#-- # = NMatrix # # A linear algebra library for scientific computation in Ruby. # NMatrix is part of SciRuby. # # NMatrix was originally inspired by and derived from NArray, by # Masahiro Tanaka: http://narray.rubyforge.org # # == Copyright Information # # SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation # NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation # # Please see LICENSE.txt for additional copyright notices. # # == Contributing # # By contributing source code to SciRuby, you agree to be bound by # our Contributor Agreement: # # * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement # # == shortcuts.rb # # These are shortcuts for NMatrix and NVector creation, contributed by Daniel # Carrera (dcarrera@hush.com) and Carlos Agarie (carlos.agarie@gmail.com). # # TODO Make all the shortcuts available through modules, allowing someone # to include them to make "MATLAB-like" scripts. # # There are some questions to be answered before this can be done, tho. #++ class NMatrix # call-seq: # m.dense? -> true or false # # Determine if +m+ is a dense matrix. def dense?; return stype == :dense; end # call-seq: # m.yale? -> true or false # # Determine if +m+ is a Yale matrix. def yale?; return stype == :yale; end # call-seq: # m.list? -> true or false # # Determine if +m+ is a list-of-lists matrix. def list?; return stype == :list; end class << self # call-seq: # NMatrix[Numeric, ..., Numeric, dtype: Symbol] -> NMatrix # NMatrix[Array, dtype: Symbol] -> NMatrix # # The default value for +dtype+ is guessed from the first parameter. For example: # NMatrix[1.0, 2.0].dtype # => :float64 # # But this is just a *guess*. If the other values can't be converted to # this dtype, a +TypeError+ will be raised. # # You can use the +N+ constant in this way: # N = NMatrix # N[1, 2, 3] # # NMatrix needs to have a succinct way to create a matrix by specifying the # components directly. This is very useful for using it as an advanced # calculator, it is useful for learning how to use, for testing language # features and for developing algorithms. # # The NMatrix::[] method provides a way to create a matrix in a way that is compact and # natural. The components are specified using Ruby array syntax. Optionally, # one can specify a dtype as the last parameter (default is :float64). # # Examples: # # a = N[ 1,2,3,4 ] => 1 2 3 4 # # a = N[ 1,2,3,4, :int32 ] => 1 2 3 4 # # a = N[ [1,2,3], [3,4,5] ] => 1.0 2.0 3.0 # 3.0 4.0 5.0 # # a = N[ 3,6,9 ].transpose => 3 # 6 # 9 # # SYNTAX COMPARISON: # # MATLAB: a = [ [1 2 3] ; [4 5 6] ] or [ 1 2 3 ; 4 5 6 ] # IDL: a = [ [1,2,3] , [4,5,6] ] # NumPy: a = array( [1,2,3], [4,5,6] ) # # SciRuby: a = NMatrix[ [1,2,3], [4,5,6] ] # Ruby array: a = [ [1,2,3], [4,5,6] ] def [](*params) options = params.last.is_a?(Hash) ? params.pop : {} # First find the dimensions of the array. i = 0 shape = [] row = params while row.is_a?(Array) shape[i] = row.length row = row[0] i += 1 end # A row vector should be stored as 1xN, not N #shape.unshift(1) if shape.size == 1 # Then flatten the array. NMatrix.new(shape, params.flatten, options) end # # call-seq: # zeros(shape) -> NMatrix # zeros(shape, dtype: dtype) -> NMatrix # zeros(shape, dtype: dtype, stype: stype) -> NMatrix # # Creates a new matrix of zeros with the dimensions supplied as # parameters. # # * *Arguments* : # - +shape+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+ # - +stype+ -> (optional) Default is +:dense+. # * *Returns* : # - NMatrix filled with zeros. # # Examples: # # NMatrix.zeros(2) # => 0.0 0.0 # 0.0 0.0 # # NMatrix.zeros([2, 3], dtype: :int32) # => 0 0 0 # 0 0 0 # # NMatrix.zeros([1, 5], dtype: :int32) # => 0 0 0 0 0 # def zeros(shape, opts = {}) NMatrix.new(shape, 0, {:dtype => :float64}.merge(opts)) end alias :zeroes :zeros # # call-seq: # ones(shape) -> NMatrix # ones(shape, dtype: dtype, stype: stype) -> NMatrix # # Creates a matrix filled with ones. # # * *Arguments* : # - +shape+ -> Array (or integer for square matrix) specifying the shape. # - +opts+ -> (optional) Hash of options from NMatrix#initialize # * *Returns* : # - NMatrix filled with ones. # # Examples: # # NMatrix.ones([1, 3]) # => 1.0 1.0 1.0 # # NMatrix.ones([2, 3], dtype: :int32) # => 1 1 1 # 1 1 1 # def ones(shape, opts={}) NMatrix.new(shape, 1, {:dtype => :float64, :default => 1}.merge(opts)) end # call-seq: # ones_like(nm) -> NMatrix # # Creates a new matrix of ones with the same dtype and shape as the # provided matrix. # # @param [NMatrix] nm the nmatrix whose dtype and shape will be used # @return [NMatrix] a new nmatrix filled with ones. # def ones_like(nm) NMatrix.ones(nm.shape, dtype: nm.dtype, stype: nm.stype, capacity: nm.capacity, default: 1) end # call-seq: # zeros_like(nm) -> NMatrix # # Creates a new matrix of zeros with the same stype, dtype, and shape # as the provided matrix. # # @param [NMatrix] nm the nmatrix whose stype, dtype, and shape will be used # @return [NMatrix] a new nmatrix filled with zeros. # def zeros_like(nm) NMatrix.zeros(nm.shape, dtype: nm.dtype, stype: nm.stype, capacity: nm.capacity, default: 0) end # # call-seq: # eye(shape) -> NMatrix # eye(shape, dtype: dtype) -> NMatrix # eye(shape, stype: stype, dtype: dtype) -> NMatrix # # Creates an identity matrix (square matrix rank 2). # # * *Arguments* : # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+ # - +stype+ -> (optional) Default is +:dense+. # * *Returns* : # - An identity matrix. # # Examples: # # NMatrix.eye(3) # => 1.0 0.0 0.0 # 0.0 1.0 0.0 # 0.0 0.0 1.0 # # NMatrix.eye(3, dtype: :int32) # => 1 0 0 # 0 1 0 # 0 0 1 # # NMatrix.eye(2, dtype: :int32, stype: :yale) # => 1 0 # 0 1 # def eye(shape, opts={}) # Fill the diagonal with 1's. m = NMatrix.zeros(shape, {:dtype => :float64}.merge(opts)) (0...m.shape[0]).each do |i| m[i, i] = 1 end m end alias :identity :eye # # call-seq: # diagonals(array) -> NMatrix # diagonals(array, dtype: dtype, stype: stype) -> NMatrix # # Creates a matrix filled with specified diagonals. # # * *Arguments* : # - +entries+ -> Array containing input values for diagonal matrix # - +options+ -> (optional) Hash with options for NMatrix#initialize # * *Returns* : # - NMatrix filled with specified diagonal values. # # Examples: # # NMatrix.diagonal([1.0,2,3,4]) # => 1.0 0.0 0.0 0.0 # 0.0 2.0 0.0 0.0 # 0.0 0.0 3.0 0.0 # 0.0 0.0 0.0 4.0 # # NMatrix.diagonal([1,2,3,4], dtype: :int32) # => 1 0 0 0 # 0 2 0 0 # 0 0 3 0 # 0 0 0 4 # # def diagonal(entries, opts={}) m = NMatrix.zeros(entries.size, {:dtype => guess_dtype(entries[0]), :capacity => entries.size + 1}.merge(opts) ) entries.each_with_index do |n, i| m[i,i] = n end m end alias :diag :diagonal alias :diagonals :diagonal # Generate a block-diagonal NMatrix from the supplied 2D square matrices. # # * *Arguments* # - +*params+ -> An array that collects all arguments passed to the method. The method # can receive any number of arguments. Optionally, the last entry of +params+ is # a hash of options from NMatrix#initialize. All other entries of +params+ are # the blocks of the desired block-diagonal matrix. Each such matrix block can be # supplied as a square 2D NMatrix object, or alternatively as an array of arrays # (with dimensions corresponding to a square matrix), or alternatively as a number. # * *Returns* # - NMatrix of block-diagonal form filled with specified matrices # as the blocks along the diagonal. # # * *Example* # # a = NMatrix.new([2,2], [1,2,3,4]) # b = NMatrix.new([1,1], [123], dtype: :float64) # c = Array.new(2) { [[10,10], [10,10]] } # d = Array[[1,2,3], [4,5,6], [7,8,9]] # m = NMatrix.block_diagonal(a, b, *c, d, 10.0, 11, dtype: :int64, stype: :yale) # => # [ # [1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # [3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # [0, 0, 123, 0, 0, 0, 0, 0, 0, 0, 0, 0] # [0, 0, 0, 10, 10, 0, 0, 0, 0, 0, 0, 0] # [0, 0, 0, 10, 10, 0, 0, 0, 0, 0, 0, 0] # [0, 0, 0, 0, 0, 10, 10, 0, 0, 0, 0, 0] # [0, 0, 0, 0, 0, 10, 10, 0, 0, 0, 0, 0] # [0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0] # [0, 0, 0, 0, 0, 0, 0, 4, 5, 6, 0, 0] # [0, 0, 0, 0, 0, 0, 0, 7, 8, 9, 0, 0] # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0] # [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11] # ] # def block_diagonal(*params) options = params.last.is_a?(Hash) ? params.pop : {} params.each_index do |i| params[i] = params[i].to_nm if params[i].is_a?(Array) # Convert Array to NMatrix params[i] = NMatrix.new([1,1], [params[i]]) if params[i].is_a?(Numeric) # Convert number to NMatrix end block_sizes = [] #holds the size of each matrix block params.each do |b| unless b.is_a?(NMatrix) raise(ArgumentError, "Only NMatrix or appropriate Array objects or single numbers allowed") end raise(ArgumentError, "Only 2D matrices or 2D arrays allowed") unless b.shape.size == 2 raise(ArgumentError, "Only square-shaped blocks allowed") unless b.shape[0] == b.shape[1] block_sizes << b.shape[0] end block_diag_mat = NMatrix.zeros(block_sizes.sum, options) (0...params.length).each do |n| # First determine the size and position of the n'th block in the block-diagonal matrix block_size = block_sizes[n] block_pos = block_sizes[0...n].sum # populate the n'th block in the block-diagonal matrix (0...block_size).each do |i| (0...block_size).each do |j| block_diag_mat[block_pos+i,block_pos+j] = params[n][i,j] end end end return block_diag_mat end alias :block_diag :block_diagonal # # call-seq: # random(shape) -> NMatrix # # Creates a +:dense+ NMatrix with random numbers between 0 and 1 generated # by +Random::rand+. The parameter is the dimension of the matrix. # # If you use an integer dtype, make sure to specify :scale as a parameter, or you'll # only get a matrix of 0s. # # * *Arguments* : # - +shape+ -> Array (or integer for square matrix) specifying the dimensions. # * *Returns* : # - NMatrix filled with random values. # # Examples: # # NMatrix.random([2, 2]) # => 0.4859439730644226 0.1783195585012436 # 0.23193766176700592 0.4503345191478729 # # NMatrix.random([2, 2], :dtype => :byte, :scale => 255) # => [ [252, 108] [44, 12] ] # def random(shape, opts={}) scale = opts.delete(:scale) || 1.0 rng = Random.new random_values = [] # Construct the values of the final matrix based on the dimension. if opts[:dtype] == :complex64 || opts[:dtype] == :complex128 NMatrix.size(shape).times { |i| random_values << Complex(rng.rand(scale), rng.rand(scale)) } else NMatrix.size(shape).times { |i| random_values << rng.rand(scale) } end NMatrix.new(shape, random_values, {:dtype => :float64, :stype => :dense}.merge(opts)) end alias :rand :random # # call-seq: # seq(shape) -> NMatrix # seq(shape, options) -> NMatrix # bindgen(shape) -> NMatrix of :byte # indgen(shape) -> NMatrix of :int64 # findgen(shape) -> NMatrix of :float32 # dindgen(shape) -> NMatrix of :float64 # cindgen(shape) -> NMatrix of :complex64 # zindgen(shape) -> NMatrix of :complex128 # rbindgen(shape) -> NMatrix of :object # # Creates a matrix filled with a sequence of integers starting at zero. # # * *Arguments* : # - +shape+ -> Array (or integer for square matrix) specifying the dimensions. # - +options+ -> (optional) Options permissible for NMatrix#initialize # * *Returns* : # - NMatrix filled with values 0 through +size+. # # Examples: # # NMatrix.seq(2) # => 0 1 # 2 3 # # NMatrix.seq([3, 3], dtype: :float32) # => 0.0 1.0 2.0 # 3.0 4.0 5.0 # 6.0 7.0 8.0 # def seq(shape, options={}) # Construct the values of the final matrix based on the dimension. values = (0 ... NMatrix.size(shape)).to_a # It'll produce :int32, except if a dtype is provided. NMatrix.new(shape, values, {:stype => :dense}.merge(options)) end {:bindgen => :byte, :indgen => :int64, :findgen => :float32, :dindgen => :float64, :cindgen => :complex64, :zindgen => :complex128, :rbindgen => :object}.each_pair do |meth, dtype| define_method(meth) { |shape| NMatrix.seq(shape, :dtype => dtype) } end end end module NVector #:nodoc: class << self # # call-seq: # new(shape) -> NVector # new(stype, shape) -> NVector # new(shape, init) -> NVector # new(:dense, shape, init) -> NVector # new(:list, shape, init) -> NVector # new(shape, init, dtype) -> NVector # new(stype, shape, init, dtype) -> NVector # new(stype, shape, dtype) -> NVector # # Creates a new NVector. See also NMatrix#initialize for a more detailed explanation of # the arguments. # # * *Arguments* : # - +stype+ -> (optional) Storage type of the vector (:list, :dense, :yale). Defaults to :dense. # - +shape+ -> Shape of the vector. Accepts [n,1], [1,n], or n, where n is a Fixnum. # - +init+ -> (optional) Yale: capacity; List: default value (0); Dense: initial value or values (uninitialized by default). # - +dtype+ -> (optional if +init+ provided) Data type stored in the vector. For :dense and :list, can be inferred from +init+. # * *Returns* : # - # def new(*args) stype = args[0].is_a?(Symbol) ? args.shift : :dense shape = args[0].is_a?(Array) ? args.shift : [1,args.shift] if shape.size != 2 || !shape.include?(1) || shape == [1,1] raise(ArgumentError, "shape must be a Fixnum or an Array of positive Fixnums where exactly one value is 1") end warn "NVector is deprecated and not guaranteed to work any longer" NMatrix.new(stype, shape, *args) end # # call-seq: # zeros(size) -> NMatrix # zeros(size, dtype) -> NMatrix # # Creates a new vector of zeros with the dimensions supplied as # parameters. # # * *Arguments* : # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+. # * *Returns* : # - NVector filled with zeros. # # Examples: # # NVector.zeros(2) # => 0.0 # 0.0 # # NVector.zeros(3, :int32) # => 0 # 0 # 0 # def zeros(size, dtype = :float64) NMatrix.new([size,1], 0, dtype: dtype) end alias :zeroes :zeros # # call-seq: # ones(size) -> NVector # ones(size, dtype) -> NVector # # Creates a vector of ones with the dimensions supplied as # parameters. # # * *Arguments* : # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +dtype+ -> (optional) Default is +:float64+. # * *Returns* : # - NVector filled with ones. # # Examples: # # NVector.ones(2) # => 1.0 # 1.0 # # NVector.ones(3, :int32) # => 1 # 1 # 1 # def ones(size, dtype = :float64) NMatrix.new([size,1], 1, dtype: dtype) end # # call-seq: # random(size) -> NVector # # Creates a vector with random numbers between 0 and 1 generated by # +Random::rand+ with the dimensions supplied as parameters. # # * *Arguments* : # - +size+ -> Array (or integer for square matrix) specifying the dimensions. # - +opts+ -> (optional) NMatrix#initialize options # * *Returns* : # - NVector filled with random numbers generated by the +Random+ class. # # Examples: # # NVector.rand(2) # => 0.4859439730644226 # 0.1783195585012436 # def random(size, opts = {}) rng = Random.new random_values = [] size.times { |i| random_values << rng.rand } NMatrix.new([size,1], random_values, opts) end # # call-seq: # seq(n) -> NVector # seq(n, dtype) -> NVector # # Creates a vector with a sequence of +n+ integers starting at zero. You # can choose other types based on the dtype parameter. # # * *Arguments* : # - +n+ -> Number of integers in the sequence. # - +dtype+ -> (optional) Default is +:int64+. # * *Returns* : # - NVector filled with +n+ integers. # # Examples: # # NVector.seq(2) # => 0 # 1 # # NVector.seq(3, :float32) # => 0.0 # 1.0 # 2.0 # def seq(size, dtype = :int64) values = (0 ... size).to_a NMatrix.new([size,1], values, dtype: dtype) end # # call-seq: # indgen(n) -> NVector # # Returns an integer NVector. Equivalent to seq(n, :int32). # # * *Arguments* : # - +n+ -> Size of the sequence. # * *Returns* : # - NVector filled with +n+ integers of dtype +:int32+. # def indgen(n) NVector.seq(n, :int32) end # # call-seq: # findgen(n) -> NVector # # Returns a float NVector. Equivalent to seq(n, :float32). # # * *Arguments* : # - +n+ -> Size of the sequence. # * *Returns* : # - NVector filled with +n+ integers of dtype +:float32+. # def findgen(n) NVector.seq(n, :float32) end # # call-seq: # bindgen(n) -> NVector # # Returns a byte NVector. Equivalent to seq(n, :byte). # # * *Arguments* : # - +n+ -> Size of the sequence. # * *Returns* : # - NVector filled with +n+ integers of dtype +:byte+. # def bindgen(n) NVector.seq(n, :byte) end # # call-seq: # cindgen(n) -> NVector # # Returns a complex NVector. Equivalent to seq(n, :complex64). # # * *Arguments* : # - +n+ -> Size of the sequence. # * *Returns* : # - NVector filled with +n+ integers of dtype +:complex64+. # def cindgen(n) NVector.seq(n, :complex64) end # # call-seq: # linspace(a, b) -> NVector # linspace(a, b, n) -> NVector # # Returns a NVector with +n+ values of dtype +:float64+ equally spaced from # +a+ to +b+, inclusive. # # See: http://www.mathworks.com/help/matlab/ref/linspace.html # # * *Arguments* : # - +a+ -> The first value in the sequence. # - +b+ -> The last value in the sequence. # - +n+ -> The number of elements. Default is 100. # * *Returns* : # - NVector with +n+ +:float64+ values. # # Example: # x = NVector.linspace(0, Math::PI, 1000) # x.pretty_print # [0.0 # 0.0031447373909807737 # 0.006289474781961547 # ... # 3.135303178807831 # 3.138447916198812 # 3.141592653589793] # => nil # def linspace(a, b, n = 100) # Formula: seq(n) * step + a # step = ((b - a) / (n - 1)) step = (b - a) * (1.0 / (n - 1)) # dtype = :float64 is used to prevent integer coercion. result = NVector.seq(n, :float64) * NMatrix.new([n,1], step, dtype: :float64) result += NMatrix.new([n,1], a, dtype: :float64) result end # # call-seq: # logspace(a, b) -> NVector # logspace(a, b, n) -> NVector # # Returns a NVector with +n+ values of dtype +:float64+ logarithmically # spaced from +10^a+ to +10^b+, inclusive. # # See: http://www.mathworks.com/help/matlab/ref/logspace.html # # * *Arguments* : # - +a+ -> The first value in the sequence. # - +b+ -> The last value in the sequence. # - +n+ -> The number of elements. Default is 100. # * *Returns* : # - NVector with +n+ +:float64+ values. # # Example: # x = NVector.logspace(0, Math::PI, 10) # x.pretty_print # [1.0 # 2.2339109164570266 # 4.990357982665873 # 11.148015174505757 # 24.903672795156997 # 55.632586516975095 # 124.27824233101062 # 277.6265222213364 # 620.1929186882427 # 1385.4557313670107] # => nil # def logspace(a, b, n = 100) # Formula: 10^a, 10^(a + step), ..., 10^b, where step = ((b-a) / (n-1)). result = NVector.linspace(a, b, n) result.each_stored_with_index { |element, i| result[i] = 10 ** element } result end end end # This constant is intended as a simple constructor for NMatrix meant for # experimenting. # # Examples: # # a = N[ 1,2,3,4 ] => 1 2 3 4 # # a = N[ 1,2,3,4, :int32 ] => 1 2 3 4 # # a = N[ [1,2,3], [3,4,5] ] => 1 2 3 # 3 4 5 # # a = N[ 3,6,9 ].transpose => 3 # 6 # 9 N = NMatrix