module DNN module Activations class Sigmoid < Layers::Layer def forward(x) @out = 1 / (1 + Xumo::NMath.exp(-x)) end def backward(dout) dout * (1 - @out) * @out end end class Tanh < Layers::Layer def forward(x) @out = Xumo::NMath.tanh(x) end def backward(dout) dout * (1 - @out**2) end end class Softsign < Layers::Layer def forward(x) @x = x x / (1 + x.abs) end def backward(dout) dout * (1 / (1 + @x.abs)**2) end end class Softplus < Layers::Layer def forward(x) @x = x Xumo::NMath.log(1 + Xumo::NMath.exp(x)) end def backward(dout) dout * (1 / (1 + Xumo::NMath.exp(-@x))) end end class Swish < Layers::Layer def forward(x) @x = x @out = x * (1 / (1 + Xumo::NMath.exp(-x))) end def backward(dout) dout * (@out + (1 / (1 + Xumo::NMath.exp(-@x))) * (1 - @out)) end end class ReLU < Layers::Layer def forward(x) @x = x.clone x[x < 0] = 0 x end def backward(dout) @x[@x > 0] = 1 @x[@x <= 0] = 0 dout * @x end end class LeakyReLU < Layers::Layer attr_reader :alpha def initialize(alpha = 0.3) @alpha = alpha end def self.load_hash(hash) self.new(hash[:alpha]) end def forward(x) @x = x.clone a = Xumo::SFloat.ones(x.shape) a[x <= 0] = @alpha x * a end def backward(dout) @x[@x > 0] = 1 @x[@x <= 0] = @alpha dout * @x end def to_hash {class: self.class.name, alpha: alpha} end end class ELU < Layers::Layer attr_reader :alpha def self.load_hash(hash) self.new(hash[:alpha]) end def initialize(alpha = 1.0) @alpha = alpha end def forward(x) @x = x x1 = Xumo::SFloat.zeros(x.shape) x1[x >= 0] = 1 x1 *= x x2 = Xumo::SFloat.zeros(x.shape) x2[x < 0] = 1 x2 *= @alpha * Xumo::NMath.exp(x) - @alpha x1 + x2 end def backward(dout) dx = Xumo::SFloat.ones(@x.shape) dx[@x < 0] = 0 dx2 = Xumo::SFloat.zeros(@x.shape) dx2[@x < 0] = 1 dx2 *= @alpha * Xumo::NMath.exp(@x) dout * (dx + dx2) end def to_hash {class: self.class.name, alpha: @alpha} end end class IdentityMSE < Layers::OutputLayer def forward(x) @out = x end def backward(y) @out - y end def loss(y) batch_size = y.shape[0] 0.5 * ((@out - y)**2).sum / batch_size + ridge end end class IdentityMAE < Layers::OutputLayer def forward(x) @out = x end def backward(y) dout = @out - y dout[dout >= 0] = 1 dout[dout < 0] = -1 dout end def loss(y) batch_size = y.shape[0] (@out - y).abs.sum / batch_size + ridge end end class IdentityHuber < Layers::OutputLayer def forward(x) @out = x end def loss(y) loss = loss_l1(y) @loss = loss > 1 ? loss : loss_l2(y) end def backward(y) dout = @out - y if @loss > 1 dout[dout >= 0] = 1 dout[dout < 0] = -1 end dout end private def loss_l1(y) batch_size = y.shape[0] (@out - y).abs.sum / batch_size end def loss_l2(y) batch_size = y.shape[0] 0.5 * ((@out - y)**2).sum / batch_size end end class SoftmaxWithLoss < Layers::OutputLayer def forward(x) @out = Xumo::NMath.exp(x) / Xumo::NMath.exp(x).sum(1).reshape(x.shape[0], 1) end def backward(y) @out - y end def loss(y) batch_size = y.shape[0] -(y * Xumo::NMath.log(@out + 1e-7)).sum / batch_size + ridge end end class SigmoidWithLoss < Layers::OutputLayer def initialize @sigmoid = Sigmoid.new end def forward(x) @out = @sigmoid.forward(x) end def backward(y) @out - y end def loss(y) batch_size = y.shape[0] -(y * Xumo::NMath.log(@out + 1e-7) + (1 - y) * Xumo::NMath.log(1 - @out + 1e-7)).sum / batch_size + ridge end end end end