module Ankusa class Classifier attr_reader :classnames def initialize(storage) @storage = storage @storage.init_tables @classnames = @storage.classnames end # text can be either an array of strings or a string # klass is a symbol def train(klass, text) th = TextHash.new(text) th.each { |word, count| @storage.incr_word_count klass, word, count yield word, count if block_given? } @storage.incr_total_word_count klass, th.word_count doccount = (text.kind_of? Array) ? text.length : 1 @storage.incr_doc_count klass, doccount @classnames << klass if not @classnames.include? klass # cache is now dirty of these vars @doc_count_totals = nil @vocab_sizes = nil th end # text can be either an array of strings or a string # klass is a symbol def untrain(klass, text) th = TextHash.new(text) th.each { |word, count| @storage.incr_word_count klass, word, -count yield word, count if block_given? } @storage.incr_total_word_count klass, -th.word_count doccount = (text.kind_of? Array) ? text.length : 1 @storage.incr_doc_count klass, -doccount # cache is now dirty of these vars @doc_count_totals = nil @vocab_sizes = nil th end def classify(text, classes=nil) # return the most probable class log_likelihoods(text, classes).sort_by { |c| -c[1] }.first.first end # Classes is an array of classes to look at def classifications(text, classnames=nil) result = log_likelihoods text, classnames result.keys.each { |k| result[k] = Math.exp result[k] } # normalize to get probs sum = result.values.inject { |x,y| x+y } result.keys.each { |k| result[k] = result[k] / sum } result end # Classes is an array of classes to look at def log_likelihoods(text, classnames=nil) classnames ||= @classnames result = Hash.new 0 TextHash.new(text).each { |word, count| probs = get_word_probs(word, classnames) classnames.each { |k| result[k] += (Math.log(probs[k]) * count) } } # add the prior and exponentiate doc_counts = doc_count_totals.select { |k,v| classnames.include? k }.map { |k,v| v } doc_count_total = (doc_counts.inject { |x,y| x+y } + classnames.length).to_f classnames.each { |k| result[k] += Math.log((@storage.get_doc_count(k) + 1).to_f / doc_count_total) } result end protected def get_word_probs(word, classnames) probs = Hash.new 0 @storage.get_word_counts(word).each { |k,v| probs[k] = v if classnames.include? k } vs = vocab_sizes classnames.each { |cn| # use a laplacian smoother probs[cn] = (probs[cn] + 1).to_f / (@storage.get_total_word_count(cn) + vs[cn]).to_f } probs end def doc_count_totals @doc_count_totals ||= @storage.doc_count_totals end def vocab_sizes @vocab_sizes ||= @storage.get_vocabulary_sizes end end end