require "spec_helper" require "fileutils" RSpec.describe Metanorma::Utils do it "has a version number" do expect(Metanorma::Utils::VERSION).not_to be nil end it "normalises anchors" do expect(Metanorma::Utils.to_ncname("/:ab")).to eq "__ab" end it "sets metanorma IDs if not provided" do expect(Metanorma::Utils.anchor_or_uuid()).to match (/^_[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$/) expect(Metanorma::Utils.anchor_or_uuid(Dummy.new(nil))).to match (/^_[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$/) expect(Metanorma::Utils.anchor_or_uuid(Dummy.new(""))).to match (/^_[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$/) expect(Metanorma::Utils.anchor_or_uuid(Dummy.new("A"))).to eq "A" end it "applies Asciidoctor substitutions" do expect(Metanorma::Utils.asciidoc_sub("A -- B")).to eq "A — B" end it "finds file path of docfile" do d = Dummy.new expect(Metanorma::Utils.localdir(d)).to eq "./" d.docfile = "spec/utils_spec.rb" expect(Metanorma::Utils.localdir(d)).to eq "spec/" end it "applies smart formatting" do expect(Metanorma::Utils.smartformat("A - B A -- B A--B '80s '80' ")).to eq "A — B A — B A—B ’80s ‘80’ <A>" end it "applies en-dash normalisation" do a = Nokogiri::XML(<<~INPUT) A -- B A - B A--B INPUT Metanorma::Utils.endash_date(a) expect(a.to_xml).to be_equivalent_to <<~OUTPUT A–B A–BA–B OUTPUT end it "sets hash values by dotted key path" do a = {} a = Metanorma::Utils.set_nested_value(a, ["X"], "x") a = Metanorma::Utils.set_nested_value(a, ["X1"], 9) a = Metanorma::Utils.set_nested_value(a, ["X2"], [3]) a = Metanorma::Utils.set_nested_value(a, ["X3"], {"a" =>"b"}) expect(a.to_s).to be_equivalent_to <<~OUTPUT {"X"=>"x", "X1"=>9, "X2"=>[3], "X3"=>{"a"=>"b"}} OUTPUT a = Metanorma::Utils.set_nested_value(a, ["X2"], 4) a = Metanorma::Utils.set_nested_value(a, ["X1"], 4) expect(a.to_s).to be_equivalent_to <<~OUTPUT {"X"=>"x", "X1"=>[9, 4], "X2"=>[3, 4], "X3"=>{"a"=>"b"}} OUTPUT a = Metanorma::Utils.set_nested_value(a, ["X2", "A"], 5) a = Metanorma::Utils.set_nested_value(a, ["X2a"], []) a = Metanorma::Utils.set_nested_value(a, ["X2a", "A"], 6) a = Metanorma::Utils.set_nested_value(a, ["X4", "A"], 10) a = Metanorma::Utils.set_nested_value(a, ["X3", "A"], 7) a = Metanorma::Utils.set_nested_value(a, ["X3", "a"], 8) a = Metanorma::Utils.set_nested_value(a, ["X1", "a"], 11) expect(a.to_s).to be_equivalent_to <<~OUTPUT {"X"=>"x", "X1"=>[9, 4, {"a"=>11}], "X2"=>[3, 4, {"A"=>5}], "X3"=>{"a"=>["b", 8], "A"=>7}, "X2a"=>[{"A"=>6}], "X4"=>{"A"=>10}} OUTPUT end it "rewrites SVGs" do FileUtils.cp "spec/fixtures/action_schemaexpg1.svg", "action_schemaexpg1.svg" FileUtils.cp "spec/fixtures/action_schemaexpg1.svg", "action_schemaexpg2.svg" xmldoc = Nokogiri::XML(<<~INPUT) Document title en published 2021 article Computer
ComputerPhone
Workmap
ComputerPhoneaction_schema.basicCoffee
ComputerPhone
Workmap1
ComputerPhoneaction_schema.basicCoffee
INPUT Metanorma::Utils.svgmap_rewrite(xmldoc) xmldoc1 = xmldoc.dup xmldoc&.at("//image[@alt = 'Workmap1']")&.remove expect(xmlpp(xmldoc.to_xml)).to be_equivalent_to xmlpp(<<~OUTPUT) Document title en published 2021 article Computer
Workmap
action_schema.basicCoffee
action_schema.basic Coffee
OUTPUT expect(xmlpp(File.read("action_schemaexpg1.svg", encoding: "utf-8").sub(%r{}m, ""))).to be_equivalent_to <<~OUTPUT OUTPUT expect(xmlpp(File.read("action_schemaexpg2.svg", encoding: "utf-8").sub(%r{}m, ""))).to be_equivalent_to <<~OUTPUT OUTPUT expect(xmlpp(File.read(Metanorma::Utils.save_dataimage(xmldoc1.at("//image[@alt = 'Workmap1']/@src"))))).to be_equivalent_to <<~OUTPUT OUTPUT end it "rewrites SVGs with namespaces" do FileUtils.cp "spec/fixtures/action_schemaexpg1.svg", "action_schemaexpg1.svg" FileUtils.cp "spec/fixtures/action_schemaexpg1.svg", "action_schemaexpg2.svg" xmldoc = Nokogiri::XML(<<~INPUT) Document title en published 2021 article Computer
ComputerPhone
Workmap
ComputerPhoneaction_schema.basicCoffee
INPUT Metanorma::Utils.svgmap_rewrite(xmldoc) expect(xmlpp(xmldoc.to_xml)).to be_equivalent_to xmlpp(<<~OUTPUT) Document title en published 2021 article Computer
Workmap
action_schema.basicCoffee
OUTPUT end # not testing Asciidoctor log extraction here it "generates log" do xml = Nokogiri::XML(<<~INPUT) c INPUT FileUtils.rm_f("log.txt") log = Metanorma::Utils::Log.new log.add("Category 1", nil, "Message 1") log.add("Category 1", "node", "Message 2") log.add("Category 2", xml.at("//xml/a/b"), "Message 3") log.write("log.txt") expect(File.exist?("log.txt")).to be true file = File.read("log.txt", encoding: "utf-8") expect(file).to eq <<~OUTPUT log.txt errors == Category 1 (): Message 1 (node): Message 2 == Category 2 (XML Line 000003): Message 3 c OUTPUT end def datauri(uri, localdir = "") return uri if /^data:/.match(uri) path = File.join(localdir, uri) types = MIME::Types.type_for(path) type = types ? types.first.to_s : 'text/plain; charset="utf-8"' bin = File.open(path, 'rb', &:read) data = Base64.strict_encode64(bin) "data:#{type};base64,#{data}" end it "generates data uris" do expect(Metanorma::Utils.datauri("data:xyz")).to eq "data:xyz" expect(Metanorma::Utils.datauri("spec/fixtures/rice_image1.png")).to be_equivalent_to "" expect(Metanorma::Utils.datauri("rice_image1.png", "spec/fixtures")).to be_equivalent_to "" expect(Metanorma::Utils.datauri2mime("")&.first&.to_s).to eq "image/png" end end