Sha256: 9fdfc1ef6e237c36d851d801aa00b20b800ef714a822d779dba0e5532331a2e7
Contents?: true
Size: 1.81 KB
Versions: 1
Compression:
Stored size: 1.81 KB
Contents
# GA Simple Framework for Genetic Algorithm ## Installation Add this line to your application's Gemfile: ```ruby gem 'ga' ``` And then execute: $ bundle Or install it yourself as: $ gem install ga ## Usage ### Define your unit require methods: * `Unit.random_new` * `Unit#initialize(genome)` need copy genome * `Unit#fitness` return fitness * `Unit#fitness=` #set fitness * `Unit#cross!(target_unit)` * `Unit#mutate!` * `Unit#<=>(target_unit)` ``` class Unit include GA attr_accessor :genome, :fitness def self.random_new self.new(3.times.map { rand(3) }) end def initialize(genome) @genome = genome.dup end def fitness @fitness ||= genome.reduce(&:+) end def cross!(target) (rand(3) + 1).times do |i| genome[i], target.genome[i] = target.genome[i], genome[i] end end def mutate! (rand(3) + 1).times do i = rand(3) genome[i] = (genome[i] + rand(3)) % 3 end end def <=>(target) self.fitness <=> target.fitness end end ``` ### Evolve `Unit#evolve(total_units, generations, crossover_rate, variation_rate)` return latest units ``` units = Unit.evolve(32, 100, 0.8, 0.15) best = units.max ``` ### Print evolve info ``` gz = Unit.new_ga_zoo ga.debug! units = ga.evolve(32, 100, 0.8, 0.15) ``` ### Use `before_init_fitness` callback ``` gz = Unit.new_ga_zoo gz.before_init_fitness do |units, generation| # parallel calculate fitness data = Parallel.map(units, in_processes: 8) {|unit| unit.fitness } units.each_with_index {|unit, index| unit.fitness = data[index] } end ``` ### More see `examples/` folder ## Contributing Bug reports and pull requests are welcome on GitHub at https://github.com/xjz19901211/ga. ## License The gem is available as open source under the terms of the [MIT License](http://opensource.org/licenses/MIT).
Version data entries
1 entries across 1 versions & 1 rubygems
Version | Path |
---|---|
ga-0.1.0 | README.md |