# WARNING ABOUT GENERATED CODE # # This file is generated. See the contributing guide for more information: # https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md # # WARNING ABOUT GENERATED CODE require 'seahorse/client/plugins/content_length.rb' require 'aws-sdk-core/plugins/credentials_configuration.rb' require 'aws-sdk-core/plugins/logging.rb' require 'aws-sdk-core/plugins/param_converter.rb' require 'aws-sdk-core/plugins/param_validator.rb' require 'aws-sdk-core/plugins/user_agent.rb' require 'aws-sdk-core/plugins/helpful_socket_errors.rb' require 'aws-sdk-core/plugins/retry_errors.rb' require 'aws-sdk-core/plugins/global_configuration.rb' require 'aws-sdk-core/plugins/regional_endpoint.rb' require 'aws-sdk-core/plugins/response_paging.rb' require 'aws-sdk-core/plugins/stub_responses.rb' require 'aws-sdk-core/plugins/idempotency_token.rb' require 'aws-sdk-core/plugins/jsonvalue_converter.rb' require 'aws-sdk-core/plugins/signature_v4.rb' require 'aws-sdk-core/plugins/protocols/json_rpc.rb' Aws::Plugins::GlobalConfiguration.add_identifier(:rekognition) module Aws::Rekognition class Client < Seahorse::Client::Base include Aws::ClientStubs @identifier = :rekognition set_api(ClientApi::API) add_plugin(Seahorse::Client::Plugins::ContentLength) add_plugin(Aws::Plugins::CredentialsConfiguration) add_plugin(Aws::Plugins::Logging) add_plugin(Aws::Plugins::ParamConverter) add_plugin(Aws::Plugins::ParamValidator) add_plugin(Aws::Plugins::UserAgent) add_plugin(Aws::Plugins::HelpfulSocketErrors) add_plugin(Aws::Plugins::RetryErrors) add_plugin(Aws::Plugins::GlobalConfiguration) add_plugin(Aws::Plugins::RegionalEndpoint) add_plugin(Aws::Plugins::ResponsePaging) add_plugin(Aws::Plugins::StubResponses) add_plugin(Aws::Plugins::IdempotencyToken) add_plugin(Aws::Plugins::JsonvalueConverter) add_plugin(Aws::Plugins::SignatureV4) add_plugin(Aws::Plugins::Protocols::JsonRpc) # @option options [required, Aws::CredentialProvider] :credentials # Your AWS credentials. This can be an instance of any one of the # following classes: # # * `Aws::Credentials` - Used for configuring static, non-refreshing # credentials. # # * `Aws::InstanceProfileCredentials` - Used for loading credentials # from an EC2 IMDS on an EC2 instance. # # * `Aws::SharedCredentials` - Used for loading credentials from a # shared file, such as `~/.aws/config`. # # * `Aws::AssumeRoleCredentials` - Used when you need to assume a role. # # When `:credentials` are not configured directly, the following # locations will be searched for credentials: # # * `Aws.config[:credentials]` # * The `:access_key_id`, `:secret_access_key`, and `:session_token` options. # * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY'] # * `~/.aws/credentials` # * `~/.aws/config` # * EC2 IMDS instance profile - When used by default, the timeouts are # very aggressive. Construct and pass an instance of # `Aws::InstanceProfileCredentails` to enable retries and extended # timeouts. # # @option options [required, String] :region # The AWS region to connect to. The configured `:region` is # used to determine the service `:endpoint`. When not passed, # a default `:region` is search for in the following locations: # # * `Aws.config[:region]` # * `ENV['AWS_REGION']` # * `ENV['AMAZON_REGION']` # * `ENV['AWS_DEFAULT_REGION']` # * `~/.aws/credentials` # * `~/.aws/config` # # @option options [String] :access_key_id # # @option options [Boolean] :convert_params (true) # When `true`, an attempt is made to coerce request parameters into # the required types. # # @option options [String] :endpoint # The client endpoint is normally constructed from the `:region` # option. You should only configure an `:endpoint` when connecting # to test endpoints. This should be avalid HTTP(S) URI. # # @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default) # The log formatter. # # @option options [Symbol] :log_level (:info) # The log level to send messages to the `:logger` at. # # @option options [Logger] :logger # The Logger instance to send log messages to. If this option # is not set, logging will be disabled. # # @option options [String] :profile ("default") # Used when loading credentials from the shared credentials file # at HOME/.aws/credentials. When not specified, 'default' is used. # # @option options [Integer] :retry_limit (3) # The maximum number of times to retry failed requests. Only # ~ 500 level server errors and certain ~ 400 level client errors # are retried. Generally, these are throttling errors, data # checksum errors, networking errors, timeout errors and auth # errors from expired credentials. # # @option options [String] :secret_access_key # # @option options [String] :session_token # # @option options [Boolean] :simple_json (false) # Disables request parameter conversion, validation, and formatting. # Also disable response data type conversions. This option is useful # when you want to ensure the highest level of performance by # avoiding overhead of walking request parameters and response data # structures. # # When `:simple_json` is enabled, the request parameters hash must # be formatted exactly as the DynamoDB API expects. # # @option options [Boolean] :stub_responses (false) # Causes the client to return stubbed responses. By default # fake responses are generated and returned. You can specify # the response data to return or errors to raise by calling # {ClientStubs#stub_responses}. See {ClientStubs} for more information. # # ** Please note ** When response stubbing is enabled, no HTTP # requests are made, and retries are disabled. # # @option options [Boolean] :validate_params (true) # When `true`, request parameters are validated before # sending the request. # def initialize(*args) super end # @!group API Operations # Compares a face in the *source* input image with each face detected in # the *target* input image. # # If the source image contains multiple faces, the service detects the # largest face and compares it with each face detected in the target # image. # # # # In response, the operation returns an array of face matches ordered by # similarity score in descending order. For each face match, the # response provides a bounding box of the face, facial landmarks, pose # details (pitch, role, and yaw), quality (brightness and sharpness), # and confidence value (indicating the level of confidence that the # bounding box contains a face). The response also provides a similarity # score, which indicates how closely the faces match. # # By default, only faces with a similarity score of greater than or # equal to 80% are returned in the response. You can change this value # by specifying the `SimilarityThreshold` parameter. # # # # `CompareFaces` also returns an array of faces that don't match the # source image. For each face, it returns a bounding box, confidence # value, landmarks, pose details, and quality. The response also returns # information about the face in the source image, including the bounding # box of the face and confidence value. # # If the image doesn't contain Exif metadata, `CompareFaces` returns # orientation information for the source and target images. Use these # values to display the images with the correct image orientation. # # This is a stateless API operation. That is, data returned by this # operation doesn't persist. # # # # For an example, see get-started-exercise-compare-faces. # # This operation requires permissions to perform the # `rekognition:CompareFaces` action. # # @option params [required, Types::Image] :source_image # The source image, either as bytes or as an S3 object. # # @option params [required, Types::Image] :target_image # The target image, either as bytes or as an S3 object. # # @option params [Float] :similarity_threshold # The minimum level of confidence in the face matches that a match must # meet to be included in the `FaceMatches` array. # # @return [Types::CompareFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CompareFacesResponse#source_image_face #source_image_face} => Types::ComparedSourceImageFace # * {Types::CompareFacesResponse#face_matches #face_matches} => Array<Types::CompareFacesMatch> # * {Types::CompareFacesResponse#unmatched_faces #unmatched_faces} => Array<Types::ComparedFace> # * {Types::CompareFacesResponse#source_image_orientation_correction #source_image_orientation_correction} => String # * {Types::CompareFacesResponse#target_image_orientation_correction #target_image_orientation_correction} => String # # # @example Example: To compare two images # # # This operation compares the largest face detected in the source image with each face detected in the target image. # # resp = client.compare_faces({ # similarity_threshold: 90, # source_image: { # s3_object: { # bucket: "mybucket", # name: "mysourceimage", # }, # }, # target_image: { # s3_object: { # bucket: "mybucket", # name: "mytargetimage", # }, # }, # }) # # resp.to_h outputs the following: # { # face_matches: [ # { # face: { # bounding_box: { # height: 0.33481481671333313, # left: 0.31888890266418457, # top: 0.4933333396911621, # width: 0.25, # }, # confidence: 99.9991226196289, # }, # similarity: 100, # }, # ], # source_image_face: { # bounding_box: { # height: 0.33481481671333313, # left: 0.31888890266418457, # top: 0.4933333396911621, # width: 0.25, # }, # confidence: 99.9991226196289, # }, # } # # @example Request syntax with placeholder values # # resp = client.compare_faces({ # source_image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # target_image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # similarity_threshold: 1.0, # }) # # @example Response structure # # resp.source_image_face.bounding_box.width #=> Float # resp.source_image_face.bounding_box.height #=> Float # resp.source_image_face.bounding_box.left #=> Float # resp.source_image_face.bounding_box.top #=> Float # resp.source_image_face.confidence #=> Float # resp.face_matches #=> Array # resp.face_matches[0].similarity #=> Float # resp.face_matches[0].face.bounding_box.width #=> Float # resp.face_matches[0].face.bounding_box.height #=> Float # resp.face_matches[0].face.bounding_box.left #=> Float # resp.face_matches[0].face.bounding_box.top #=> Float # resp.face_matches[0].face.confidence #=> Float # resp.face_matches[0].face.landmarks #=> Array # resp.face_matches[0].face.landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL" # resp.face_matches[0].face.landmarks[0].x #=> Float # resp.face_matches[0].face.landmarks[0].y #=> Float # resp.face_matches[0].face.pose.roll #=> Float # resp.face_matches[0].face.pose.yaw #=> Float # resp.face_matches[0].face.pose.pitch #=> Float # resp.face_matches[0].face.quality.brightness #=> Float # resp.face_matches[0].face.quality.sharpness #=> Float # resp.unmatched_faces #=> Array # resp.unmatched_faces[0].bounding_box.width #=> Float # resp.unmatched_faces[0].bounding_box.height #=> Float # resp.unmatched_faces[0].bounding_box.left #=> Float # resp.unmatched_faces[0].bounding_box.top #=> Float # resp.unmatched_faces[0].confidence #=> Float # resp.unmatched_faces[0].landmarks #=> Array # resp.unmatched_faces[0].landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL" # resp.unmatched_faces[0].landmarks[0].x #=> Float # resp.unmatched_faces[0].landmarks[0].y #=> Float # resp.unmatched_faces[0].pose.roll #=> Float # resp.unmatched_faces[0].pose.yaw #=> Float # resp.unmatched_faces[0].pose.pitch #=> Float # resp.unmatched_faces[0].quality.brightness #=> Float # resp.unmatched_faces[0].quality.sharpness #=> Float # resp.source_image_orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # resp.target_image_orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # # @overload compare_faces(params = {}) # @param [Hash] params ({}) def compare_faces(params = {}, options = {}) req = build_request(:compare_faces, params) req.send_request(options) end # Creates a collection in an AWS Region. You can add faces to the # collection using the operation. # # For example, you might create collections, one for each of your # application users. A user can then index faces using the `IndexFaces` # operation and persist results in a specific collection. Then, a user # can search the collection for faces in the user-specific container. # # Collection names are case-sensitive. # # # # For an example, see example1. # # This operation requires permissions to perform the # `rekognition:CreateCollection` action. # # @option params [required, String] :collection_id # ID for the collection that you are creating. # # @return [Types::CreateCollectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::CreateCollectionResponse#status_code #status_code} => Integer # * {Types::CreateCollectionResponse#collection_arn #collection_arn} => String # # # @example Example: To create a collection # # # This operation creates a Rekognition collection for storing image data. # # resp = client.create_collection({ # collection_id: "myphotos", # }) # # resp.to_h outputs the following: # { # collection_arn: "aws:rekognition:us-west-2:123456789012:collection/myphotos", # status_code: 200, # } # # @example Request syntax with placeholder values # # resp = client.create_collection({ # collection_id: "CollectionId", # required # }) # # @example Response structure # # resp.status_code #=> Integer # resp.collection_arn #=> String # # @overload create_collection(params = {}) # @param [Hash] params ({}) def create_collection(params = {}, options = {}) req = build_request(:create_collection, params) req.send_request(options) end # Deletes the specified collection. Note that this operation removes all # faces in the collection. For an example, see example1. # # This operation requires permissions to perform the # `rekognition:DeleteCollection` action. # # @option params [required, String] :collection_id # ID of the collection to delete. # # @return [Types::DeleteCollectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DeleteCollectionResponse#status_code #status_code} => Integer # # # @example Example: To delete a collection # # # This operation deletes a Rekognition collection. # # resp = client.delete_collection({ # collection_id: "myphotos", # }) # # resp.to_h outputs the following: # { # status_code: 200, # } # # @example Request syntax with placeholder values # # resp = client.delete_collection({ # collection_id: "CollectionId", # required # }) # # @example Response structure # # resp.status_code #=> Integer # # @overload delete_collection(params = {}) # @param [Hash] params ({}) def delete_collection(params = {}, options = {}) req = build_request(:delete_collection, params) req.send_request(options) end # Deletes faces from a collection. You specify a collection ID and an # array of face IDs to remove from the collection. # # This operation requires permissions to perform the # `rekognition:DeleteFaces` action. # # @option params [required, String] :collection_id # Collection from which to remove the specific faces. # # @option params [required, Array] :face_ids # An array of face IDs to delete. # # @return [Types::DeleteFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DeleteFacesResponse#deleted_faces #deleted_faces} => Array<String> # # # @example Example: To delete a face # # # This operation deletes one or more faces from a Rekognition collection. # # resp = client.delete_faces({ # collection_id: "myphotos", # face_ids: [ # "ff43d742-0c13-5d16-a3e8-03d3f58e980b", # ], # }) # # resp.to_h outputs the following: # { # deleted_faces: [ # "ff43d742-0c13-5d16-a3e8-03d3f58e980b", # ], # } # # @example Request syntax with placeholder values # # resp = client.delete_faces({ # collection_id: "CollectionId", # required # face_ids: ["FaceId"], # required # }) # # @example Response structure # # resp.deleted_faces #=> Array # resp.deleted_faces[0] #=> String # # @overload delete_faces(params = {}) # @param [Hash] params ({}) def delete_faces(params = {}, options = {}) req = build_request(:delete_faces, params) req.send_request(options) end # Detects faces within an image (JPEG or PNG) that is provided as input. # # For each face detected, the operation returns face details including a # bounding box of the face, a confidence value (that the bounding box # contains a face), and a fixed set of attributes such as facial # landmarks (for example, coordinates of eye and mouth), gender, # presence of beard, sunglasses, etc. # # The face-detection algorithm is most effective on frontal faces. For # non-frontal or obscured faces, the algorithm may not detect the faces # or might detect faces with lower confidence. # # This is a stateless API operation. That is, the operation does not # persist any data. # # # # For an example, see get-started-exercise-detect-faces. # # This operation requires permissions to perform the # `rekognition:DetectFaces` action. # # @option params [required, Types::Image] :image # The image in which you want to detect faces. You can specify a blob or # an S3 object. # # @option params [Array] :attributes # An array of facial attributes you want to be returned. This can be the # default list of attributes or all attributes. If you don't specify a # value for `Attributes` or if you specify `["DEFAULT"]`, the API # returns the following subset of facial attributes: `BoundingBox`, # `Confidence`, `Pose`, `Quality` and `Landmarks`. If you provide # `["ALL"]`, all facial attributes are returned but the operation will # take longer to complete. # # If you provide both, `["ALL", "DEFAULT"]`, the service uses a logical # AND operator to determine which attributes to return (in this case, # all attributes). # # @return [Types::DetectFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DetectFacesResponse#face_details #face_details} => Array<Types::FaceDetail> # * {Types::DetectFacesResponse#orientation_correction #orientation_correction} => String # # # @example Example: To detect faces in an image # # # This operation detects faces in an image stored in an AWS S3 bucket. # # resp = client.detect_faces({ # image: { # s3_object: { # bucket: "mybucket", # name: "myphoto", # }, # }, # }) # # resp.to_h outputs the following: # { # face_details: [ # { # bounding_box: { # height: 0.18000000715255737, # left: 0.5555555820465088, # top: 0.33666667342185974, # width: 0.23999999463558197, # }, # confidence: 100, # landmarks: [ # { # type: "EYE_LEFT", # x: 0.6394737362861633, # y: 0.40819624066352844, # }, # { # type: "EYE_RIGHT", # x: 0.7266660928726196, # y: 0.41039225459098816, # }, # { # type: "NOSE_LEFT", # x: 0.6912462115287781, # y: 0.44240960478782654, # }, # { # type: "MOUTH_DOWN", # x: 0.6306198239326477, # y: 0.46700039505958557, # }, # { # type: "MOUTH_UP", # x: 0.7215608954429626, # y: 0.47114261984825134, # }, # ], # pose: { # pitch: 4.050806522369385, # roll: 0.9950747489929199, # yaw: 13.693790435791016, # }, # quality: { # brightness: 37.60169982910156, # sharpness: 80, # }, # }, # ], # orientation_correction: "ROTATE_0", # } # # @example Request syntax with placeholder values # # resp = client.detect_faces({ # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # attributes: ["DEFAULT"], # accepts DEFAULT, ALL # }) # # @example Response structure # # resp.face_details #=> Array # resp.face_details[0].bounding_box.width #=> Float # resp.face_details[0].bounding_box.height #=> Float # resp.face_details[0].bounding_box.left #=> Float # resp.face_details[0].bounding_box.top #=> Float # resp.face_details[0].age_range.low #=> Integer # resp.face_details[0].age_range.high #=> Integer # resp.face_details[0].smile.value #=> Boolean # resp.face_details[0].smile.confidence #=> Float # resp.face_details[0].eyeglasses.value #=> Boolean # resp.face_details[0].eyeglasses.confidence #=> Float # resp.face_details[0].sunglasses.value #=> Boolean # resp.face_details[0].sunglasses.confidence #=> Float # resp.face_details[0].gender.value #=> String, one of "MALE", "FEMALE" # resp.face_details[0].gender.confidence #=> Float # resp.face_details[0].beard.value #=> Boolean # resp.face_details[0].beard.confidence #=> Float # resp.face_details[0].mustache.value #=> Boolean # resp.face_details[0].mustache.confidence #=> Float # resp.face_details[0].eyes_open.value #=> Boolean # resp.face_details[0].eyes_open.confidence #=> Float # resp.face_details[0].mouth_open.value #=> Boolean # resp.face_details[0].mouth_open.confidence #=> Float # resp.face_details[0].emotions #=> Array # resp.face_details[0].emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN" # resp.face_details[0].emotions[0].confidence #=> Float # resp.face_details[0].landmarks #=> Array # resp.face_details[0].landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL" # resp.face_details[0].landmarks[0].x #=> Float # resp.face_details[0].landmarks[0].y #=> Float # resp.face_details[0].pose.roll #=> Float # resp.face_details[0].pose.yaw #=> Float # resp.face_details[0].pose.pitch #=> Float # resp.face_details[0].quality.brightness #=> Float # resp.face_details[0].quality.sharpness #=> Float # resp.face_details[0].confidence #=> Float # resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # # @overload detect_faces(params = {}) # @param [Hash] params ({}) def detect_faces(params = {}, options = {}) req = build_request(:detect_faces, params) req.send_request(options) end # Detects instances of real-world labels within an image (JPEG or PNG) # provided as input. This includes objects like flower, tree, and table; # events like wedding, graduation, and birthday party; and concepts like # landscape, evening, and nature. For an example, see # get-started-exercise-detect-labels. # # For each object, scene, and concept the API returns one or more # labels. Each label provides the object name, and the level of # confidence that the image contains the object. For example, suppose # the input image has a lighthouse, the sea, and a rock. The response # will include all three labels, one for each object. # # `\{Name: lighthouse, Confidence: 98.4629\}` # # `\{Name: rock,Confidence: 79.2097\}` # # ` \{Name: sea,Confidence: 75.061\}` # # In the preceding example, the operation returns one label for each of # the three objects. The operation can also return multiple labels for # the same object in the image. For example, if the input image shows a # flower (for example, a tulip), the operation might return the # following three labels. # # `\{Name: flower,Confidence: 99.0562\}` # # `\{Name: plant,Confidence: 99.0562\}` # # `\{Name: tulip,Confidence: 99.0562\}` # # In this example, the detection algorithm more precisely identifies the # flower as a tulip. # # You can provide the input image as an S3 object or as base64-encoded # bytes. In response, the API returns an array of labels. In addition, # the response also includes the orientation correction. Optionally, you # can specify `MinConfidence` to control the confidence threshold for # the labels returned. The default is 50%. You can also add the # `MaxLabels` parameter to limit the number of labels returned. # # If the object detected is a person, the operation doesn't provide the # same facial details that the DetectFaces operation provides. # # # # This is a stateless API operation. That is, the operation does not # persist any data. # # This operation requires permissions to perform the # `rekognition:DetectLabels` action. # # @option params [required, Types::Image] :image # The input image. You can provide a blob of image bytes or an S3 # object. # # @option params [Integer] :max_labels # Maximum number of labels you want the service to return in the # response. The service returns the specified number of highest # confidence labels. # # @option params [Float] :min_confidence # Specifies the minimum confidence level for the labels to return. # Amazon Rekognition doesn't return any labels with confidence lower # than this specified value. # # If `MinConfidence` is not specified, the operation returns labels with # a confidence values greater than or equal to 50 percent. # # @return [Types::DetectLabelsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DetectLabelsResponse#labels #labels} => Array<Types::Label> # * {Types::DetectLabelsResponse#orientation_correction #orientation_correction} => String # # # @example Example: To detect labels # # # This operation detects labels in the supplied image # # resp = client.detect_labels({ # image: { # s3_object: { # bucket: "mybucket", # name: "myphoto", # }, # }, # max_labels: 123, # min_confidence: 70, # }) # # resp.to_h outputs the following: # { # labels: [ # { # confidence: 99.25072479248047, # name: "People", # }, # { # confidence: 99.25074005126953, # name: "Person", # }, # ], # } # # @example Request syntax with placeholder values # # resp = client.detect_labels({ # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # max_labels: 1, # min_confidence: 1.0, # }) # # @example Response structure # # resp.labels #=> Array # resp.labels[0].name #=> String # resp.labels[0].confidence #=> Float # resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # # @overload detect_labels(params = {}) # @param [Hash] params ({}) def detect_labels(params = {}, options = {}) req = build_request(:detect_labels, params) req.send_request(options) end # Detects explicit or suggestive adult content in a specified JPEG or # PNG format image. Use `DetectModerationLabels` to moderate images # depending on your requirements. For example, you might want to filter # images that contain nudity, but not images containing suggestive # content. # # To filter images, use the labels returned by `DetectModerationLabels` # to determine which types of content are appropriate. For information # about moderation labels, see image-moderation. # # @option params [required, Types::Image] :image # The input image as bytes or an S3 object. # # @option params [Float] :min_confidence # Specifies the minimum confidence level for the labels to return. # Amazon Rekognition doesn't return any labels with a confidence level # lower than this specified value. # # If you don't specify `MinConfidence`, the operation returns labels # with confidence values greater than or equal to 50 percent. # # @return [Types::DetectModerationLabelsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::DetectModerationLabelsResponse#moderation_labels #moderation_labels} => Array<Types::ModerationLabel> # # @example Request syntax with placeholder values # # resp = client.detect_moderation_labels({ # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # min_confidence: 1.0, # }) # # @example Response structure # # resp.moderation_labels #=> Array # resp.moderation_labels[0].confidence #=> Float # resp.moderation_labels[0].name #=> String # resp.moderation_labels[0].parent_name #=> String # # @overload detect_moderation_labels(params = {}) # @param [Hash] params ({}) def detect_moderation_labels(params = {}, options = {}) req = build_request(:detect_moderation_labels, params) req.send_request(options) end # Gets the name and additional information about a celebrity based on # his or her Rekognition ID. The additional information is returned as # an array of URLs. If there is no additional information about the # celebrity, this list is empty. For more information, see # celebrity-recognition. # # This operation requires permissions to perform the # `rekognition:GetCelebrityInfo` action. # # @option params [required, String] :id # The ID for the celebrity. You get the celebrity ID from a call to the # operation, which recognizes celebrities in an image. # # @return [Types::GetCelebrityInfoResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::GetCelebrityInfoResponse#urls #urls} => Array<String> # * {Types::GetCelebrityInfoResponse#name #name} => String # # @example Request syntax with placeholder values # # resp = client.get_celebrity_info({ # id: "RekognitionUniqueId", # required # }) # # @example Response structure # # resp.urls #=> Array # resp.urls[0] #=> String # resp.name #=> String # # @overload get_celebrity_info(params = {}) # @param [Hash] params ({}) def get_celebrity_info(params = {}, options = {}) req = build_request(:get_celebrity_info, params) req.send_request(options) end # Detects faces in the input image and adds them to the specified # collection. # # Amazon Rekognition does not save the actual faces detected. Instead, # the underlying detection algorithm first detects the faces in the # input image, and for each face extracts facial features into a feature # vector, and stores it in the back-end database. Amazon Rekognition # uses feature vectors when performing face match and search operations # using the and operations. # # If you provide the optional `externalImageID` for the input image you # provided, Amazon Rekognition associates this ID with all faces that it # detects. When you call the operation, the response returns the # external ID. You can use this external image ID to create a # client-side index to associate the faces with each image. You can then # use the index to find all faces in an image. # # In response, the operation returns an array of metadata for all # detected faces. This includes, the bounding box of the detected face, # confidence value (indicating the bounding box contains a face), a face # ID assigned by the service for each face that is detected and stored, # and an image ID assigned by the service for the input image. If you # request all facial attributes (using the `detectionAttributes` # parameter, Amazon Rekognition returns detailed facial attributes such # as facial landmarks (for example, location of eye and mount) and other # facial attributes such gender. If you provide the same image, specify # the same collection, and use the same external ID in the `IndexFaces` # operation, Amazon Rekognition doesn't save duplicate face metadata. # # For an example, see example2. # # This operation requires permissions to perform the # `rekognition:IndexFaces` action. # # @option params [required, String] :collection_id # The ID of an existing collection to which you want to add the faces # that are detected in the input images. # # @option params [required, Types::Image] :image # The input image as bytes or an S3 object. # # @option params [String] :external_image_id # ID you want to assign to all the faces detected in the image. # # @option params [Array] :detection_attributes # An array of facial attributes that you want to be returned. This can # be the default list of attributes or all attributes. If you don't # specify a value for `Attributes` or if you specify `["DEFAULT"]`, the # API returns the following subset of facial attributes: `BoundingBox`, # `Confidence`, `Pose`, `Quality` and `Landmarks`. If you provide # `["ALL"]`, all facial attributes are returned but the operation will # take longer to complete. # # If you provide both, `["ALL", "DEFAULT"]`, the service uses a logical # AND operator to determine which attributes to return (in this case, # all attributes). # # @return [Types::IndexFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::IndexFacesResponse#face_records #face_records} => Array<Types::FaceRecord> # * {Types::IndexFacesResponse#orientation_correction #orientation_correction} => String # # # @example Example: To add a face to a collection # # # This operation detects faces in an image and adds them to the specified Rekognition collection. # # resp = client.index_faces({ # collection_id: "myphotos", # detection_attributes: [ # ], # external_image_id: "myphotoid", # image: { # s3_object: { # bucket: "mybucket", # name: "myphoto", # }, # }, # }) # # resp.to_h outputs the following: # { # face_records: [ # { # face: { # bounding_box: { # height: 0.33481481671333313, # left: 0.31888890266418457, # top: 0.4933333396911621, # width: 0.25, # }, # confidence: 99.9991226196289, # face_id: "ff43d742-0c13-5d16-a3e8-03d3f58e980b", # image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1", # }, # face_detail: { # bounding_box: { # height: 0.33481481671333313, # left: 0.31888890266418457, # top: 0.4933333396911621, # width: 0.25, # }, # confidence: 99.9991226196289, # landmarks: [ # { # type: "EYE_LEFT", # x: 0.3976764678955078, # y: 0.6248345971107483, # }, # { # type: "EYE_RIGHT", # x: 0.4810936450958252, # y: 0.6317117214202881, # }, # { # type: "NOSE_LEFT", # x: 0.41986238956451416, # y: 0.7111940383911133, # }, # { # type: "MOUTH_DOWN", # x: 0.40525302290916443, # y: 0.7497701048851013, # }, # { # type: "MOUTH_UP", # x: 0.4753248989582062, # y: 0.7558549642562866, # }, # ], # pose: { # pitch: -9.713645935058594, # roll: 4.707281112670898, # yaw: -24.438663482666016, # }, # quality: { # brightness: 29.23358917236328, # sharpness: 80, # }, # }, # }, # { # face: { # bounding_box: { # height: 0.32592591643333435, # left: 0.5144444704055786, # top: 0.15111111104488373, # width: 0.24444444477558136, # }, # confidence: 99.99950408935547, # face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2", # image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1", # }, # face_detail: { # bounding_box: { # height: 0.32592591643333435, # left: 0.5144444704055786, # top: 0.15111111104488373, # width: 0.24444444477558136, # }, # confidence: 99.99950408935547, # landmarks: [ # { # type: "EYE_LEFT", # x: 0.6006892323493958, # y: 0.290842205286026, # }, # { # type: "EYE_RIGHT", # x: 0.6808141469955444, # y: 0.29609042406082153, # }, # { # type: "NOSE_LEFT", # x: 0.6395332217216492, # y: 0.3522595763206482, # }, # { # type: "MOUTH_DOWN", # x: 0.5892083048820496, # y: 0.38689887523651123, # }, # { # type: "MOUTH_UP", # x: 0.674560010433197, # y: 0.394125759601593, # }, # ], # pose: { # pitch: -4.683138370513916, # roll: 2.1029529571533203, # yaw: 6.716655254364014, # }, # quality: { # brightness: 34.951698303222656, # sharpness: 160, # }, # }, # }, # ], # orientation_correction: "ROTATE_0", # } # # @example Request syntax with placeholder values # # resp = client.index_faces({ # collection_id: "CollectionId", # required # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # external_image_id: "ExternalImageId", # detection_attributes: ["DEFAULT"], # accepts DEFAULT, ALL # }) # # @example Response structure # # resp.face_records #=> Array # resp.face_records[0].face.face_id #=> String # resp.face_records[0].face.bounding_box.width #=> Float # resp.face_records[0].face.bounding_box.height #=> Float # resp.face_records[0].face.bounding_box.left #=> Float # resp.face_records[0].face.bounding_box.top #=> Float # resp.face_records[0].face.image_id #=> String # resp.face_records[0].face.external_image_id #=> String # resp.face_records[0].face.confidence #=> Float # resp.face_records[0].face_detail.bounding_box.width #=> Float # resp.face_records[0].face_detail.bounding_box.height #=> Float # resp.face_records[0].face_detail.bounding_box.left #=> Float # resp.face_records[0].face_detail.bounding_box.top #=> Float # resp.face_records[0].face_detail.age_range.low #=> Integer # resp.face_records[0].face_detail.age_range.high #=> Integer # resp.face_records[0].face_detail.smile.value #=> Boolean # resp.face_records[0].face_detail.smile.confidence #=> Float # resp.face_records[0].face_detail.eyeglasses.value #=> Boolean # resp.face_records[0].face_detail.eyeglasses.confidence #=> Float # resp.face_records[0].face_detail.sunglasses.value #=> Boolean # resp.face_records[0].face_detail.sunglasses.confidence #=> Float # resp.face_records[0].face_detail.gender.value #=> String, one of "MALE", "FEMALE" # resp.face_records[0].face_detail.gender.confidence #=> Float # resp.face_records[0].face_detail.beard.value #=> Boolean # resp.face_records[0].face_detail.beard.confidence #=> Float # resp.face_records[0].face_detail.mustache.value #=> Boolean # resp.face_records[0].face_detail.mustache.confidence #=> Float # resp.face_records[0].face_detail.eyes_open.value #=> Boolean # resp.face_records[0].face_detail.eyes_open.confidence #=> Float # resp.face_records[0].face_detail.mouth_open.value #=> Boolean # resp.face_records[0].face_detail.mouth_open.confidence #=> Float # resp.face_records[0].face_detail.emotions #=> Array # resp.face_records[0].face_detail.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN" # resp.face_records[0].face_detail.emotions[0].confidence #=> Float # resp.face_records[0].face_detail.landmarks #=> Array # resp.face_records[0].face_detail.landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL" # resp.face_records[0].face_detail.landmarks[0].x #=> Float # resp.face_records[0].face_detail.landmarks[0].y #=> Float # resp.face_records[0].face_detail.pose.roll #=> Float # resp.face_records[0].face_detail.pose.yaw #=> Float # resp.face_records[0].face_detail.pose.pitch #=> Float # resp.face_records[0].face_detail.quality.brightness #=> Float # resp.face_records[0].face_detail.quality.sharpness #=> Float # resp.face_records[0].face_detail.confidence #=> Float # resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # # @overload index_faces(params = {}) # @param [Hash] params ({}) def index_faces(params = {}, options = {}) req = build_request(:index_faces, params) req.send_request(options) end # Returns list of collection IDs in your account. If the result is # truncated, the response also provides a `NextToken` that you can use # in the subsequent request to fetch the next set of collection IDs. # # For an example, see example1. # # This operation requires permissions to perform the # `rekognition:ListCollections` action. # # @option params [String] :next_token # Pagination token from the previous response. # # @option params [Integer] :max_results # Maximum number of collection IDs to return. # # @return [Types::ListCollectionsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListCollectionsResponse#collection_ids #collection_ids} => Array<String> # * {Types::ListCollectionsResponse#next_token #next_token} => String # # # @example Example: To list the collections # # # This operation returns a list of Rekognition collections. # # resp = client.list_collections({ # }) # # resp.to_h outputs the following: # { # collection_ids: [ # "myphotos", # ], # } # # @example Request syntax with placeholder values # # resp = client.list_collections({ # next_token: "PaginationToken", # max_results: 1, # }) # # @example Response structure # # resp.collection_ids #=> Array # resp.collection_ids[0] #=> String # resp.next_token #=> String # # @overload list_collections(params = {}) # @param [Hash] params ({}) def list_collections(params = {}, options = {}) req = build_request(:list_collections, params) req.send_request(options) end # Returns metadata for faces in the specified collection. This metadata # includes information such as the bounding box coordinates, the # confidence (that the bounding box contains a face), and face ID. For # an example, see example3. # # This operation requires permissions to perform the # `rekognition:ListFaces` action. # # @option params [required, String] :collection_id # ID of the collection from which to list the faces. # # @option params [String] :next_token # If the previous response was incomplete (because there is more data to # retrieve), Amazon Rekognition returns a pagination token in the # response. You can use this pagination token to retrieve the next set # of faces. # # @option params [Integer] :max_results # Maximum number of faces to return. # # @return [Types::ListFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::ListFacesResponse#faces #faces} => Array<Types::Face> # * {Types::ListFacesResponse#next_token #next_token} => String # # # @example Example: To list the faces in a collection # # # This operation lists the faces in a Rekognition collection. # # resp = client.list_faces({ # collection_id: "myphotos", # max_results: 20, # }) # # resp.to_h outputs the following: # { # faces: [ # { # bounding_box: { # height: 0.18000000715255737, # left: 0.5555559992790222, # top: 0.336667001247406, # width: 0.23999999463558197, # }, # confidence: 100, # face_id: "1c62e8b5-69a7-5b7d-b3cd-db4338a8a7e7", # image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e", # }, # { # bounding_box: { # height: 0.16555599868297577, # left: 0.30963000655174255, # top: 0.7066670060157776, # width: 0.22074100375175476, # }, # confidence: 100, # face_id: "29a75abe-397b-5101-ba4f-706783b2246c", # image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e", # }, # { # bounding_box: { # height: 0.3234420120716095, # left: 0.3233329951763153, # top: 0.5, # width: 0.24222199618816376, # }, # confidence: 99.99829864501953, # face_id: "38271d79-7bc2-5efb-b752-398a8d575b85", # image_id: "d5631190-d039-54e4-b267-abd22c8647c5", # }, # { # bounding_box: { # height: 0.03555560111999512, # left: 0.37388700246810913, # top: 0.2477779984474182, # width: 0.04747769981622696, # }, # confidence: 99.99210357666016, # face_id: "3b01bef0-c883-5654-ba42-d5ad28b720b3", # image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784", # }, # { # bounding_box: { # height: 0.05333330109715462, # left: 0.2937690019607544, # top: 0.35666701197624207, # width: 0.07121659815311432, # }, # confidence: 99.99919891357422, # face_id: "4839a608-49d0-566c-8301-509d71b534d1", # image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784", # }, # { # bounding_box: { # height: 0.3249259889125824, # left: 0.5155559778213501, # top: 0.1513350009918213, # width: 0.24333299696445465, # }, # confidence: 99.99949645996094, # face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14", # image_id: "d5631190-d039-54e4-b267-abd22c8647c5", # }, # { # bounding_box: { # height: 0.03777780011296272, # left: 0.7002969980239868, # top: 0.18777799606323242, # width: 0.05044509842991829, # }, # confidence: 99.92639923095703, # face_id: "7f5f88ed-d684-5a88-b0df-01e4a521552b", # image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784", # }, # { # bounding_box: { # height: 0.05555560067296028, # left: 0.13946600258350372, # top: 0.46333301067352295, # width: 0.07270029932260513, # }, # confidence: 99.99469757080078, # face_id: "895b4e2c-81de-5902-a4bd-d1792bda00b2", # image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784", # }, # { # bounding_box: { # height: 0.3259260058403015, # left: 0.5144439935684204, # top: 0.15111100673675537, # width: 0.24444399774074554, # }, # confidence: 99.99949645996094, # face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2", # image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1", # }, # { # bounding_box: { # height: 0.18888899683952332, # left: 0.3783380091190338, # top: 0.2355560064315796, # width: 0.25222599506378174, # }, # confidence: 99.9999008178711, # face_id: "908544ad-edc3-59df-8faf-6a87cc256cf5", # image_id: "3c731605-d772-541a-a5e7-0375dbc68a07", # }, # { # bounding_box: { # height: 0.33481499552726746, # left: 0.31888899207115173, # top: 0.49333301186561584, # width: 0.25, # }, # confidence: 99.99909973144531, # face_id: "ff43d742-0c13-5d16-a3e8-03d3f58e980b", # image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1", # }, # ], # } # # @example Request syntax with placeholder values # # resp = client.list_faces({ # collection_id: "CollectionId", # required # next_token: "PaginationToken", # max_results: 1, # }) # # @example Response structure # # resp.faces #=> Array # resp.faces[0].face_id #=> String # resp.faces[0].bounding_box.width #=> Float # resp.faces[0].bounding_box.height #=> Float # resp.faces[0].bounding_box.left #=> Float # resp.faces[0].bounding_box.top #=> Float # resp.faces[0].image_id #=> String # resp.faces[0].external_image_id #=> String # resp.faces[0].confidence #=> Float # resp.next_token #=> String # # @overload list_faces(params = {}) # @param [Hash] params ({}) def list_faces(params = {}, options = {}) req = build_request(:list_faces, params) req.send_request(options) end # Returns an array of celebrities recognized in the input image. The # image is passed either as base64-encoded image bytes or as a reference # to an image in an Amazon S3 bucket. The image must be either a PNG or # JPEG formatted file. For more information, see celebrity-recognition. # # `RecognizeCelebrities` returns the 15 largest faces in the image. It # lists recognized celebrities in the `CelebrityFaces` list and # unrecognized faces in the `UnrecognizedFaces` list. The operation # doesn't return celebrities whose face sizes are smaller than the # largest 15 faces in the image. # # For each celebrity recognized, the API returns a `Celebrity` object. # The `Celebrity` object contains the celebrity name, ID, URL links to # additional information, match confidence, and a `ComparedFace` object # that you can use to locate the celebrity's face on the image. # # Rekognition does not retain information about which images a celebrity # has been recognized in. Your application must store this information # and use the `Celebrity` ID property as a unique identifier for the # celebrity. If you don't store the celebrity name or additional # information URLs returned by `RecognizeCelebrities`, you will need the # ID to identify the celebrity in a call to the operation. # # For an example, see recognize-celebrities-tutorial. # # This operation requires permissions to perform the # `rekognition:RecognizeCelebrities` operation. # # @option params [required, Types::Image] :image # The input image to use for celebrity recognition. # # @return [Types::RecognizeCelebritiesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::RecognizeCelebritiesResponse#celebrity_faces #celebrity_faces} => Array<Types::Celebrity> # * {Types::RecognizeCelebritiesResponse#unrecognized_faces #unrecognized_faces} => Array<Types::ComparedFace> # * {Types::RecognizeCelebritiesResponse#orientation_correction #orientation_correction} => String # # @example Request syntax with placeholder values # # resp = client.recognize_celebrities({ # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # }) # # @example Response structure # # resp.celebrity_faces #=> Array # resp.celebrity_faces[0].urls #=> Array # resp.celebrity_faces[0].urls[0] #=> String # resp.celebrity_faces[0].name #=> String # resp.celebrity_faces[0].id #=> String # resp.celebrity_faces[0].face.bounding_box.width #=> Float # resp.celebrity_faces[0].face.bounding_box.height #=> Float # resp.celebrity_faces[0].face.bounding_box.left #=> Float # resp.celebrity_faces[0].face.bounding_box.top #=> Float # resp.celebrity_faces[0].face.confidence #=> Float # resp.celebrity_faces[0].face.landmarks #=> Array # resp.celebrity_faces[0].face.landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL" # resp.celebrity_faces[0].face.landmarks[0].x #=> Float # resp.celebrity_faces[0].face.landmarks[0].y #=> Float # resp.celebrity_faces[0].face.pose.roll #=> Float # resp.celebrity_faces[0].face.pose.yaw #=> Float # resp.celebrity_faces[0].face.pose.pitch #=> Float # resp.celebrity_faces[0].face.quality.brightness #=> Float # resp.celebrity_faces[0].face.quality.sharpness #=> Float # resp.celebrity_faces[0].match_confidence #=> Float # resp.unrecognized_faces #=> Array # resp.unrecognized_faces[0].bounding_box.width #=> Float # resp.unrecognized_faces[0].bounding_box.height #=> Float # resp.unrecognized_faces[0].bounding_box.left #=> Float # resp.unrecognized_faces[0].bounding_box.top #=> Float # resp.unrecognized_faces[0].confidence #=> Float # resp.unrecognized_faces[0].landmarks #=> Array # resp.unrecognized_faces[0].landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL" # resp.unrecognized_faces[0].landmarks[0].x #=> Float # resp.unrecognized_faces[0].landmarks[0].y #=> Float # resp.unrecognized_faces[0].pose.roll #=> Float # resp.unrecognized_faces[0].pose.yaw #=> Float # resp.unrecognized_faces[0].pose.pitch #=> Float # resp.unrecognized_faces[0].quality.brightness #=> Float # resp.unrecognized_faces[0].quality.sharpness #=> Float # resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270" # # @overload recognize_celebrities(params = {}) # @param [Hash] params ({}) def recognize_celebrities(params = {}, options = {}) req = build_request(:recognize_celebrities, params) req.send_request(options) end # For a given input face ID, searches for matching faces in the # collection the face belongs to. You get a face ID when you add a face # to the collection using the IndexFaces operation. The operation # compares the features of the input face with faces in the specified # collection. # # You can also search faces without indexing faces by using the # `SearchFacesByImage` operation. # # # # The operation response returns an array of faces that match, ordered # by similarity score with the highest similarity first. More # specifically, it is an array of metadata for each face match that is # found. Along with the metadata, the response also includes a # `confidence` value for each face match, indicating the confidence that # the specific face matches the input face. # # For an example, see example3. # # This operation requires permissions to perform the # `rekognition:SearchFaces` action. # # @option params [required, String] :collection_id # ID of the collection the face belongs to. # # @option params [required, String] :face_id # ID of a face to find matches for in the collection. # # @option params [Integer] :max_faces # Maximum number of faces to return. The operation returns the maximum # number of faces with the highest confidence in the match. # # @option params [Float] :face_match_threshold # Optional value specifying the minimum confidence in the face match to # return. For example, don't return any matches where confidence in # matches is less than 70%. # # @return [Types::SearchFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::SearchFacesResponse#searched_face_id #searched_face_id} => String # * {Types::SearchFacesResponse#face_matches #face_matches} => Array<Types::FaceMatch> # # # @example Example: To delete a face # # # This operation searches for matching faces in the collection the supplied face belongs to. # # resp = client.search_faces({ # collection_id: "myphotos", # face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14", # face_match_threshold: 90, # max_faces: 10, # }) # # resp.to_h outputs the following: # { # face_matches: [ # { # face: { # bounding_box: { # height: 0.3259260058403015, # left: 0.5144439935684204, # top: 0.15111100673675537, # width: 0.24444399774074554, # }, # confidence: 99.99949645996094, # face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2", # image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1", # }, # similarity: 99.97222137451172, # }, # { # face: { # bounding_box: { # height: 0.16555599868297577, # left: 0.30963000655174255, # top: 0.7066670060157776, # width: 0.22074100375175476, # }, # confidence: 100, # face_id: "29a75abe-397b-5101-ba4f-706783b2246c", # image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e", # }, # similarity: 97.04154968261719, # }, # { # face: { # bounding_box: { # height: 0.18888899683952332, # left: 0.3783380091190338, # top: 0.2355560064315796, # width: 0.25222599506378174, # }, # confidence: 99.9999008178711, # face_id: "908544ad-edc3-59df-8faf-6a87cc256cf5", # image_id: "3c731605-d772-541a-a5e7-0375dbc68a07", # }, # similarity: 95.94520568847656, # }, # ], # searched_face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14", # } # # @example Request syntax with placeholder values # # resp = client.search_faces({ # collection_id: "CollectionId", # required # face_id: "FaceId", # required # max_faces: 1, # face_match_threshold: 1.0, # }) # # @example Response structure # # resp.searched_face_id #=> String # resp.face_matches #=> Array # resp.face_matches[0].similarity #=> Float # resp.face_matches[0].face.face_id #=> String # resp.face_matches[0].face.bounding_box.width #=> Float # resp.face_matches[0].face.bounding_box.height #=> Float # resp.face_matches[0].face.bounding_box.left #=> Float # resp.face_matches[0].face.bounding_box.top #=> Float # resp.face_matches[0].face.image_id #=> String # resp.face_matches[0].face.external_image_id #=> String # resp.face_matches[0].face.confidence #=> Float # # @overload search_faces(params = {}) # @param [Hash] params ({}) def search_faces(params = {}, options = {}) req = build_request(:search_faces, params) req.send_request(options) end # For a given input image, first detects the largest face in the image, # and then searches the specified collection for matching faces. The # operation compares the features of the input face with faces in the # specified collection. # # To search for all faces in an input image, you might first call the # operation, and then use the face IDs returned in subsequent calls to # the operation. # # You can also call the `DetectFaces` operation and use the bounding # boxes in the response to make face crops, which then you can pass in # to the `SearchFacesByImage` operation. # # # # The response returns an array of faces that match, ordered by # similarity score with the highest similarity first. More specifically, # it is an array of metadata for each face match found. Along with the # metadata, the response also includes a `similarity` indicating how # similar the face is to the input face. In the response, the operation # also returns the bounding box (and a confidence level that the # bounding box contains a face) of the face that Amazon Rekognition used # for the input image. # # For an example, see example3. # # This operation requires permissions to perform the # `rekognition:SearchFacesByImage` action. # # @option params [required, String] :collection_id # ID of the collection to search. # # @option params [required, Types::Image] :image # The input image as bytes or an S3 object. # # @option params [Integer] :max_faces # Maximum number of faces to return. The operation returns the maximum # number of faces with the highest confidence in the match. # # @option params [Float] :face_match_threshold # (Optional) Specifies the minimum confidence in the face match to # return. For example, don't return any matches where confidence in # matches is less than 70%. # # @return [Types::SearchFacesByImageResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods: # # * {Types::SearchFacesByImageResponse#searched_face_bounding_box #searched_face_bounding_box} => Types::BoundingBox # * {Types::SearchFacesByImageResponse#searched_face_confidence #searched_face_confidence} => Float # * {Types::SearchFacesByImageResponse#face_matches #face_matches} => Array<Types::FaceMatch> # # # @example Example: To search for faces matching a supplied image # # # This operation searches for faces in a Rekognition collection that match the largest face in an S3 bucket stored image. # # resp = client.search_faces_by_image({ # collection_id: "myphotos", # face_match_threshold: 95, # image: { # s3_object: { # bucket: "mybucket", # name: "myphoto", # }, # }, # max_faces: 5, # }) # # resp.to_h outputs the following: # { # face_matches: [ # { # face: { # bounding_box: { # height: 0.3234420120716095, # left: 0.3233329951763153, # top: 0.5, # width: 0.24222199618816376, # }, # confidence: 99.99829864501953, # face_id: "38271d79-7bc2-5efb-b752-398a8d575b85", # image_id: "d5631190-d039-54e4-b267-abd22c8647c5", # }, # similarity: 99.97036743164062, # }, # ], # searched_face_bounding_box: { # height: 0.33481481671333313, # left: 0.31888890266418457, # top: 0.4933333396911621, # width: 0.25, # }, # searched_face_confidence: 99.9991226196289, # } # # @example Request syntax with placeholder values # # resp = client.search_faces_by_image({ # collection_id: "CollectionId", # required # image: { # required # bytes: "data", # s3_object: { # bucket: "S3Bucket", # name: "S3ObjectName", # version: "S3ObjectVersion", # }, # }, # max_faces: 1, # face_match_threshold: 1.0, # }) # # @example Response structure # # resp.searched_face_bounding_box.width #=> Float # resp.searched_face_bounding_box.height #=> Float # resp.searched_face_bounding_box.left #=> Float # resp.searched_face_bounding_box.top #=> Float # resp.searched_face_confidence #=> Float # resp.face_matches #=> Array # resp.face_matches[0].similarity #=> Float # resp.face_matches[0].face.face_id #=> String # resp.face_matches[0].face.bounding_box.width #=> Float # resp.face_matches[0].face.bounding_box.height #=> Float # resp.face_matches[0].face.bounding_box.left #=> Float # resp.face_matches[0].face.bounding_box.top #=> Float # resp.face_matches[0].face.image_id #=> String # resp.face_matches[0].face.external_image_id #=> String # resp.face_matches[0].face.confidence #=> Float # # @overload search_faces_by_image(params = {}) # @param [Hash] params ({}) def search_faces_by_image(params = {}, options = {}) req = build_request(:search_faces_by_image, params) req.send_request(options) end # @!endgroup # @param params ({}) # @api private def build_request(operation_name, params = {}) handlers = @handlers.for(operation_name) context = Seahorse::Client::RequestContext.new( operation_name: operation_name, operation: config.api.operation(operation_name), client: self, params: params, config: config) context[:gem_name] = 'aws-sdk-rekognition' context[:gem_version] = '1.0.0.rc12' Seahorse::Client::Request.new(handlers, context) end # @api private # @deprecated def waiter_names [] end class << self # @api private attr_reader :identifier # @api private def errors_module Errors end end end end