt cq2e7W6xUCnu89GuYvXdjmOehHrmCP05kK6ZQdADeJ8qGEDEfD+RNwq75IKu 655ap+xMuaJC8Bw7E/n7CzIBrfnWxhhCYXsl10yj8iz/SR3pQAZ+xchX99Ue yyRHxl1KGHGLpV3DTWIQVGEMFUvz5uCPSLu/vteEmKwCnfVxMiFrSIve0lLu INoQS3+xv+xYKZIWo0S0/cH89ZWOoX5tGDlm+ZPMdWzNutdlNBdDsuCZLmff /+LQqRYYkC3w2ART47stlRgOyziuwFBuO6QZC7jMPFpHbn1m5CF97BIjf/56 FWuq/TwEUCTfvu2pRxa6O2/tCKc+DEV9PbLPNw+pXokGo2ZGlh0Vy4rDQmpy s1JMBzRgzko5n3Xq5y+toMEWiYEsYbFAEPi+SRLqaFDuu91rJSsi4PK+ToI2 tUSHCRbwTidTzDjLbCENXtKC3BnQfNu+ukz6gaxy1VnjXqek68GLJYcdbMBz VyuzhsTmVWu23e8U9yWZmoad3rr+hfh61gTm4ccGsu0g5ddRasvgxklG3TSg CRCnFMlotfcgr26xEakZ7ARYNRN4x+Vc99F6cxFnNN9Lmy5giMOpsRu1izgS D9cPDx6gRiYb8jWLisoo8WqLa3Rjy03vyDhc0jLcnPQSe5B6voFBDou2QA5F /+Vy1IF6bFYHQNIGYHcmoe/nCeuRxuQ2pcn7CMXhtzDqHXER1pLskRf28bx/ z5Myut5KpuDoPoCVF70iSzaA51TwPh1u3ej4gD/V5iGLbJ55Y1QmkjCeL60o sYEMgzqX4y12x+BxG/Z8wDwMxu5E66eLEFVdggCEWTgyKTEPyn6aSjFI5xjE 0AY94al1bE2+Dgph74H6O35eTxq5gAWq72YXebtjw1zVbYvnIyAB5GqoVQY+ Ssrm98m6muuiSTdyAmPkD73To2zHXWPNFDTVkzep8AOfWmMeoBIJx2FDOIzV E3FkyedR4HZB0aUBL2sUL0yOboNusO2BMqfGziRJk62O3oxT0RZlv5e9Ruqc TRp9ZDARdnYSr5YAnPzgJNs2BR0NN2TrLFWG6VuygFwDQBKhgbZ/uErJNtw9 PSFRsRUfRNvvrC9H8L4NFGoKO7uV8x+aC9ToPRXVlFxUHRVX2ZPN6DKDdxX6 N4sgwnEa0xVkez4nidHGciVEjPBK+74Gexq8F6EPLOKkLSlAf7+lZYjFGO1k pYOlaIElGbR9jcDmiL5vsbvADS3RYY3asQq+e8S/QEP1Gf8qlkT953nCkEBY m7JVN4Z93MABcBTI7d66ZFu189UV/h9qi0+rImE7vC02bgWbVrrDPmVi23Ya I8+P1phsdJwsKYLNdXe7ib35xkKztpogpJnCv1EY3f2kYVUJ48ZWsTqELJsj jOqufjAVquo6YwBxYbKLxIs0q1tn+iXb2vjADT7/Q1QuYH3gG4S4YMyEASrI c9B1BtMUiQ/AzA+Oal9JnVNhQtwRsrrFfNuAfxurw6SsKQAmEnWZj+7ABWAf WvZd5sO7TH2qao0H7MUb8KKYPGlXuUK5RcBO7o7vR3fFRHSkcNssil4i/uFq tYtIb+6Xc9/UMJNw31hOMRMzGVm0xmGSQiFOpOmizV4/nG/s4Ol/N6mo82R4 rJHqw0vWRmpIE1rj1Zss3t6dNPL98EtYL6+FJ01pTbqpwvUdn9/2N39LhYyP JSiwTc2Lzd249qmxanXRaIwUVhVomLIGEimS+HoZ4kHe9m3HGJoQZDFk1kRn BnNHTVq9jFIB+yeFz7qzvZZKC9LK4B4SHQfPOrYRORqb/GaKvnuHRbGavb8Y JyzwvRe/sUj29eAYyFq+EyVbUukp0G/bj8FXDzG5ethsPWApZLLemOBrthPc GJ9hILaFsDcverogt9la7iJajMQuBOgr44xCGuzY2ndWCv3DW6WPG1rLNWTU lEqTjgrElDz6QQfFckmDHIMpdFuNy2+nkqnpsh6zIZhY+m6XYUEC3FusOo4x jt+givactq+vLQnvV6cFi2kRSBv4z2BVudJxuGRdsozvli1HByWednxHHy5J J6m6wDR1w86OgNJ/9vvoTklP5k9seN+B3W9JGRLg/uuW1gl15x8wS2uS75Sn WKPD5H7rzEGfvj/KuvtrUqy/sDcOe31lMxlaLN8lCLuPliHlwph7vA1tde1N FfyOPYWpCSSY0idDU84SYyZAA7h5GQ1lynvQt21hkHuLBbzDX7nnJvh4H/D/ oR7BGbLtdBCGXLUEKtTic+fK2nOHmsFuyo5ZxvUnNkmxsf6ztE4mf77N8Qut GWnLaoPj9kn9ymLFkESsaMDrpjLHJv1dYYNS1xek6THZGJ1jFfMAWXLemDjD YVs7KZDRJYPDejmk3jzg9j1CaijEQSLTF9J3HLosYqOCkZONlzuXpdGxNi/L QRPl1iVVHx6LJPyzRXBcGGyADJ6pPJ4538lOjuUIw2GSwSbQtQ79u354vE0Y nev7TdhdixX4qAyUwADMmT4DLbcz/aFJV6QqWrtFvpTb7jxEvE3VWMDpgK8E Q7gb1e+XyRK+0sLf4QSyacyuztnDN8bteogECVsXbMRdT0g1ycAkLHS4tNLQ bMOQaLIH39S6PoCF76zydTxPpFEYI/42bNE2Jk5qjEplRRLkrUqhH0AW4Zj+ TLNL/H2afz9NyE7GZVxRpIDnHYwauW8BEbwiNFCiwfp+q+srNWryKe7Iyz3e EcuqTv/k90Vuq75M/wMmoIuoVRbqLCWXBpQS7e4y5S/lxqorD54sExPNlP+0 u3KR4dqg1XTo2Q2uqEDP/vxJ3tmqW0iaVN1sgMLPfde/a87wxgY+uBukiwK0 jnh1SgGt5lcpIqIEopSIH1P11zzlDGnkgAZ2/vKvl5BA1W8tkDRs0DHKna0U ibG1mIeEQ+pEddomknWI0e7MOM4jmFSzOAgkal30QyQ2QYYm3wpT7VFktfAi k3s8AFZOranz6Uu0UBPCMNqZiTyri1ML8nwcfhsy52YYNn5oDhfgeDnpuD/R YBuMJD0b5NkgAxzkcZfJFcRRE1C8uOR7l7p94feLXlQgWVWhsdWJMcuztuNs B6Pok83C5Ouwa0zr0CXX72Nv/9IgvGUnoCbyHzLH15zzB8Z8VCQG2Vl+/cA2 TUDWrP3w8HUejG+YcIP1mMeh5OZ3qk2p+LFYNbG5kjxuZkpEoWtd/P4QaCVZ PTVrMVEkZUyv8hFnBlh0qfK1yYUDG916mr156ArdvTwE02DXkfIg5WE3NEqK bf/z+fgqKWZm1LfJWzPJ4pBXjccfadRcI+d0spMmd8reZxbBAlEB0/eQHSZW bKLDIyZnfHc4evMSk6+xOobcBz1ZVA5O66TsR3waNjCQR+VlBwhEVNN+Z8P6 ceEBbD28Mxi2MPP41C3pxaDnskbNRs/BiMcuaCc0HDWxKSF/epHw71gVa5F+ 06AXmZ0daPAePL/bm67wfKzba+3Ory+sM3wV3WjJOWGitr1ltQRVTSGjNkZr NY7n64gc3mJqrodbWAA4sgwrfQ9GOv8qOPA5s+y53EBsRcy5yWWLtU7d9koG 2w1egXfYpFjNHGn+T0grizPSQhjIzCWYi7qHWz09Tcb6+kInTIdYG1mQG7st UI4PdqNmytsdeENdMBMuxJHCa+vL/5785tNo3TBQdLRR+rUMEUsPLQrh5/NH NsFI3W++cR3omK5+P2EurHnOxpE/AsZwLUvIiQBh53ypy9YZ5ha3wwN+JYxb /QnR7Sd+yXqVRfAzknrUfJXZ6UukbtUpvrTImiADH9vbyStnswCesMr6xNBX 3xKwGkMMUL33p9VdC8X0XJv6rLM/sjhcMznhbgPtzvpcmRssTWvdPgv0ICK2 212ujDTBTSqqMgzGLgVsvSMzQ0k39ysbdNdf/Jg10TxqQpEqk7ERgg6eOMLw gQvMDUrVArEbPRanll+K3wniz63HOrqhbRMgTpgjebkx5HLlXBYsZxom+9WG Iy0zG5PuL1Web6PxDRPvRMruAVNtDwIxyHk2fSL5YUyroMMjv/x2NtbK1s7i Oa2KRQEyyJ0Cz3wRFmvwESl5M3mvkq4VKE/+xtAg9WDJQMBLrfjiYQxwDfjE GbBPbl03db5pi9AetiRX0bZqDOy/JuVIVak8bMGWEkUctQnldx0cGZN2fLcj +XmPNp+JTYtnDZiQ1ZubCD8pHvjFrG60klsmAlhFeL1jnXn2kIyu12bRRswu JD4iwhHFDBHzrP94m8+oaf2PeaJXsn29BKfqAacFpyajsBPsUo3EdZM3Wety kyXGVGqIUaJCsH0c4uWJxTxcBTAg6IGLJkjshk5gMC4Mi9xv5nCU+bWDVm25 GgwCVj11cMCiEiu1BXvf1M8Vbc2CYXzV/sxwvIn6esSAq+vHpjA2aPysoiWw 6FRE8ZZVZDLHvQEuAqjTw4b2eR2gsTgNVOMoHw0fGR5p3jAn4xAMS8bHSDnO Xqi9+Hb/Qup41cCCjDPxV1isF0T0jljKk0Va+QDl+XxRp9FwGHxqanyWY5Ys 9Fo2TD4QRiqUcmIC7nNndiFzE4swpwMNdgzWhp7fk98XeHmF6clVnxhrUQw3 McY0MtQSUMFzUWH5e1zM7Pcl2E10E7aeoFvTw/dPrAPrMGdJitBjU226FbyU /qLhVhPyly4hO4lGWZl7IXSlt7dY4dc0bJusoz7aZQLIiE+t67XURiXWUu8s IZbKaNlAdGjkz+Aa8URj7MPQiV21rCPfMB3MZiSmSeza2z/sAkOfPrCJq+Wt wfgwzVNWRtrZ3fbOZRxmKraczGORQZgIoejWrdmaAY02DY1rbH7jZPCObzPg SIjelajsg9AO9PEI0xwE+h/6JWIVVXf9wQF2/alYOkj7ag7J11nBYZQ9vgl2 WC1HEtfqHvnxGsvqhgZzdGSq8/+3dmXJceQ49C59gAwSJLh8yrJlS7JsWbt1 /4MMUCxVcQOScsxEzNdMu9NZTBB4eAtiY2PUgUOS9IGjuHsiwJIUm9Ua7PpU ArG6Evf3jpWPo9QdOSI6mhLMLERwS+WYOipsMGare6xWxZjGX2rVzgkTJ2ST XdrHfTpdzoyLjsyyNef77PoylvTW4qPpdGzZV7z2lSv6BWMen5nTkWgW8S4q UMoiLX/HofSc+GP2TKIubUxjj2yR7T9cLntB4VlXjaHEVciESCtsTyuizddE B2Ji42HYhQuKLGMKBYrLx4i52/Wuoa9AEzQ4KO5tMkn8HeMkxcPS1Ww3x7HW 4htWyJChz4zXyRVV7iEwI7OkWw57sZdo8ij7jZEOLh9bkKFtEZ/I9Ha7i022 SKlFAnuc6u9/PEzCwHjhBFtOzbMKatQ94xl1h9cdXJy7GJ+4gy+Zg1KHpwXP dOxUzNiWdOAivcmWBN66NVO/vLMR6a5s4AWiGYmPlrudDW2JmZJkA+s8vB0P 47NDO0zdzl+eI/0R4yumGSFuJnmQtqaqk4jvwAkl3KdZP0fq2XPM0+/s6o5+ 91HnYrNzzDresWiUACuggb/TfSs69XNzbtkwHBM7lf8nzvtf/8Isr9pTE8H2 Xy2/UekkF+3t1jIFvDvsw/PU0+ejB37+FnGSU2ZpwAOGvHzXrteoqwiuRIzQ odlOvzQ6cIKGdRomw6wzu3umJmFsHyJVuy3Qb6wklenfWrfrWnDj2BfJvTmY oJg0rHpWDThTL+aW0pMmks5P0HMtB3dGduM8v9lT4OUVNW6TccIZGp2c97DI U/iMnnph07VLhb15pG53coATf7fgi4/AHHOVQKoYCi7aKVgW1CBmc3Q6d7gU F9n5cc/hWQ1Cv09Ghb4ikUCov+mCiJVC3FJs6OcN9mjTO490eU0GJ5Aa9+sm Z5tXDsY6vqabElckhHl02empr+eyj2iQbp5cLpGdQLA90x61fzg/qWOiR1IZ hDd/0lFE38GW9I4tmr4It2VNUkvAMTCrGuN0hvx5XTtp2T8ujNsLQD8x4s/0 YumT8yIULzKNfSiZ7V1cw869zC2E4e5Zi9C+fqVufmzNMIBh2wPbwMGNslCS VAPV0IaLsuavx9pTmmgOf6LwYu+uaVyfLBTZQpQdonP9YjtStCQ+ASyT9r+Z x8RsOajZTMVt1Vx0T53ZCGNDQmrX6PcRO0uFYZzo3pkZ7K2rCKnBDMLC7uON X76D8RMPA+DsAWrbmhrx6a5t4LQpzqLt1+fY1wJBW5bfvjtMk2W5Y0If9fmp HZj2Kf8HDo3FgdGmLhurAEyOs7dTFl6lWrlxxo4qBc9diYHG3+DTjtUTR8by 8MvZ9o2wojJG/R1jmBB3Dad4gglBsBxSuEqQijSrJ/7s89GB3lTIrrgr9E96 f+OCHc2ROL0XqOtrI8sXEOGDuR4ds1VVRTPg0ds0Lo/2hW9P3uaRkoLWO/pg 0S2lFa3nRsgMitb9FDcuBX5Pb0c31fjRQWBMhb18ZRccWUqBBS9dicdtPzmY TfnXj2xJNZxWtDQdGSZ8rrze3VFpBWit8teQGTEhqxzdPy/Wl8yRjiZN/anh 0T8sPbiYYsUc7I6vIhMpzqSl4HhpVaLgZCrQe0gwGl1QT82rmHAkFiygV6u5 o5+LUDbGbxHR5B0Y64mn9rHQIb2DRL9fD7soH6fe6td+LksQHM1E89Dfq5Rw ZIVEGlY3avR93zZ3n6QYXB7RNqKKrOMBxyVu2FsmPFzTRZInLsTBBY7MWUzw E7kVLhYw4NNIvZDwUu3t/mb6fkb2q2dSRnRRDGkTfcwn1rhWnLFbWfRUvfvl hhPYRzKTT/xqk18M9Vy1r4tyK9f1RWn2Zj+6uB8vdNRG20UmM2zIr3zu11qr zYeZryx+VyhYY6mgm4xuiWBARzB+XicbJstR3rJbAMgt4N3wseS5ClMniJW3 o/UiJJmjxE2I8Lin+juunIHmC+aqWyfvl0SxWMq+XeTKmMW5PgS78Voq6Ev9 mwsLk5KGDLZAAtnJUIGzcvTdmVjLegV6Rd4F0G3Lru7ZIHni8hT8dsxmkwUq i3h3kmnm9QMndhOImL2Ktdw9plQIgx0m4PLm6eh7VYkn2TyBL5Ye5xKheuCe hj32vebDqD7ynx/scT0SrjKNio6RAemDS8uveGcb1uHz+zuxu0wD3VCPXWbL mxAKm2dNUyPGb4fQGeNm8ZW3yR2Jccui+pLa0V+P4OIoReCsrS3SdxjX0HCR aQPWdTkNiknSxHttuv09iT++s/XuxHzWxc2Y6FDGPkW2qfW9a/KqmwWExAml ecd95ee1s2b8LC1Eb7fkW+ZCtyuRnjo6gz0Bcs1Q0h/OKd3BsyHr+S+V6LHk pYO5KI1zIEMC0pwdo+3kS8UmZgEu4uYxe8jTDvnFezfKpj0XDutsgYlEpubq vkyh4jXd0JyF9/QbseTCd1M1j6wGynj8SQZIhBhWNzhNd5nt5oMHPY3v6R2S mdhiOTqpLjgUNzjKKp2zk/pVuohdtD2mEMj3fMUk7QH79mwiFYJHX8NBwkZh XIx1aprik7cQb8/LWSxZ1C0gREc0TWaLg7Lf+BSbYtUwlsTAamO7r17R8rf0 H5rhAvuI65fbj9+8gR47CEbqY7DJSE2axtX2KbWv9lNenA6Zy1gad4ED/eWr ZT/O4al50R9o4pDPg2j44JiS8V/d9CzN88w4AcA9ouDNpU1u4uptUqaTEUrQ hTzei19aKilqdTSuCrlVfAqtKny5z8aMyGbi6drBMUFvqlGRgIiYTK8aVgyy W3sHVg1HE0eroHvqbFwcAdgQLbVFPiwOytKwEXLoowJ1gcf5dvBb4gR1ZUX2 882ZyerccXoVQvKy8HInoadqg5cAY09HcFZzr/7QVxhG6lLKbNxjwupGSVSD 2dzt+XdsSk77R4MbZ91oBn4/v1MpmLgGUUWkSW6ZwyTKRgFbI7wV/PVg2pus R11493qT4Wiv3Lx3bxyN3absq8X0cjGr05YLa8nhobnucI8Z9P5EbfHogcX1 bnPsD7lGqhAFE/6Ifi65DrerkLhhsCWxsj/ej7/pDI1GptFC2CAcc8skbcep ys1STujc5c6MYonjRh13ZGMdBWR7+UJ9/GimSXMFe0r5cjbka0TiE3I2UO+4 ukgyZluoA6Nw8oq/faXpckxwjYbZQTQlJHG2AEnpE1JnfvW53G8lM/I5gBm/ OvA0AW0ptxLohjgozvQRe/8+vSBXIjB6qeb475zymJ6eqMsZDy+1TofYDdUI VtFhcmxmJylWp6GucctTgLhaGrwkmKh0aayLNBVDyRRYUa4ZSUADNCt1Tb08 ebTuYrsOpS+Xlg7tyL+xif5JdDkvrjwkxgLLlFskVi1y50/Qw5atg2ku8ceB +fHOnu9Dm+/p02XT0uK+MYdRJJQ7IXRG6sraYzwtfK/Q1VC6wKnvx8Nf7yfl AzMTB6gFlcuHCP3QZdSRvPXck7O+ipdwhY+rOBM8xJgnyTIx0URjsrPiS94J NVha9E62pQxturQTHXn/DDgxi40QmV3oW8cdqZDsAbKf8X0HH7eYiydJC6/8 ukwmjUimz5zC4E2h4O+AVf8ap93ArpZTcEyO+m7p/ns2bmTS073HI67xjeJK iFzvjbpswC5BbU2k4NTFx9M1tZcjw5T+jnGjftVFYZ6uRR+9qcZRP9yKw/a7 e+AQbWPL161saliMMl7Xlvogh15Kw6nn/3+Ozu68VfaSQ25tnlzVkPnVutUp SoQtEKAz39VpQsdRhJejwPp29QDf3NpZ4rfPlv7S7JwDCw9fb3j3IlvWNKTM hldPx+t3yDiJ8TWBBgLro2jRLTqfR18oPyuNZ4NoggnM3N8xW/n2JweTxhpM /TONUN6iDg+JhKzjGFPDQ7pN/lH9Sv/awFQwvWd+/cEWNJOVf44b0KXnBAhD wTup4vjWu1JE4ZqCHDjBFvU59fYXGjPa+VneoG7BhSxactVqhalXgi+7mSqa dW01w4aIHEkP04TIh18+YRyZ9BAd222m2Jn5CYqQNjPU0h/ZkceSzAnqFkmw Z5jw1drJNiHSEL4lZ0w/l6xxeR2artPMS9CF56gE+uaT/vFdPSb6f41YkWVR PY1+XnbLt4skN10YfX7BjD2wdfxOWX72Ece3DMCeJYkeW8HsF/ug1QfmLUFM dgppnUCLX8jeBMMxpnFnY88CVdgvbp2ZxdcpQtQd06kTynOxTW14ZI+u5B33 mHr47SM7Q3QLEi3SWajRfneghKjV1S2GsDmAQqES8oXfX6hNG18yTS2ZGqIU zQriqeH32KcKKXzZmtNkDdt3Jb/zEf5+RO9HZRZdQnFjJLHpQBdSe4thXg6T 5dkOuYkDVgyNiWk2T1fs5Pvs0miU7njVm513zeJceeE4L9OApe5UM9SSOIft ljAnSLNl/8WDjTgSk9kjfeOs196Ct2mNgnoDQvHvXfLCarbUPiVqFiBOLfQq uPbOmokqGTJdoJyM2Tsq1ttVo/OGqiO9CHoy0EVt9073fHlr/USFSkcD6ZEt NBoGwbegF6l7OKw2m0ybtYByhI0NguBsvHKSDt3QBTvy7H0ISLfRUbH3mfTI natF3QWft35hB7H9dYGh4Fbd62V42Ry9MkWh4XKEtpMHwZZtQXXOscFKGl/w RQDMwzgS+fZMaEvHK2QbLVOOzZqlQuYQbYyFKzokff8G50afPE+nhjVRIct2 NjIZFkO3+NUnp95sw26smzj4BYnz3vNXYAfxoTgcQN0QsTHqnlsqroSJLpCk 94/t1Z8Q3HjRUfWFDTLDmv9po55ImKfLvzVk0jc4p6VT5ETm6CoV/cexvfgS qPkdkQs01EJRY9HQjZv1mLRn4suxc4VVN2Pn1zottSfnqCd6e+OmGlhxnHwo bsQ7mUazRR5Nhq7rH1QXv9PcgTTUZQw68+r1F98BEx88wz+JKcsj6UaTLogE gzRIj4dpNmSYCi9EPr139z7lkQsLzKL1VB/sos2j6B0Npg/clOtv/c7RbJyT qsOcv77FbMeBmvUgG1rAJKt7p2ubw+6UfsQJSWTPe1B/0OfrGPMofzxo6MHw SNueDUW/JPHf2J+669jEulxxGI47PmVN9jXQdTE2apEOGP0vTgaFnMhHB287 grFqFNJYYNFxTdPV2EeZe/uK3o55fnRvHcJsolubnKZAeLHCzmYVCD8ezU/Z pF08Md1yvPxi5PR6+pHrNvO8uU5ze6HD0TApd7ChQnxq3nii1taG4tqmPXKk dzIMq+ySs3F2b7sH7kRYoqO/MYc1U6OaXoMxOPkAQ/Izvlb1Ub7TbTiyzRzL Geho5y56RfkmpaNCl4ZvwXxQ/Hvq8k19+uGoF1bU1KH32701YeLQy9YCGy9z 5X65ZrzsNEprkQRUcbfAXq/60Hf/GukkTnYn1DjTbF/cxIV6LVEEYkZoOQ5r EDOfEQPO7IRpv19mqtyjI2TkfB6kn1NYUWo7v1jMRFd1cL0VuXigH6/ckR/c ErdypspBt2lDQVyRyA60otixdRQ707H3Z1NTtGgr5X1VQn7A0VW2vcpZN+XR uoYcUFc98WDAMZime83LwfC7xu+Pdxy/O7xubrq2YH0M4tJyuuApUotiH7ZI Wq68F/JGb7aouWV12UUwOD4wc9I3qraymkFxP6b+tOOG/xNN9cQA/kZ920SH bGKy9FLdohGH7P5GfXFHOFuDWz52lGIa1gPD9aPBRaJuZWOWgxyvINpCBtsl WR7tgvbd38CxaLvYwQvi06/3Nk+MAbLNdovUgXhxpypd2OAS9M8rC8daMIt6 M89WXvLzvt3HMImR5ZCyzbhUEAVBgyUVNDi2kqvuTmf2hd0cAyH69uzu1Qc/ ngn6exzo5JDWGox1F5/Cy1nY/NEj7HShV184TnGUdRowyGhc1pYm692F2vef SgXnYGGOdmfl8MNiHNMMeZ7jlOxQftt5RJNogsuQQY/MrbE+PwqcrJz9jfRM I8yROUCPetCclVd83qNNkQ6HnVl6WpKRuKSR8L/9DDGPme42AtUb6vWzwH9S 7LzhqMRdWFSuz1Kn1KZXmgFGU2Q6ECwzS03rtoKDT5MKY0FqK/+Tz3QZ6GHq 7PR4ZV0YyanAvYX1uXD/lwCDVa9vOQ538tRpXj5OdnH3nH4zPH32jDZE53so rD3Ziz4XMgl/PCk78qjnW2oxx4MCAH5DPJqZ7dle7mxJlrSIvEGYtPinJuOS Ti6OFwqasOXgS2z7Hp6/wtlabpL3mFvXt95PKC8YTNoSXTBiNmGWPXDoI+js shXLkwYT9XuGrbffcprRECNrRGPwYlMks8Cz6/JB19KxrT1oBnBHh/j2C1Lh EbRd0YE3mSA3yvQVL/Xx4OotxdkMl64AZ8paTLRSf3OpuC93N16g8+uPYIfY VMypLpOmQq1kldQlbap11vXbB82hrWKYPbN6Ul4Gbc/dRUcKiN53wNwa3sIp LMan0qApx/mLBzcazNBJthuNVLAjLxIDyU064JP1Y4tKgTPWjEh3V/TFCEqx onrF4+TSMV883faB2jHFFUdWsGNnYSBDLpM+Q4ACPo711QunroxFzrDDOmc7 yRnO69ddsXZdMJpJ7IyDc/v6+0twccwywGjpogsAoo+roouKbK9bP6lOWO7E ATT4UavgUSfnPHyJ6HFyQVOZg4i2wcQ/7cw40vtU3cuJxmVho/8mHUB8eLOz dQT1zGkzBltgS7GakffxuUc0xPpX87jot56Vv1OpvnIhjXicd/kQ0YFOxorE ZaZzoZ+llGa5flipTX7+6yCMO1c6/rwFL+i42GeeDnRvWJ4Kka/eua4yagWj vdMK/mfGCYgRaK7arMvBdJZUylFeZOfkNZaZkIFSbbd/Aqc6D+fBsl7CZG9X vsC0p3Vvdj36pqQy3QvTUJGLy+jsyKp1zKgLPhrFrkygPk3YRLo3bo9/UxNp jz6WXdriSwxxDI7wjHqyfecB9pybaIkKcWfcoBBfCy10kca7lHFHDvV4D3kS UUd9FW6eLapFvCXvpYksS8PPp8DMbugTY+uad6ATJZ+Lm7dHCf8cuZj7hX6C BddJXabyoo+qe3fNupRh2U6f18H8xUIraViwmipROCb0dXfRdQbDHPb+eLF/ 722YoMh4CPH2sU3mWHSgRtf7wquYUFV8ccsAFjVo4vJ3pp5jZBmi50RUWxDs vZi/qUtANp3mXr6H6y7i4x5WeKeXmRnfwzume59mPPTCiKdw+DJknxdfcc1x oVdkMFl1q3735lOcpLwxMY2zS5LcYgr5LPNvbcE6llVEqViMKbzvy0Rd2Ii0 IfXRyefUcCQFCHYIjchd7ONOas9qfunFBZ+EYSKlu4zerQfokh/3jZJKzJvp LDit7g95dsVJ9MCcw3sAOHoE84EK69j3Oka2N14CL8ZMr/upKxnTTZ2goX6j wu+CUoivn6hEjsZv1O6wq7ABkVlWS3IG4lDK3fpcNracYJhUip052lP2b/vP 75DSuPoHNvmNNA42RaIJE1H8s1qnaRmZbw5FjBtbye7QKh7++li63a538G7j 6Mp/YM0evjzXpxfIyrKRoLBvk335BjCZQ7OJuEU2Wq9fc9OlSU/s4vEHPe8P lhAgy06hMZa2R1iZPv30HsewOghsIEkfQJTg4ix71UeaAjqzzUWEEADp06FT qtrJXr5jhJFKxpEjzCUrxjTCmldcpBtoEQqb1aayogjljdrggm9MSVg/73JM frw9gkUe6CRJiOK2ydXF/bcEGDdtBFKHiOB2wLXr2xzcWNcQkYpLTvbftHA0 U/WHYlEw69hZTTsPjzeJ/lojhJkgbpyKAStLvCStaSbOFjLKVr/uzIHAVM7d FJV49kdr0G7pQd8d/UNFGP5/yFyoLhLUA4iOSjjDL43+U4mGqlTWN2vN2GY6 Njbgbd6SbOgzXAVxGG2QCQ5r8VCCpPtHvqEeI463ngsAHAthQW6NdYOW6in1 XvO8r6HadDDBmr7bh4uU03iKHd3pllVGeQ0EFOO7wZjcz81L0gZe2xyun/kN cn3DgWpjW8Gh6Eg/ihKKLk6jKQTXeVyumfZ4Q9ez4+iuSYn7aNze71NwY0FG dnnFGL2VHdTz3LP3wEX2prOLUOQ4DcuUZlJGcfxMnvXjd4I0QS+px9+Q7h7X wZdSCmdvIZJdaJugpLZup09tS8m4HV3vtwtk+kH/zNSI2C0E61bN05WVqUvF CaHGX3WvmUpXZOkjNHmaT1bZoV4GmtHGVGRLR3PLqUh1JOeIObdppuBTLd87 RoXVIyNfXkKaWK0h+024HGNYofbWF0qfzZGC7yOIluozv/EZ3nLKTnrINow6 38TOvlSzcJXQKfrl2NLbrfjlNEfFJiphTP9W+Qu/nzDk0UuCdbvUjYbULJ4a zZw0bnvqADr3y50suDOrk6ODsNCC+lry941dUEcgzsfMFJYW7W5CGCRyJM1w 3ZvdwV12RZMfZ+LhF9u9jbeKtZ4G8+RFKqdIAvhEtto5++sjAEepE1+sCaMt NQcObMFTYyrzFdJeoahXHbAYV4DZTNdgVz84C2Vcj9LdfQhzRpVJKJATrCvi hjO+submxDCsVspe3z3aSZhziIlNf4YRpBv99QNQlQF18D9nAfrpyH+Son6h 23TiMRSALQQTdjd0M/JLFYDNaTocyK1d0N5Ns8Ye3jK19qMSKNOVsUFoLzPF k2xxO25lskczPWfWcAJi1fuctsuXlm/54cOiQ7zlTL2PMuXrNKB2bF5Z2c4p dxWKcsVOL0O1QkM3GLV3PgsrDqGdPJyAUDq0+rZVT8Cc9ypgl3/vmLk9wS6p BaYZv4iPJB601FR66jFanqseynOuWd5yOtRcZ3WCUS4iuNGiB5w3SA1ZzDLb QLxoo81dYqw8ZlQzck4b/WvjThbW/W2KafQjdyaz8tiCVenx4urLFhpRPRrp 8VLVznYv9ujpq6VbYqgSyXKGYjZlVSfGYQmBKyONWFZ8tAoEusoi71f07cwz q1RGU5CI1H8d3GSD8p5l3cdwNGSYuOEahDzvdo/n+H9QSwECNAMUAAAACADp XKRMGHXPtAMCAACzEAAAEAAAAAAAAAABAAAApIEAAAAAdXBsb2FkX2luZm8u anNvblBLAQI0AxQAAAAIAOlcpEwkLzGl3rUEAIShGAAYAAAAAAAAAAEAAAC0 gTECAABkYXRhc2V0X2Nzdl9wb2xpY2llcy5jc3ZQSwUGAAAAAAIAAgCEAAAA RbgEAAAA headers: Accept: - "*/*" Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 X-Gdc-Authtt: - "" Content-Length: - '309471' Host: - staging2-lcm-prod.intgdc.com response: status: code: 201 message: Created headers: Date: - Fri, 04 May 2018 09:39:22 GMT Server: - Apache Location: - https://staging2-lcm-prod.intgdc.com/gdc/uploads/d20180504-28712-cdpmin/upload.zip Content-Security-Policy: - frame-ancestors 'none' X-Frame-Options: - DENY X-Content-Type-Options: - nosniff Content-Length: - '218' Content-Type: - text/html; charset=ISO-8859-1 Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: UTF-8 string: | 201 Created

Created

Resource /gdc/uploads/d20180504-28712-cdpmin/upload.zip has been created.

http_version: recorded_at: Fri, 04 May 2018 09:39:23 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34 body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:UqeHQ5LnTX8zTMr0IbftFg Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin,Accept-Encoding Date: - Fri, 04 May 2018 09:39:24 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=99 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 Transfer-Encoding: - chunked X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:UqeHQ5LnTX8zTMr0IbftFg:zhf3JuA0bKb05a55 X-Gdc-Request-Time: - '49' Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"about":{"summary":"Metadata service for project ''fmsa7k9ty8tvwg6h9v4o0nvg071kjd34''","category":"project","instance":"fmsa7k9ty8tvwg6h9v4o0nvg071kjd34","links":[{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/data","summary":"Resources for data set manipulation.","category":"data","title":"data"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/dml","summary":"Navigation resource for physical data manipulation.","category":"dml","title":"dml"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/drillcrosspaths","summary":"Returns a list of attributes available for drilling across.","category":"drillcrosspaths","title":"drillcrosspaths"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/etl","summary":"Resources for data ETL.","category":"etl","title":"etl"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/datedimension","summary":"Resources for Date Dimension manipulation","category":"datedimension","title":"datedimension"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/favorites","summary":"Returns list of objects marked as favorites by the user.","category":"favorites","title":"favorites"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/favorite","summary":"Resource for determining if an object is in a user''s favorites.","category":"favorite","title":"favorite"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/identifiers","summary":"Resource for retrieving metadata object identifiers.","category":"instance-identifiers","title":"identifiers"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/labels","summary":"Resource for retrieving uris for element labels.","category":"labels","title":"labels"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/ldm","summary":"Resources for logical data model (LDM) manipulation.","category":"ldm","title":"ldm"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/log","summary":"Returns a list of metadata events.","category":"logs","title":"logs"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/maintenance","summary":"Resource for project maintenace.","category":"maintenance","title":"maintenance"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/maqlvalidator","summary":"Resource for MAQL construct validation and tree representation.","category":"maqlvalidator","title":"MaqlValidator"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/obj","summary":"Resource for creating new metadata objects.","category":"obj","title":"obj"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/objects","summary":"Resource for batch operations MD objects.","category":"objects","title":"objects"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/query","summary":"Resources for querying collections of metadata objects.","category":"query","title":"query"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/reportstatistics","summary":"Returns report statistics for a specified report.","category":"report-statistic","title":"report statistics"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/search","summary":"Resource for full text search.","category":"search","title":"search"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/service","summary":"Services for metadata configuration.","category":"service","title":"service"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tags","summary":"Returns a list of tags.","category":"tags","title":"tags"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks","summary":"Task resource.","category":"tasks","title":"tasks"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/templates","summary":"Returns list of uris of templates from which the project was created.","category":"templates","title":"templates"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/translations","summary":"Resource for project localization.","category":"translations","title":"translations"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/usedby2","summary":"Returns list of objects connected to a certain object via a ''used'' edge.","category":"usedby2","title":"usedby"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/using2","summary":"Returns list of objects connected to a certain object via a ''using'' edge.","category":"using2","title":"using"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/userfilters","summary":"Relation userFilter - user management.","category":"userfilters","title":"userfilters"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/validate","summary":"Resources for LDM, PDM, IO validation.","category":"validate-project","title":"validateproject"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/variables","summary":"Resources for variable manipulation.","category":"vars","title":"variables"}]}}' http_version: recorded_at: Fri, 04 May 2018 09:39:24 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/etl body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:eNG1G0KZ2SZqzzw67kZWEg Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin Date: - Fri, 04 May 2018 09:39:24 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:eNG1G0KZ2SZqzzw67kZWEg:OJkuRFLn0AWrxewv X-Gdc-Request-Time: - '71' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"about":{"summary":"Extract, transform and load services for project ''fmsa7k9ty8tvwg6h9v4o0nvg071kjd34''","category":"etl","instance":"fmsa7k9ty8tvwg6h9v4o0nvg071kjd34","links":[{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/etl/pull2","summary":"Provides service of pull2.","category":"pull2","title":"pull2"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/etl/task","summary":"Provides service of task.","category":"task","title":"task"},{"link":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/etl/mode","summary":"Provides service of mode.","category":"mode","title":"mode"}]}}' http_version: recorded_at: Fri, 04 May 2018 09:39:24 GMT - request: method: post uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/etl/pull2 body: encoding: UTF-8 string: '{"pullIntegration":"d20180504-28712-cdpmin"}' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:fcI28s3o4DbVDP7Cr-1iow Info-Message: - Starting the data load from user storage to dataset. Content-Length: - '44' Host: - staging2-lcm-prod.intgdc.com response: status: code: 201 message: Created headers: Vary: - Origin Date: - Fri, 04 May 2018 09:39:25 GMT Server: - GoodData WebApp Location: - "/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/67b994414259eca74388232d3364e11800000012/status" Keep-Alive: - timeout=5, max=98 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:fcI28s3o4DbVDP7Cr-1iow:bgYV9sGFrNYgq7Yu X-Gdc-Request-Time: - '57' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"pull2Task":{"links":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/67b994414259eca74388232d3364e11800000012/status"}}}' http_version: recorded_at: Fri, 04 May 2018 09:39:25 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/67b994414259eca74388232d3364e11800000012/status body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:tn8nhSXgoFjmH4D9tIfINg Process: - 'true' Host: - staging2-lcm-prod.intgdc.com response: status: code: 202 message: Accepted headers: Vary: - Origin Date: - Fri, 04 May 2018 09:39:26 GMT Server: - GoodData WebApp Refresh: - '2' Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:tn8nhSXgoFjmH4D9tIfINg:6uQmdz9J7xeJFV7W X-Gdc-Request-Time: - '77' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"wTaskStatus":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/67b994414259eca74388232d3364e11800000012/status","status":"RUNNING","links":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/67b994414259eca74388232d3364e11800000012/status"}}}' http_version: recorded_at: Fri, 04 May 2018 09:39:26 GMT - request: method: get uri: https://staging2-lcm-prod.intgdc.com/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/67b994414259eca74388232d3364e11800000012/status body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:cAdx0aBaBEF_Bn3m36FN0A Process: - 'true' Host: - staging2-lcm-prod.intgdc.com response: status: code: 200 message: OK headers: Vary: - Origin Date: - Fri, 04 May 2018 09:39:36 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=100 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Content-Type: - application/json;charset=UTF-8 X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:cAdx0aBaBEF_Bn3m36FN0A:ztmbcIfc2sojPJng X-Gdc-Request-Time: - '20' Transfer-Encoding: - chunked Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: ASCII-8BIT string: '{"wTaskStatus":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/67b994414259eca74388232d3364e11800000012/status","status":"OK","links":{"poll":"/gdc/md/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34/tasks/67b994414259eca74388232d3364e11800000012/status"}}}' http_version: recorded_at: Fri, 04 May 2018 09:39:36 GMT - request: method: delete uri: https://staging2-lcm-prod.intgdc.com/gdc/projects/fmsa7k9ty8tvwg6h9v4o0nvg071kjd34 body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:N2Jz0_tFOZSzZNDg4-6YrQ Host: - staging2-lcm-prod.intgdc.com response: status: code: 204 message: No Content headers: Vary: - Origin Date: - Fri, 04 May 2018 09:39:40 GMT Server: - GoodData WebApp Keep-Alive: - timeout=5, max=98 X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate X-Gdc-Request-Time: - '45' X-Gdc-Request: - oTcKo3v63KR_5D8pM_6UwQ:N2Jz0_tFOZSzZNDg4-6YrQ:cnIf59f90NmFzcuc Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: UTF-8 string: '' http_version: recorded_at: Fri, 04 May 2018 09:39:40 GMT - request: method: delete uri: https://staging2-lcm-prod.intgdc.com/gdc/account/login/5ad80b895edcc438e5a4418e222733fa body: encoding: US-ASCII string: '' headers: Accept: - application/json, application/zip Accept-Encoding: - gzip, deflate User-Agent: - gooddata-gem/1.0.2/x86_64-linux/2.3.4 Content-Type: - application/json X-Gdc-Authtt: - "" X-Gdc-Request: - 8J8rqayLgszfOVygL_nu8A:WkN9Zwq7vg9G6IYR-TIsZg X-Gdc-Authsst: - "" Host: - staging2-lcm-prod.intgdc.com response: status: code: 204 message: No Content headers: Vary: - Origin X-Gdc-Log-Header: - '' Cache-Control: - no-cache, no-store, must-revalidate Date: - Fri, 04 May 2018 09:39:41 GMT Server: - GoodData WebApp X-Gdc-Request-Time: - '16' X-Gdc-Request: - 8J8rqayLgszfOVygL_nu8A:WkN9Zwq7vg9G6IYR-TIsZg:uubhRhG03QixqxJY Strict-Transport-Security: - max-age=10886400; includeSubDomains; preload; body: encoding: UTF-8 string: '' http_version: recorded_at: Fri, 04 May 2018 09:39:41 GMT recorded_with: VCR 4.0.0