# WARNING ABOUT GENERATED CODE
#
# This file is generated. See the contributing guide for more information:
# https://github.com/aws/aws-sdk-ruby/blob/master/CONTRIBUTING.md
#
# WARNING ABOUT GENERATED CODE
require 'seahorse/client/plugins/content_length.rb'
require 'aws-sdk-core/plugins/credentials_configuration.rb'
require 'aws-sdk-core/plugins/logging.rb'
require 'aws-sdk-core/plugins/param_converter.rb'
require 'aws-sdk-core/plugins/param_validator.rb'
require 'aws-sdk-core/plugins/user_agent.rb'
require 'aws-sdk-core/plugins/helpful_socket_errors.rb'
require 'aws-sdk-core/plugins/retry_errors.rb'
require 'aws-sdk-core/plugins/global_configuration.rb'
require 'aws-sdk-core/plugins/regional_endpoint.rb'
require 'aws-sdk-core/plugins/response_paging.rb'
require 'aws-sdk-core/plugins/stub_responses.rb'
require 'aws-sdk-core/plugins/idempotency_token.rb'
require 'aws-sdk-core/plugins/jsonvalue_converter.rb'
require 'aws-sdk-core/plugins/signature_v4.rb'
require 'aws-sdk-core/plugins/protocols/json_rpc.rb'
Aws::Plugins::GlobalConfiguration.add_identifier(:rekognition)
module Aws::Rekognition
class Client < Seahorse::Client::Base
include Aws::ClientStubs
@identifier = :rekognition
set_api(ClientApi::API)
add_plugin(Seahorse::Client::Plugins::ContentLength)
add_plugin(Aws::Plugins::CredentialsConfiguration)
add_plugin(Aws::Plugins::Logging)
add_plugin(Aws::Plugins::ParamConverter)
add_plugin(Aws::Plugins::ParamValidator)
add_plugin(Aws::Plugins::UserAgent)
add_plugin(Aws::Plugins::HelpfulSocketErrors)
add_plugin(Aws::Plugins::RetryErrors)
add_plugin(Aws::Plugins::GlobalConfiguration)
add_plugin(Aws::Plugins::RegionalEndpoint)
add_plugin(Aws::Plugins::ResponsePaging)
add_plugin(Aws::Plugins::StubResponses)
add_plugin(Aws::Plugins::IdempotencyToken)
add_plugin(Aws::Plugins::JsonvalueConverter)
add_plugin(Aws::Plugins::SignatureV4)
add_plugin(Aws::Plugins::Protocols::JsonRpc)
# @option options [required, Aws::CredentialProvider] :credentials
# Your AWS credentials. This can be an instance of any one of the
# following classes:
#
# * `Aws::Credentials` - Used for configuring static, non-refreshing
# credentials.
#
# * `Aws::InstanceProfileCredentials` - Used for loading credentials
# from an EC2 IMDS on an EC2 instance.
#
# * `Aws::SharedCredentials` - Used for loading credentials from a
# shared file, such as `~/.aws/config`.
#
# * `Aws::AssumeRoleCredentials` - Used when you need to assume a role.
#
# When `:credentials` are not configured directly, the following
# locations will be searched for credentials:
#
# * `Aws.config[:credentials]`
# * The `:access_key_id`, `:secret_access_key`, and `:session_token` options.
# * ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
# * `~/.aws/credentials`
# * `~/.aws/config`
# * EC2 IMDS instance profile - When used by default, the timeouts are
# very aggressive. Construct and pass an instance of
# `Aws::InstanceProfileCredentails` to enable retries and extended
# timeouts.
#
# @option options [required, String] :region
# The AWS region to connect to. The configured `:region` is
# used to determine the service `:endpoint`. When not passed,
# a default `:region` is search for in the following locations:
#
# * `Aws.config[:region]`
# * `ENV['AWS_REGION']`
# * `ENV['AMAZON_REGION']`
# * `ENV['AWS_DEFAULT_REGION']`
# * `~/.aws/credentials`
# * `~/.aws/config`
#
# @option options [String] :access_key_id
#
# @option options [Boolean] :convert_params (true)
# When `true`, an attempt is made to coerce request parameters into
# the required types.
#
# @option options [String] :endpoint
# The client endpoint is normally constructed from the `:region`
# option. You should only configure an `:endpoint` when connecting
# to test endpoints. This should be avalid HTTP(S) URI.
#
# @option options [Aws::Log::Formatter] :log_formatter (Aws::Log::Formatter.default)
# The log formatter.
#
# @option options [Symbol] :log_level (:info)
# The log level to send messages to the `:logger` at.
#
# @option options [Logger] :logger
# The Logger instance to send log messages to. If this option
# is not set, logging will be disabled.
#
# @option options [String] :profile ("default")
# Used when loading credentials from the shared credentials file
# at HOME/.aws/credentials. When not specified, 'default' is used.
#
# @option options [Integer] :retry_limit (3)
# The maximum number of times to retry failed requests. Only
# ~ 500 level server errors and certain ~ 400 level client errors
# are retried. Generally, these are throttling errors, data
# checksum errors, networking errors, timeout errors and auth
# errors from expired credentials.
#
# @option options [String] :secret_access_key
#
# @option options [String] :session_token
#
# @option options [Boolean] :simple_json (false)
# Disables request parameter conversion, validation, and formatting.
# Also disable response data type conversions. This option is useful
# when you want to ensure the highest level of performance by
# avoiding overhead of walking request parameters and response data
# structures.
#
# When `:simple_json` is enabled, the request parameters hash must
# be formatted exactly as the DynamoDB API expects.
#
# @option options [Boolean] :stub_responses (false)
# Causes the client to return stubbed responses. By default
# fake responses are generated and returned. You can specify
# the response data to return or errors to raise by calling
# {ClientStubs#stub_responses}. See {ClientStubs} for more information.
#
# ** Please note ** When response stubbing is enabled, no HTTP
# requests are made, and retries are disabled.
#
# @option options [Boolean] :validate_params (true)
# When `true`, request parameters are validated before
# sending the request.
#
def initialize(*args)
super
end
# @!group API Operations
# Compares a face in the *source* input image with each face detected in
# the *target* input image.
#
# If the source image contains multiple faces, the service detects the
# largest face and compares it with each face detected in the target
# image.
#
#
#
# In response, the operation returns an array of face matches ordered by
# similarity score in descending order. For each face match, the
# response provides a bounding box of the face, facial landmarks, pose
# details (pitch, role, and yaw), quality (brightness and sharpness),
# and confidence value (indicating the level of confidence that the
# bounding box contains a face). The response also provides a similarity
# score, which indicates how closely the faces match.
#
# By default, only faces with a similarity score of greater than or
# equal to 80% are returned in the response. You can change this value
# by specifying the `SimilarityThreshold` parameter.
#
#
#
# `CompareFaces` also returns an array of faces that don't match the
# source image. For each face, it returns a bounding box, confidence
# value, landmarks, pose details, and quality. The response also returns
# information about the face in the source image, including the bounding
# box of the face and confidence value.
#
# If the image doesn't contain Exif metadata, `CompareFaces` returns
# orientation information for the source and target images. Use these
# values to display the images with the correct image orientation.
#
# This is a stateless API operation. That is, data returned by this
# operation doesn't persist.
#
#
#
# For an example, see get-started-exercise-compare-faces.
#
# This operation requires permissions to perform the
# `rekognition:CompareFaces` action.
#
# @option params [required, Types::Image] :source_image
# The source image, either as bytes or as an S3 object.
#
# @option params [required, Types::Image] :target_image
# The target image, either as bytes or as an S3 object.
#
# @option params [Float] :similarity_threshold
# The minimum level of confidence in the face matches that a match must
# meet to be included in the `FaceMatches` array.
#
# @return [Types::CompareFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CompareFacesResponse#source_image_face #source_image_face} => Types::ComparedSourceImageFace
# * {Types::CompareFacesResponse#face_matches #face_matches} => Array<Types::CompareFacesMatch>
# * {Types::CompareFacesResponse#unmatched_faces #unmatched_faces} => Array<Types::ComparedFace>
# * {Types::CompareFacesResponse#source_image_orientation_correction #source_image_orientation_correction} => String
# * {Types::CompareFacesResponse#target_image_orientation_correction #target_image_orientation_correction} => String
#
#
# @example Example: To compare two images
#
# # This operation compares the largest face detected in the source image with each face detected in the target image.
#
# resp = client.compare_faces({
# similarity_threshold: 90,
# source_image: {
# s3_object: {
# bucket: "mybucket",
# name: "mysourceimage",
# },
# },
# target_image: {
# s3_object: {
# bucket: "mybucket",
# name: "mytargetimage",
# },
# },
# })
#
# resp.to_h outputs the following:
# {
# face_matches: [
# {
# face: {
# bounding_box: {
# height: 0.33481481671333313,
# left: 0.31888890266418457,
# top: 0.4933333396911621,
# width: 0.25,
# },
# confidence: 99.9991226196289,
# },
# similarity: 100,
# },
# ],
# source_image_face: {
# bounding_box: {
# height: 0.33481481671333313,
# left: 0.31888890266418457,
# top: 0.4933333396911621,
# width: 0.25,
# },
# confidence: 99.9991226196289,
# },
# }
#
# @example Request syntax with placeholder values
#
# resp = client.compare_faces({
# source_image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# target_image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# similarity_threshold: 1.0,
# })
#
# @example Response structure
#
# resp.source_image_face.bounding_box.width #=> Float
# resp.source_image_face.bounding_box.height #=> Float
# resp.source_image_face.bounding_box.left #=> Float
# resp.source_image_face.bounding_box.top #=> Float
# resp.source_image_face.confidence #=> Float
# resp.face_matches #=> Array
# resp.face_matches[0].similarity #=> Float
# resp.face_matches[0].face.bounding_box.width #=> Float
# resp.face_matches[0].face.bounding_box.height #=> Float
# resp.face_matches[0].face.bounding_box.left #=> Float
# resp.face_matches[0].face.bounding_box.top #=> Float
# resp.face_matches[0].face.confidence #=> Float
# resp.face_matches[0].face.landmarks #=> Array
# resp.face_matches[0].face.landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL"
# resp.face_matches[0].face.landmarks[0].x #=> Float
# resp.face_matches[0].face.landmarks[0].y #=> Float
# resp.face_matches[0].face.pose.roll #=> Float
# resp.face_matches[0].face.pose.yaw #=> Float
# resp.face_matches[0].face.pose.pitch #=> Float
# resp.face_matches[0].face.quality.brightness #=> Float
# resp.face_matches[0].face.quality.sharpness #=> Float
# resp.unmatched_faces #=> Array
# resp.unmatched_faces[0].bounding_box.width #=> Float
# resp.unmatched_faces[0].bounding_box.height #=> Float
# resp.unmatched_faces[0].bounding_box.left #=> Float
# resp.unmatched_faces[0].bounding_box.top #=> Float
# resp.unmatched_faces[0].confidence #=> Float
# resp.unmatched_faces[0].landmarks #=> Array
# resp.unmatched_faces[0].landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL"
# resp.unmatched_faces[0].landmarks[0].x #=> Float
# resp.unmatched_faces[0].landmarks[0].y #=> Float
# resp.unmatched_faces[0].pose.roll #=> Float
# resp.unmatched_faces[0].pose.yaw #=> Float
# resp.unmatched_faces[0].pose.pitch #=> Float
# resp.unmatched_faces[0].quality.brightness #=> Float
# resp.unmatched_faces[0].quality.sharpness #=> Float
# resp.source_image_orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
# resp.target_image_orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
#
# @overload compare_faces(params = {})
# @param [Hash] params ({})
def compare_faces(params = {}, options = {})
req = build_request(:compare_faces, params)
req.send_request(options)
end
# Creates a collection in an AWS Region. You can add faces to the
# collection using the operation.
#
# For example, you might create collections, one for each of your
# application users. A user can then index faces using the `IndexFaces`
# operation and persist results in a specific collection. Then, a user
# can search the collection for faces in the user-specific container.
#
# Collection names are case-sensitive.
#
#
#
# For an example, see example1.
#
# This operation requires permissions to perform the
# `rekognition:CreateCollection` action.
#
# @option params [required, String] :collection_id
# ID for the collection that you are creating.
#
# @return [Types::CreateCollectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::CreateCollectionResponse#status_code #status_code} => Integer
# * {Types::CreateCollectionResponse#collection_arn #collection_arn} => String
#
#
# @example Example: To create a collection
#
# # This operation creates a Rekognition collection for storing image data.
#
# resp = client.create_collection({
# collection_id: "myphotos",
# })
#
# resp.to_h outputs the following:
# {
# collection_arn: "aws:rekognition:us-west-2:123456789012:collection/myphotos",
# status_code: 200,
# }
#
# @example Request syntax with placeholder values
#
# resp = client.create_collection({
# collection_id: "CollectionId", # required
# })
#
# @example Response structure
#
# resp.status_code #=> Integer
# resp.collection_arn #=> String
#
# @overload create_collection(params = {})
# @param [Hash] params ({})
def create_collection(params = {}, options = {})
req = build_request(:create_collection, params)
req.send_request(options)
end
# Deletes the specified collection. Note that this operation removes all
# faces in the collection. For an example, see example1.
#
# This operation requires permissions to perform the
# `rekognition:DeleteCollection` action.
#
# @option params [required, String] :collection_id
# ID of the collection to delete.
#
# @return [Types::DeleteCollectionResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DeleteCollectionResponse#status_code #status_code} => Integer
#
#
# @example Example: To delete a collection
#
# # This operation deletes a Rekognition collection.
#
# resp = client.delete_collection({
# collection_id: "myphotos",
# })
#
# resp.to_h outputs the following:
# {
# status_code: 200,
# }
#
# @example Request syntax with placeholder values
#
# resp = client.delete_collection({
# collection_id: "CollectionId", # required
# })
#
# @example Response structure
#
# resp.status_code #=> Integer
#
# @overload delete_collection(params = {})
# @param [Hash] params ({})
def delete_collection(params = {}, options = {})
req = build_request(:delete_collection, params)
req.send_request(options)
end
# Deletes faces from a collection. You specify a collection ID and an
# array of face IDs to remove from the collection.
#
# This operation requires permissions to perform the
# `rekognition:DeleteFaces` action.
#
# @option params [required, String] :collection_id
# Collection from which to remove the specific faces.
#
# @option params [required, Array] :face_ids
# An array of face IDs to delete.
#
# @return [Types::DeleteFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DeleteFacesResponse#deleted_faces #deleted_faces} => Array<String>
#
#
# @example Example: To delete a face
#
# # This operation deletes one or more faces from a Rekognition collection.
#
# resp = client.delete_faces({
# collection_id: "myphotos",
# face_ids: [
# "ff43d742-0c13-5d16-a3e8-03d3f58e980b",
# ],
# })
#
# resp.to_h outputs the following:
# {
# deleted_faces: [
# "ff43d742-0c13-5d16-a3e8-03d3f58e980b",
# ],
# }
#
# @example Request syntax with placeholder values
#
# resp = client.delete_faces({
# collection_id: "CollectionId", # required
# face_ids: ["FaceId"], # required
# })
#
# @example Response structure
#
# resp.deleted_faces #=> Array
# resp.deleted_faces[0] #=> String
#
# @overload delete_faces(params = {})
# @param [Hash] params ({})
def delete_faces(params = {}, options = {})
req = build_request(:delete_faces, params)
req.send_request(options)
end
# Detects faces within an image (JPEG or PNG) that is provided as input.
#
# For each face detected, the operation returns face details including a
# bounding box of the face, a confidence value (that the bounding box
# contains a face), and a fixed set of attributes such as facial
# landmarks (for example, coordinates of eye and mouth), gender,
# presence of beard, sunglasses, etc.
#
# The face-detection algorithm is most effective on frontal faces. For
# non-frontal or obscured faces, the algorithm may not detect the faces
# or might detect faces with lower confidence.
#
# This is a stateless API operation. That is, the operation does not
# persist any data.
#
#
#
# For an example, see get-started-exercise-detect-faces.
#
# This operation requires permissions to perform the
# `rekognition:DetectFaces` action.
#
# @option params [required, Types::Image] :image
# The image in which you want to detect faces. You can specify a blob or
# an S3 object.
#
# @option params [Array] :attributes
# An array of facial attributes you want to be returned. This can be the
# default list of attributes or all attributes. If you don't specify a
# value for `Attributes` or if you specify `["DEFAULT"]`, the API
# returns the following subset of facial attributes: `BoundingBox`,
# `Confidence`, `Pose`, `Quality` and `Landmarks`. If you provide
# `["ALL"]`, all facial attributes are returned but the operation will
# take longer to complete.
#
# If you provide both, `["ALL", "DEFAULT"]`, the service uses a logical
# AND operator to determine which attributes to return (in this case,
# all attributes).
#
# @return [Types::DetectFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DetectFacesResponse#face_details #face_details} => Array<Types::FaceDetail>
# * {Types::DetectFacesResponse#orientation_correction #orientation_correction} => String
#
#
# @example Example: To detect faces in an image
#
# # This operation detects faces in an image stored in an AWS S3 bucket.
#
# resp = client.detect_faces({
# image: {
# s3_object: {
# bucket: "mybucket",
# name: "myphoto",
# },
# },
# })
#
# resp.to_h outputs the following:
# {
# face_details: [
# {
# bounding_box: {
# height: 0.18000000715255737,
# left: 0.5555555820465088,
# top: 0.33666667342185974,
# width: 0.23999999463558197,
# },
# confidence: 100,
# landmarks: [
# {
# type: "EYE_LEFT",
# x: 0.6394737362861633,
# y: 0.40819624066352844,
# },
# {
# type: "EYE_RIGHT",
# x: 0.7266660928726196,
# y: 0.41039225459098816,
# },
# {
# type: "NOSE_LEFT",
# x: 0.6912462115287781,
# y: 0.44240960478782654,
# },
# {
# type: "MOUTH_DOWN",
# x: 0.6306198239326477,
# y: 0.46700039505958557,
# },
# {
# type: "MOUTH_UP",
# x: 0.7215608954429626,
# y: 0.47114261984825134,
# },
# ],
# pose: {
# pitch: 4.050806522369385,
# roll: 0.9950747489929199,
# yaw: 13.693790435791016,
# },
# quality: {
# brightness: 37.60169982910156,
# sharpness: 80,
# },
# },
# ],
# orientation_correction: "ROTATE_0",
# }
#
# @example Request syntax with placeholder values
#
# resp = client.detect_faces({
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# attributes: ["DEFAULT"], # accepts DEFAULT, ALL
# })
#
# @example Response structure
#
# resp.face_details #=> Array
# resp.face_details[0].bounding_box.width #=> Float
# resp.face_details[0].bounding_box.height #=> Float
# resp.face_details[0].bounding_box.left #=> Float
# resp.face_details[0].bounding_box.top #=> Float
# resp.face_details[0].age_range.low #=> Integer
# resp.face_details[0].age_range.high #=> Integer
# resp.face_details[0].smile.value #=> Boolean
# resp.face_details[0].smile.confidence #=> Float
# resp.face_details[0].eyeglasses.value #=> Boolean
# resp.face_details[0].eyeglasses.confidence #=> Float
# resp.face_details[0].sunglasses.value #=> Boolean
# resp.face_details[0].sunglasses.confidence #=> Float
# resp.face_details[0].gender.value #=> String, one of "MALE", "FEMALE"
# resp.face_details[0].gender.confidence #=> Float
# resp.face_details[0].beard.value #=> Boolean
# resp.face_details[0].beard.confidence #=> Float
# resp.face_details[0].mustache.value #=> Boolean
# resp.face_details[0].mustache.confidence #=> Float
# resp.face_details[0].eyes_open.value #=> Boolean
# resp.face_details[0].eyes_open.confidence #=> Float
# resp.face_details[0].mouth_open.value #=> Boolean
# resp.face_details[0].mouth_open.confidence #=> Float
# resp.face_details[0].emotions #=> Array
# resp.face_details[0].emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
# resp.face_details[0].emotions[0].confidence #=> Float
# resp.face_details[0].landmarks #=> Array
# resp.face_details[0].landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL"
# resp.face_details[0].landmarks[0].x #=> Float
# resp.face_details[0].landmarks[0].y #=> Float
# resp.face_details[0].pose.roll #=> Float
# resp.face_details[0].pose.yaw #=> Float
# resp.face_details[0].pose.pitch #=> Float
# resp.face_details[0].quality.brightness #=> Float
# resp.face_details[0].quality.sharpness #=> Float
# resp.face_details[0].confidence #=> Float
# resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
#
# @overload detect_faces(params = {})
# @param [Hash] params ({})
def detect_faces(params = {}, options = {})
req = build_request(:detect_faces, params)
req.send_request(options)
end
# Detects instances of real-world labels within an image (JPEG or PNG)
# provided as input. This includes objects like flower, tree, and table;
# events like wedding, graduation, and birthday party; and concepts like
# landscape, evening, and nature. For an example, see
# get-started-exercise-detect-labels.
#
# For each object, scene, and concept the API returns one or more
# labels. Each label provides the object name, and the level of
# confidence that the image contains the object. For example, suppose
# the input image has a lighthouse, the sea, and a rock. The response
# will include all three labels, one for each object.
#
# `\{Name: lighthouse, Confidence: 98.4629\}`
#
# `\{Name: rock,Confidence: 79.2097\}`
#
# ` \{Name: sea,Confidence: 75.061\}`
#
# In the preceding example, the operation returns one label for each of
# the three objects. The operation can also return multiple labels for
# the same object in the image. For example, if the input image shows a
# flower (for example, a tulip), the operation might return the
# following three labels.
#
# `\{Name: flower,Confidence: 99.0562\}`
#
# `\{Name: plant,Confidence: 99.0562\}`
#
# `\{Name: tulip,Confidence: 99.0562\}`
#
# In this example, the detection algorithm more precisely identifies the
# flower as a tulip.
#
# You can provide the input image as an S3 object or as base64-encoded
# bytes. In response, the API returns an array of labels. In addition,
# the response also includes the orientation correction. Optionally, you
# can specify `MinConfidence` to control the confidence threshold for
# the labels returned. The default is 50%. You can also add the
# `MaxLabels` parameter to limit the number of labels returned.
#
# If the object detected is a person, the operation doesn't provide the
# same facial details that the DetectFaces operation provides.
#
#
#
# This is a stateless API operation. That is, the operation does not
# persist any data.
#
# This operation requires permissions to perform the
# `rekognition:DetectLabels` action.
#
# @option params [required, Types::Image] :image
# The input image. You can provide a blob of image bytes or an S3
# object.
#
# @option params [Integer] :max_labels
# Maximum number of labels you want the service to return in the
# response. The service returns the specified number of highest
# confidence labels.
#
# @option params [Float] :min_confidence
# Specifies the minimum confidence level for the labels to return.
# Amazon Rekognition doesn't return any labels with confidence lower
# than this specified value.
#
# If `MinConfidence` is not specified, the operation returns labels with
# a confidence values greater than or equal to 50 percent.
#
# @return [Types::DetectLabelsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DetectLabelsResponse#labels #labels} => Array<Types::Label>
# * {Types::DetectLabelsResponse#orientation_correction #orientation_correction} => String
#
#
# @example Example: To detect labels
#
# # This operation detects labels in the supplied image
#
# resp = client.detect_labels({
# image: {
# s3_object: {
# bucket: "mybucket",
# name: "myphoto",
# },
# },
# max_labels: 123,
# min_confidence: 70,
# })
#
# resp.to_h outputs the following:
# {
# labels: [
# {
# confidence: 99.25072479248047,
# name: "People",
# },
# {
# confidence: 99.25074005126953,
# name: "Person",
# },
# ],
# }
#
# @example Request syntax with placeholder values
#
# resp = client.detect_labels({
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# max_labels: 1,
# min_confidence: 1.0,
# })
#
# @example Response structure
#
# resp.labels #=> Array
# resp.labels[0].name #=> String
# resp.labels[0].confidence #=> Float
# resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
#
# @overload detect_labels(params = {})
# @param [Hash] params ({})
def detect_labels(params = {}, options = {})
req = build_request(:detect_labels, params)
req.send_request(options)
end
# Detects explicit or suggestive adult content in a specified JPEG or
# PNG format image. Use `DetectModerationLabels` to moderate images
# depending on your requirements. For example, you might want to filter
# images that contain nudity, but not images containing suggestive
# content.
#
# To filter images, use the labels returned by `DetectModerationLabels`
# to determine which types of content are appropriate. For information
# about moderation labels, see image-moderation.
#
# @option params [required, Types::Image] :image
# The input image as bytes or an S3 object.
#
# @option params [Float] :min_confidence
# Specifies the minimum confidence level for the labels to return.
# Amazon Rekognition doesn't return any labels with a confidence level
# lower than this specified value.
#
# If you don't specify `MinConfidence`, the operation returns labels
# with confidence values greater than or equal to 50 percent.
#
# @return [Types::DetectModerationLabelsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::DetectModerationLabelsResponse#moderation_labels #moderation_labels} => Array<Types::ModerationLabel>
#
# @example Request syntax with placeholder values
#
# resp = client.detect_moderation_labels({
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# min_confidence: 1.0,
# })
#
# @example Response structure
#
# resp.moderation_labels #=> Array
# resp.moderation_labels[0].confidence #=> Float
# resp.moderation_labels[0].name #=> String
# resp.moderation_labels[0].parent_name #=> String
#
# @overload detect_moderation_labels(params = {})
# @param [Hash] params ({})
def detect_moderation_labels(params = {}, options = {})
req = build_request(:detect_moderation_labels, params)
req.send_request(options)
end
# Gets the name and additional information about a celebrity based on
# his or her Rekognition ID. The additional information is returned as
# an array of URLs. If there is no additional information about the
# celebrity, this list is empty. For more information, see
# celebrity-recognition.
#
# This operation requires permissions to perform the
# `rekognition:GetCelebrityInfo` action.
#
# @option params [required, String] :id
# The ID for the celebrity. You get the celebrity ID from a call to the
# operation, which recognizes celebrities in an image.
#
# @return [Types::GetCelebrityInfoResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::GetCelebrityInfoResponse#urls #urls} => Array<String>
# * {Types::GetCelebrityInfoResponse#name #name} => String
#
# @example Request syntax with placeholder values
#
# resp = client.get_celebrity_info({
# id: "RekognitionUniqueId", # required
# })
#
# @example Response structure
#
# resp.urls #=> Array
# resp.urls[0] #=> String
# resp.name #=> String
#
# @overload get_celebrity_info(params = {})
# @param [Hash] params ({})
def get_celebrity_info(params = {}, options = {})
req = build_request(:get_celebrity_info, params)
req.send_request(options)
end
# Detects faces in the input image and adds them to the specified
# collection.
#
# Amazon Rekognition does not save the actual faces detected. Instead,
# the underlying detection algorithm first detects the faces in the
# input image, and for each face extracts facial features into a feature
# vector, and stores it in the back-end database. Amazon Rekognition
# uses feature vectors when performing face match and search operations
# using the and operations.
#
# If you provide the optional `externalImageID` for the input image you
# provided, Amazon Rekognition associates this ID with all faces that it
# detects. When you call the operation, the response returns the
# external ID. You can use this external image ID to create a
# client-side index to associate the faces with each image. You can then
# use the index to find all faces in an image.
#
# In response, the operation returns an array of metadata for all
# detected faces. This includes, the bounding box of the detected face,
# confidence value (indicating the bounding box contains a face), a face
# ID assigned by the service for each face that is detected and stored,
# and an image ID assigned by the service for the input image. If you
# request all facial attributes (using the `detectionAttributes`
# parameter, Amazon Rekognition returns detailed facial attributes such
# as facial landmarks (for example, location of eye and mount) and other
# facial attributes such gender. If you provide the same image, specify
# the same collection, and use the same external ID in the `IndexFaces`
# operation, Amazon Rekognition doesn't save duplicate face metadata.
#
# For an example, see example2.
#
# This operation requires permissions to perform the
# `rekognition:IndexFaces` action.
#
# @option params [required, String] :collection_id
# The ID of an existing collection to which you want to add the faces
# that are detected in the input images.
#
# @option params [required, Types::Image] :image
# The input image as bytes or an S3 object.
#
# @option params [String] :external_image_id
# ID you want to assign to all the faces detected in the image.
#
# @option params [Array] :detection_attributes
# An array of facial attributes that you want to be returned. This can
# be the default list of attributes or all attributes. If you don't
# specify a value for `Attributes` or if you specify `["DEFAULT"]`, the
# API returns the following subset of facial attributes: `BoundingBox`,
# `Confidence`, `Pose`, `Quality` and `Landmarks`. If you provide
# `["ALL"]`, all facial attributes are returned but the operation will
# take longer to complete.
#
# If you provide both, `["ALL", "DEFAULT"]`, the service uses a logical
# AND operator to determine which attributes to return (in this case,
# all attributes).
#
# @return [Types::IndexFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::IndexFacesResponse#face_records #face_records} => Array<Types::FaceRecord>
# * {Types::IndexFacesResponse#orientation_correction #orientation_correction} => String
#
#
# @example Example: To add a face to a collection
#
# # This operation detects faces in an image and adds them to the specified Rekognition collection.
#
# resp = client.index_faces({
# collection_id: "myphotos",
# detection_attributes: [
# ],
# external_image_id: "myphotoid",
# image: {
# s3_object: {
# bucket: "mybucket",
# name: "myphoto",
# },
# },
# })
#
# resp.to_h outputs the following:
# {
# face_records: [
# {
# face: {
# bounding_box: {
# height: 0.33481481671333313,
# left: 0.31888890266418457,
# top: 0.4933333396911621,
# width: 0.25,
# },
# confidence: 99.9991226196289,
# face_id: "ff43d742-0c13-5d16-a3e8-03d3f58e980b",
# image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1",
# },
# face_detail: {
# bounding_box: {
# height: 0.33481481671333313,
# left: 0.31888890266418457,
# top: 0.4933333396911621,
# width: 0.25,
# },
# confidence: 99.9991226196289,
# landmarks: [
# {
# type: "EYE_LEFT",
# x: 0.3976764678955078,
# y: 0.6248345971107483,
# },
# {
# type: "EYE_RIGHT",
# x: 0.4810936450958252,
# y: 0.6317117214202881,
# },
# {
# type: "NOSE_LEFT",
# x: 0.41986238956451416,
# y: 0.7111940383911133,
# },
# {
# type: "MOUTH_DOWN",
# x: 0.40525302290916443,
# y: 0.7497701048851013,
# },
# {
# type: "MOUTH_UP",
# x: 0.4753248989582062,
# y: 0.7558549642562866,
# },
# ],
# pose: {
# pitch: -9.713645935058594,
# roll: 4.707281112670898,
# yaw: -24.438663482666016,
# },
# quality: {
# brightness: 29.23358917236328,
# sharpness: 80,
# },
# },
# },
# {
# face: {
# bounding_box: {
# height: 0.32592591643333435,
# left: 0.5144444704055786,
# top: 0.15111111104488373,
# width: 0.24444444477558136,
# },
# confidence: 99.99950408935547,
# face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2",
# image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1",
# },
# face_detail: {
# bounding_box: {
# height: 0.32592591643333435,
# left: 0.5144444704055786,
# top: 0.15111111104488373,
# width: 0.24444444477558136,
# },
# confidence: 99.99950408935547,
# landmarks: [
# {
# type: "EYE_LEFT",
# x: 0.6006892323493958,
# y: 0.290842205286026,
# },
# {
# type: "EYE_RIGHT",
# x: 0.6808141469955444,
# y: 0.29609042406082153,
# },
# {
# type: "NOSE_LEFT",
# x: 0.6395332217216492,
# y: 0.3522595763206482,
# },
# {
# type: "MOUTH_DOWN",
# x: 0.5892083048820496,
# y: 0.38689887523651123,
# },
# {
# type: "MOUTH_UP",
# x: 0.674560010433197,
# y: 0.394125759601593,
# },
# ],
# pose: {
# pitch: -4.683138370513916,
# roll: 2.1029529571533203,
# yaw: 6.716655254364014,
# },
# quality: {
# brightness: 34.951698303222656,
# sharpness: 160,
# },
# },
# },
# ],
# orientation_correction: "ROTATE_0",
# }
#
# @example Request syntax with placeholder values
#
# resp = client.index_faces({
# collection_id: "CollectionId", # required
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# external_image_id: "ExternalImageId",
# detection_attributes: ["DEFAULT"], # accepts DEFAULT, ALL
# })
#
# @example Response structure
#
# resp.face_records #=> Array
# resp.face_records[0].face.face_id #=> String
# resp.face_records[0].face.bounding_box.width #=> Float
# resp.face_records[0].face.bounding_box.height #=> Float
# resp.face_records[0].face.bounding_box.left #=> Float
# resp.face_records[0].face.bounding_box.top #=> Float
# resp.face_records[0].face.image_id #=> String
# resp.face_records[0].face.external_image_id #=> String
# resp.face_records[0].face.confidence #=> Float
# resp.face_records[0].face_detail.bounding_box.width #=> Float
# resp.face_records[0].face_detail.bounding_box.height #=> Float
# resp.face_records[0].face_detail.bounding_box.left #=> Float
# resp.face_records[0].face_detail.bounding_box.top #=> Float
# resp.face_records[0].face_detail.age_range.low #=> Integer
# resp.face_records[0].face_detail.age_range.high #=> Integer
# resp.face_records[0].face_detail.smile.value #=> Boolean
# resp.face_records[0].face_detail.smile.confidence #=> Float
# resp.face_records[0].face_detail.eyeglasses.value #=> Boolean
# resp.face_records[0].face_detail.eyeglasses.confidence #=> Float
# resp.face_records[0].face_detail.sunglasses.value #=> Boolean
# resp.face_records[0].face_detail.sunglasses.confidence #=> Float
# resp.face_records[0].face_detail.gender.value #=> String, one of "MALE", "FEMALE"
# resp.face_records[0].face_detail.gender.confidence #=> Float
# resp.face_records[0].face_detail.beard.value #=> Boolean
# resp.face_records[0].face_detail.beard.confidence #=> Float
# resp.face_records[0].face_detail.mustache.value #=> Boolean
# resp.face_records[0].face_detail.mustache.confidence #=> Float
# resp.face_records[0].face_detail.eyes_open.value #=> Boolean
# resp.face_records[0].face_detail.eyes_open.confidence #=> Float
# resp.face_records[0].face_detail.mouth_open.value #=> Boolean
# resp.face_records[0].face_detail.mouth_open.confidence #=> Float
# resp.face_records[0].face_detail.emotions #=> Array
# resp.face_records[0].face_detail.emotions[0].type #=> String, one of "HAPPY", "SAD", "ANGRY", "CONFUSED", "DISGUSTED", "SURPRISED", "CALM", "UNKNOWN"
# resp.face_records[0].face_detail.emotions[0].confidence #=> Float
# resp.face_records[0].face_detail.landmarks #=> Array
# resp.face_records[0].face_detail.landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL"
# resp.face_records[0].face_detail.landmarks[0].x #=> Float
# resp.face_records[0].face_detail.landmarks[0].y #=> Float
# resp.face_records[0].face_detail.pose.roll #=> Float
# resp.face_records[0].face_detail.pose.yaw #=> Float
# resp.face_records[0].face_detail.pose.pitch #=> Float
# resp.face_records[0].face_detail.quality.brightness #=> Float
# resp.face_records[0].face_detail.quality.sharpness #=> Float
# resp.face_records[0].face_detail.confidence #=> Float
# resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
#
# @overload index_faces(params = {})
# @param [Hash] params ({})
def index_faces(params = {}, options = {})
req = build_request(:index_faces, params)
req.send_request(options)
end
# Returns list of collection IDs in your account. If the result is
# truncated, the response also provides a `NextToken` that you can use
# in the subsequent request to fetch the next set of collection IDs.
#
# For an example, see example1.
#
# This operation requires permissions to perform the
# `rekognition:ListCollections` action.
#
# @option params [String] :next_token
# Pagination token from the previous response.
#
# @option params [Integer] :max_results
# Maximum number of collection IDs to return.
#
# @return [Types::ListCollectionsResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::ListCollectionsResponse#collection_ids #collection_ids} => Array<String>
# * {Types::ListCollectionsResponse#next_token #next_token} => String
#
#
# @example Example: To list the collections
#
# # This operation returns a list of Rekognition collections.
#
# resp = client.list_collections({
# })
#
# resp.to_h outputs the following:
# {
# collection_ids: [
# "myphotos",
# ],
# }
#
# @example Request syntax with placeholder values
#
# resp = client.list_collections({
# next_token: "PaginationToken",
# max_results: 1,
# })
#
# @example Response structure
#
# resp.collection_ids #=> Array
# resp.collection_ids[0] #=> String
# resp.next_token #=> String
#
# @overload list_collections(params = {})
# @param [Hash] params ({})
def list_collections(params = {}, options = {})
req = build_request(:list_collections, params)
req.send_request(options)
end
# Returns metadata for faces in the specified collection. This metadata
# includes information such as the bounding box coordinates, the
# confidence (that the bounding box contains a face), and face ID. For
# an example, see example3.
#
# This operation requires permissions to perform the
# `rekognition:ListFaces` action.
#
# @option params [required, String] :collection_id
# ID of the collection from which to list the faces.
#
# @option params [String] :next_token
# If the previous response was incomplete (because there is more data to
# retrieve), Amazon Rekognition returns a pagination token in the
# response. You can use this pagination token to retrieve the next set
# of faces.
#
# @option params [Integer] :max_results
# Maximum number of faces to return.
#
# @return [Types::ListFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::ListFacesResponse#faces #faces} => Array<Types::Face>
# * {Types::ListFacesResponse#next_token #next_token} => String
#
#
# @example Example: To list the faces in a collection
#
# # This operation lists the faces in a Rekognition collection.
#
# resp = client.list_faces({
# collection_id: "myphotos",
# max_results: 20,
# })
#
# resp.to_h outputs the following:
# {
# faces: [
# {
# bounding_box: {
# height: 0.18000000715255737,
# left: 0.5555559992790222,
# top: 0.336667001247406,
# width: 0.23999999463558197,
# },
# confidence: 100,
# face_id: "1c62e8b5-69a7-5b7d-b3cd-db4338a8a7e7",
# image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e",
# },
# {
# bounding_box: {
# height: 0.16555599868297577,
# left: 0.30963000655174255,
# top: 0.7066670060157776,
# width: 0.22074100375175476,
# },
# confidence: 100,
# face_id: "29a75abe-397b-5101-ba4f-706783b2246c",
# image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e",
# },
# {
# bounding_box: {
# height: 0.3234420120716095,
# left: 0.3233329951763153,
# top: 0.5,
# width: 0.24222199618816376,
# },
# confidence: 99.99829864501953,
# face_id: "38271d79-7bc2-5efb-b752-398a8d575b85",
# image_id: "d5631190-d039-54e4-b267-abd22c8647c5",
# },
# {
# bounding_box: {
# height: 0.03555560111999512,
# left: 0.37388700246810913,
# top: 0.2477779984474182,
# width: 0.04747769981622696,
# },
# confidence: 99.99210357666016,
# face_id: "3b01bef0-c883-5654-ba42-d5ad28b720b3",
# image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784",
# },
# {
# bounding_box: {
# height: 0.05333330109715462,
# left: 0.2937690019607544,
# top: 0.35666701197624207,
# width: 0.07121659815311432,
# },
# confidence: 99.99919891357422,
# face_id: "4839a608-49d0-566c-8301-509d71b534d1",
# image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784",
# },
# {
# bounding_box: {
# height: 0.3249259889125824,
# left: 0.5155559778213501,
# top: 0.1513350009918213,
# width: 0.24333299696445465,
# },
# confidence: 99.99949645996094,
# face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14",
# image_id: "d5631190-d039-54e4-b267-abd22c8647c5",
# },
# {
# bounding_box: {
# height: 0.03777780011296272,
# left: 0.7002969980239868,
# top: 0.18777799606323242,
# width: 0.05044509842991829,
# },
# confidence: 99.92639923095703,
# face_id: "7f5f88ed-d684-5a88-b0df-01e4a521552b",
# image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784",
# },
# {
# bounding_box: {
# height: 0.05555560067296028,
# left: 0.13946600258350372,
# top: 0.46333301067352295,
# width: 0.07270029932260513,
# },
# confidence: 99.99469757080078,
# face_id: "895b4e2c-81de-5902-a4bd-d1792bda00b2",
# image_id: "812d9f04-86f9-54fc-9275-8d0dcbcb6784",
# },
# {
# bounding_box: {
# height: 0.3259260058403015,
# left: 0.5144439935684204,
# top: 0.15111100673675537,
# width: 0.24444399774074554,
# },
# confidence: 99.99949645996094,
# face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2",
# image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1",
# },
# {
# bounding_box: {
# height: 0.18888899683952332,
# left: 0.3783380091190338,
# top: 0.2355560064315796,
# width: 0.25222599506378174,
# },
# confidence: 99.9999008178711,
# face_id: "908544ad-edc3-59df-8faf-6a87cc256cf5",
# image_id: "3c731605-d772-541a-a5e7-0375dbc68a07",
# },
# {
# bounding_box: {
# height: 0.33481499552726746,
# left: 0.31888899207115173,
# top: 0.49333301186561584,
# width: 0.25,
# },
# confidence: 99.99909973144531,
# face_id: "ff43d742-0c13-5d16-a3e8-03d3f58e980b",
# image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1",
# },
# ],
# }
#
# @example Request syntax with placeholder values
#
# resp = client.list_faces({
# collection_id: "CollectionId", # required
# next_token: "PaginationToken",
# max_results: 1,
# })
#
# @example Response structure
#
# resp.faces #=> Array
# resp.faces[0].face_id #=> String
# resp.faces[0].bounding_box.width #=> Float
# resp.faces[0].bounding_box.height #=> Float
# resp.faces[0].bounding_box.left #=> Float
# resp.faces[0].bounding_box.top #=> Float
# resp.faces[0].image_id #=> String
# resp.faces[0].external_image_id #=> String
# resp.faces[0].confidence #=> Float
# resp.next_token #=> String
#
# @overload list_faces(params = {})
# @param [Hash] params ({})
def list_faces(params = {}, options = {})
req = build_request(:list_faces, params)
req.send_request(options)
end
# Returns an array of celebrities recognized in the input image. The
# image is passed either as base64-encoded image bytes or as a reference
# to an image in an Amazon S3 bucket. The image must be either a PNG or
# JPEG formatted file. For more information, see celebrity-recognition.
#
# `RecognizeCelebrities` returns the 15 largest faces in the image. It
# lists recognized celebrities in the `CelebrityFaces` list and
# unrecognized faces in the `UnrecognizedFaces` list. The operation
# doesn't return celebrities whose face sizes are smaller than the
# largest 15 faces in the image.
#
# For each celebrity recognized, the API returns a `Celebrity` object.
# The `Celebrity` object contains the celebrity name, ID, URL links to
# additional information, match confidence, and a `ComparedFace` object
# that you can use to locate the celebrity's face on the image.
#
# Rekognition does not retain information about which images a celebrity
# has been recognized in. Your application must store this information
# and use the `Celebrity` ID property as a unique identifier for the
# celebrity. If you don't store the celebrity name or additional
# information URLs returned by `RecognizeCelebrities`, you will need the
# ID to identify the celebrity in a call to the operation.
#
# For an example, see recognize-celebrities-tutorial.
#
# This operation requires permissions to perform the
# `rekognition:RecognizeCelebrities` operation.
#
# @option params [required, Types::Image] :image
# The input image to use for celebrity recognition.
#
# @return [Types::RecognizeCelebritiesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::RecognizeCelebritiesResponse#celebrity_faces #celebrity_faces} => Array<Types::Celebrity>
# * {Types::RecognizeCelebritiesResponse#unrecognized_faces #unrecognized_faces} => Array<Types::ComparedFace>
# * {Types::RecognizeCelebritiesResponse#orientation_correction #orientation_correction} => String
#
# @example Request syntax with placeholder values
#
# resp = client.recognize_celebrities({
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# })
#
# @example Response structure
#
# resp.celebrity_faces #=> Array
# resp.celebrity_faces[0].urls #=> Array
# resp.celebrity_faces[0].urls[0] #=> String
# resp.celebrity_faces[0].name #=> String
# resp.celebrity_faces[0].id #=> String
# resp.celebrity_faces[0].face.bounding_box.width #=> Float
# resp.celebrity_faces[0].face.bounding_box.height #=> Float
# resp.celebrity_faces[0].face.bounding_box.left #=> Float
# resp.celebrity_faces[0].face.bounding_box.top #=> Float
# resp.celebrity_faces[0].face.confidence #=> Float
# resp.celebrity_faces[0].face.landmarks #=> Array
# resp.celebrity_faces[0].face.landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL"
# resp.celebrity_faces[0].face.landmarks[0].x #=> Float
# resp.celebrity_faces[0].face.landmarks[0].y #=> Float
# resp.celebrity_faces[0].face.pose.roll #=> Float
# resp.celebrity_faces[0].face.pose.yaw #=> Float
# resp.celebrity_faces[0].face.pose.pitch #=> Float
# resp.celebrity_faces[0].face.quality.brightness #=> Float
# resp.celebrity_faces[0].face.quality.sharpness #=> Float
# resp.celebrity_faces[0].match_confidence #=> Float
# resp.unrecognized_faces #=> Array
# resp.unrecognized_faces[0].bounding_box.width #=> Float
# resp.unrecognized_faces[0].bounding_box.height #=> Float
# resp.unrecognized_faces[0].bounding_box.left #=> Float
# resp.unrecognized_faces[0].bounding_box.top #=> Float
# resp.unrecognized_faces[0].confidence #=> Float
# resp.unrecognized_faces[0].landmarks #=> Array
# resp.unrecognized_faces[0].landmarks[0].type #=> String, one of "EYE_LEFT", "EYE_RIGHT", "NOSE", "MOUTH_LEFT", "MOUTH_RIGHT", "LEFT_EYEBROW_LEFT", "LEFT_EYEBROW_RIGHT", "LEFT_EYEBROW_UP", "RIGHT_EYEBROW_LEFT", "RIGHT_EYEBROW_RIGHT", "RIGHT_EYEBROW_UP", "LEFT_EYE_LEFT", "LEFT_EYE_RIGHT", "LEFT_EYE_UP", "LEFT_EYE_DOWN", "RIGHT_EYE_LEFT", "RIGHT_EYE_RIGHT", "RIGHT_EYE_UP", "RIGHT_EYE_DOWN", "NOSE_LEFT", "NOSE_RIGHT", "MOUTH_UP", "MOUTH_DOWN", "LEFT_PUPIL", "RIGHT_PUPIL"
# resp.unrecognized_faces[0].landmarks[0].x #=> Float
# resp.unrecognized_faces[0].landmarks[0].y #=> Float
# resp.unrecognized_faces[0].pose.roll #=> Float
# resp.unrecognized_faces[0].pose.yaw #=> Float
# resp.unrecognized_faces[0].pose.pitch #=> Float
# resp.unrecognized_faces[0].quality.brightness #=> Float
# resp.unrecognized_faces[0].quality.sharpness #=> Float
# resp.orientation_correction #=> String, one of "ROTATE_0", "ROTATE_90", "ROTATE_180", "ROTATE_270"
#
# @overload recognize_celebrities(params = {})
# @param [Hash] params ({})
def recognize_celebrities(params = {}, options = {})
req = build_request(:recognize_celebrities, params)
req.send_request(options)
end
# For a given input face ID, searches for matching faces in the
# collection the face belongs to. You get a face ID when you add a face
# to the collection using the IndexFaces operation. The operation
# compares the features of the input face with faces in the specified
# collection.
#
# You can also search faces without indexing faces by using the
# `SearchFacesByImage` operation.
#
#
#
# The operation response returns an array of faces that match, ordered
# by similarity score with the highest similarity first. More
# specifically, it is an array of metadata for each face match that is
# found. Along with the metadata, the response also includes a
# `confidence` value for each face match, indicating the confidence that
# the specific face matches the input face.
#
# For an example, see example3.
#
# This operation requires permissions to perform the
# `rekognition:SearchFaces` action.
#
# @option params [required, String] :collection_id
# ID of the collection the face belongs to.
#
# @option params [required, String] :face_id
# ID of a face to find matches for in the collection.
#
# @option params [Integer] :max_faces
# Maximum number of faces to return. The operation returns the maximum
# number of faces with the highest confidence in the match.
#
# @option params [Float] :face_match_threshold
# Optional value specifying the minimum confidence in the face match to
# return. For example, don't return any matches where confidence in
# matches is less than 70%.
#
# @return [Types::SearchFacesResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::SearchFacesResponse#searched_face_id #searched_face_id} => String
# * {Types::SearchFacesResponse#face_matches #face_matches} => Array<Types::FaceMatch>
#
#
# @example Example: To delete a face
#
# # This operation searches for matching faces in the collection the supplied face belongs to.
#
# resp = client.search_faces({
# collection_id: "myphotos",
# face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14",
# face_match_threshold: 90,
# max_faces: 10,
# })
#
# resp.to_h outputs the following:
# {
# face_matches: [
# {
# face: {
# bounding_box: {
# height: 0.3259260058403015,
# left: 0.5144439935684204,
# top: 0.15111100673675537,
# width: 0.24444399774074554,
# },
# confidence: 99.99949645996094,
# face_id: "8be04dba-4e58-520d-850e-9eae4af70eb2",
# image_id: "465f4e93-763e-51d0-b030-b9667a2d94b1",
# },
# similarity: 99.97222137451172,
# },
# {
# face: {
# bounding_box: {
# height: 0.16555599868297577,
# left: 0.30963000655174255,
# top: 0.7066670060157776,
# width: 0.22074100375175476,
# },
# confidence: 100,
# face_id: "29a75abe-397b-5101-ba4f-706783b2246c",
# image_id: "147fdf82-7a71-52cf-819b-e786c7b9746e",
# },
# similarity: 97.04154968261719,
# },
# {
# face: {
# bounding_box: {
# height: 0.18888899683952332,
# left: 0.3783380091190338,
# top: 0.2355560064315796,
# width: 0.25222599506378174,
# },
# confidence: 99.9999008178711,
# face_id: "908544ad-edc3-59df-8faf-6a87cc256cf5",
# image_id: "3c731605-d772-541a-a5e7-0375dbc68a07",
# },
# similarity: 95.94520568847656,
# },
# ],
# searched_face_id: "70008e50-75e4-55d0-8e80-363fb73b3a14",
# }
#
# @example Request syntax with placeholder values
#
# resp = client.search_faces({
# collection_id: "CollectionId", # required
# face_id: "FaceId", # required
# max_faces: 1,
# face_match_threshold: 1.0,
# })
#
# @example Response structure
#
# resp.searched_face_id #=> String
# resp.face_matches #=> Array
# resp.face_matches[0].similarity #=> Float
# resp.face_matches[0].face.face_id #=> String
# resp.face_matches[0].face.bounding_box.width #=> Float
# resp.face_matches[0].face.bounding_box.height #=> Float
# resp.face_matches[0].face.bounding_box.left #=> Float
# resp.face_matches[0].face.bounding_box.top #=> Float
# resp.face_matches[0].face.image_id #=> String
# resp.face_matches[0].face.external_image_id #=> String
# resp.face_matches[0].face.confidence #=> Float
#
# @overload search_faces(params = {})
# @param [Hash] params ({})
def search_faces(params = {}, options = {})
req = build_request(:search_faces, params)
req.send_request(options)
end
# For a given input image, first detects the largest face in the image,
# and then searches the specified collection for matching faces. The
# operation compares the features of the input face with faces in the
# specified collection.
#
# To search for all faces in an input image, you might first call the
# operation, and then use the face IDs returned in subsequent calls to
# the operation.
#
# You can also call the `DetectFaces` operation and use the bounding
# boxes in the response to make face crops, which then you can pass in
# to the `SearchFacesByImage` operation.
#
#
#
# The response returns an array of faces that match, ordered by
# similarity score with the highest similarity first. More specifically,
# it is an array of metadata for each face match found. Along with the
# metadata, the response also includes a `similarity` indicating how
# similar the face is to the input face. In the response, the operation
# also returns the bounding box (and a confidence level that the
# bounding box contains a face) of the face that Amazon Rekognition used
# for the input image.
#
# For an example, see example3.
#
# This operation requires permissions to perform the
# `rekognition:SearchFacesByImage` action.
#
# @option params [required, String] :collection_id
# ID of the collection to search.
#
# @option params [required, Types::Image] :image
# The input image as bytes or an S3 object.
#
# @option params [Integer] :max_faces
# Maximum number of faces to return. The operation returns the maximum
# number of faces with the highest confidence in the match.
#
# @option params [Float] :face_match_threshold
# (Optional) Specifies the minimum confidence in the face match to
# return. For example, don't return any matches where confidence in
# matches is less than 70%.
#
# @return [Types::SearchFacesByImageResponse] Returns a {Seahorse::Client::Response response} object which responds to the following methods:
#
# * {Types::SearchFacesByImageResponse#searched_face_bounding_box #searched_face_bounding_box} => Types::BoundingBox
# * {Types::SearchFacesByImageResponse#searched_face_confidence #searched_face_confidence} => Float
# * {Types::SearchFacesByImageResponse#face_matches #face_matches} => Array<Types::FaceMatch>
#
#
# @example Example: To search for faces matching a supplied image
#
# # This operation searches for faces in a Rekognition collection that match the largest face in an S3 bucket stored image.
#
# resp = client.search_faces_by_image({
# collection_id: "myphotos",
# face_match_threshold: 95,
# image: {
# s3_object: {
# bucket: "mybucket",
# name: "myphoto",
# },
# },
# max_faces: 5,
# })
#
# resp.to_h outputs the following:
# {
# face_matches: [
# {
# face: {
# bounding_box: {
# height: 0.3234420120716095,
# left: 0.3233329951763153,
# top: 0.5,
# width: 0.24222199618816376,
# },
# confidence: 99.99829864501953,
# face_id: "38271d79-7bc2-5efb-b752-398a8d575b85",
# image_id: "d5631190-d039-54e4-b267-abd22c8647c5",
# },
# similarity: 99.97036743164062,
# },
# ],
# searched_face_bounding_box: {
# height: 0.33481481671333313,
# left: 0.31888890266418457,
# top: 0.4933333396911621,
# width: 0.25,
# },
# searched_face_confidence: 99.9991226196289,
# }
#
# @example Request syntax with placeholder values
#
# resp = client.search_faces_by_image({
# collection_id: "CollectionId", # required
# image: { # required
# bytes: "data",
# s3_object: {
# bucket: "S3Bucket",
# name: "S3ObjectName",
# version: "S3ObjectVersion",
# },
# },
# max_faces: 1,
# face_match_threshold: 1.0,
# })
#
# @example Response structure
#
# resp.searched_face_bounding_box.width #=> Float
# resp.searched_face_bounding_box.height #=> Float
# resp.searched_face_bounding_box.left #=> Float
# resp.searched_face_bounding_box.top #=> Float
# resp.searched_face_confidence #=> Float
# resp.face_matches #=> Array
# resp.face_matches[0].similarity #=> Float
# resp.face_matches[0].face.face_id #=> String
# resp.face_matches[0].face.bounding_box.width #=> Float
# resp.face_matches[0].face.bounding_box.height #=> Float
# resp.face_matches[0].face.bounding_box.left #=> Float
# resp.face_matches[0].face.bounding_box.top #=> Float
# resp.face_matches[0].face.image_id #=> String
# resp.face_matches[0].face.external_image_id #=> String
# resp.face_matches[0].face.confidence #=> Float
#
# @overload search_faces_by_image(params = {})
# @param [Hash] params ({})
def search_faces_by_image(params = {}, options = {})
req = build_request(:search_faces_by_image, params)
req.send_request(options)
end
# @!endgroup
# @param params ({})
# @api private
def build_request(operation_name, params = {})
handlers = @handlers.for(operation_name)
context = Seahorse::Client::RequestContext.new(
operation_name: operation_name,
operation: config.api.operation(operation_name),
client: self,
params: params,
config: config)
context[:gem_name] = 'aws-sdk-rekognition'
context[:gem_version] = '1.0.0.rc12'
Seahorse::Client::Request.new(handlers, context)
end
# @api private
# @deprecated
def waiter_names
[]
end
class << self
# @api private
attr_reader :identifier
# @api private
def errors_module
Errors
end
end
end
end